
Engineering Electromagnetics
W.H. Hayt Jr. and J. A. Buck

Chapter 7:
The Steady Magnetic Field



Magnetic Field
• A magntic field wih closed field lines is produced surrounding the current carrying wire.

• The magnetic field intensity, H, circulates around its source, I1, in a direction  determined by the right-
hand rule:  Right thumb in the direction of the current, fingers curl in the direction of H.



Biot-Savart Law

The Biot-Savart Law specifies the 
magnetic field intensity,  H, arising 
from a “point source” current element 
of differential length dL.

Note in particular the inverse-square 
distance dependence, and the fact that 
the cross product will yield a field vector 
that points into the page.  This is a formal 
statement of the right-hand rule

Note the similarity to Coulomb’s Law, in which 
a point charge of magnitude dQ1 at Point 1 would 
generate electric field at Point 2 given by:

The units of H are [A/m]



Magnetic Field Arising From a Circulating Current

At point P, the magnetic field associated with 
the differential current element IdL is 

The contribution to the field at P from any portion of the current will be just the above integral evalated
over just that portion.

To determine the total field arising from the closed circuit path, 
we sum the contributions from the current elements that make up
the entire loop, or



Two- and Three-Dimensional Currents

On a surface that carries uniform surface current
density K [A/m], the current within width b is

..and so the differential current quantity that
appears in the Biot-Savart law becomes:

The magnetic field arising from a current 
sheet is thus found from the two-dimensional 
form of the Biot-Savart law:

In a similar way, a volume current will be made up
of three-dimensional current elements, and so the Biot-Savart
law for this case becomes:



Example of the Biot-Savart Law

In this example, we evaluate the magnetic field intensity on the y axis (equivalently in the xy plane) 
arising from a filament current of infinite length in on the z axis.

Using the drawing, we identify:

and so.. 

so that:



Example: continued

We now have:

Integrate this over the entire wire:

..after carrying out the cross product



Example: concluded

we have:

finally:

Current is into the page. 
Magnetic field streamlines 

are concentric circles, whose magnitudes
decrease as the inverse distance from the z axis

Evaluating the integral:



Field Arising from a Finite Current Segment

In this case, the field is to be found in the xy plane at Point 2.  
The Biot-Savart integral is taken over the wire length:

..after a few additional steps (see Problem 7.8), we find:



Ampere’s Circuital Law
 Ampere’s Circuital Law states that the line integral of H about any closed path is exactly equal to 

the direct current enclosed by that path.

• In the figure at right, the integral of H about closed paths a and b gives the total current I,  while 
the integral over path c  gives only that portion  of the current that lies within c.

• If H possess a circulation about a given path then current passes through this path.



Ampere’s Law as Applied to a Small Closed Loop.

Consider magnetic field H evaluated at the point
shown in the figure.  We can approximate the field
over the closed path 1234 by making appropriate 
adjustments in the value of H along each segment.

The objective is to take the closed path integral 
and ultimately obtain the point form of Ampere’s Law. 



Approximation of H Along One Segment

Along path 1-2, we may write:

where:

And therefore:



Contributions of y-Directed Path Segments

The contributions from the front and back sides will be:

The contribution from the opposite side is:

This leaves the left and right sides…..

Note the path directions as specified in the figure, and 
how these determine the signs used .



Contributions of x-Directed Path Segments

Along the right side (path 2-3):

…and the contribution from the left side (path 4-1) is:

The next step is to add the contributions of all four sides to find the closed path integral:



Net Closed Path Integral
The total integral will now be the sum:

and using our previous results, the becomes:



Relation to the Current Density
By Ampere’s Law, the closed path integral of H is equal to the enclosed current, approximated in 
this case by the current density at the center, multiplied by the loop area:

Dividing by the loop area, we now have:

The expression becomes exact as the loop area
approaches zero:



Other Loop Orientations

The same exercise can be carried with the rectangular loop in the other two orthogonal orientations. 
The results are:

Loop in yz plane:

Loop in xz plane:

Loop in xy plane:

This gives all three components of the current density field.



Curl of a Vector Field

The previous exercise resulted in the rectangular coordinate representation of the Curl of H.

In general, the curl of a vector field is another field that is normal to the original field.

The curl component in the direction N, normal to the plane of the integration loop is: 

• Any component of curl is given by the limit of quotient of closed line integral of a vector about a 
small closed path in plane normal to the component desired and of area enclosed as path shrinks 
to zero.



Curl in Rectangular Coordinates
Assembling the results of the rectangular loop integration exercise, we find the vector field
that comprises curl H:

An easy way to calculate this is to evaluate the following determinant:

Curl of any vector describes the infinitesimal rotation or circulation of a vector field in 3-D space.



Curl in Other Coordinate Systems

…a little more complicated!

Look these up as needed….



Another Maxwell Equation

It has just been demonstrated that:

…..which is in fact one of Maxwell’s equations for static fields:

This is Ampere’s Circuital Law in point form.



….and Another Maxwell Equation

We already know that for a static electric field:

This means that:

Recall the condition for a conservative field:  that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has  zero curl at all points over which the field is defined.

(applies to a static electric field)



Curl Applied to Partitions of a Large Surface

Surface S is paritioned into sub-regions, each of small area  

The curl component that is normal to a surface element can
be written using the definition of curl:

or:

We now apply this to every partition on the surface, and add the results….



Adding the Contributions

.

Cancellation here:

We now evaluate and add the curl contributions
from all surface elements, and note that 
adjacent path integrals will all cancel!

This means that the only contribution to the 
overall path integral will be around the outer 
periphery of surface S.

No cancellation here:

Using our previous result, we now write:



Stokes’ Theorem

.

We now take our previous result, and take the limit as 

In the limit, this side 
becomes the path integral 
of H over the outer perimeter
because all interior paths 
cancel

In the limit, this side
becomes the integral 
of the curl of H over
surface S

The result is Stokes’ Theorem

This is a valuable tool to have at our disposal, because it gives us two ways to evaluate the same thing!



Obtaining Ampere’s Circuital Law in Integral Form, 
using Stokes’ Theorem

Begin with the point form of Ampere’s Law for static fields:

Integrate both sides over surface S:

..in which the far right hand side is found from the left hand side
 using Stokes’ Theorem.  The closed path integral is taken around the 
perimeter of S.  Again, note that we use the right-hand convention in 
choosing the direction of the path integral.

The center expression is just the net current through surface S, 
so we are left with the integral form of Ampere’s Law:



Magnetic Flux and Flux Density
We are already familiar with the concept of electric flux:

Coulombs

in which the electric flux density in free space is:

In a similar way, we can define the magnetic flux in units of Webers (Wb):

Webers

in which the magnetic flux density (or magnetic induction) in free space is:

and where the free space permittivity is 

and where the free space permeability is



A Key Property of B

If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

If the same were to be done with magnetic flux density, we would find:

The implication is that (for our purposes) there are no magnetic charges 
-- specifically, no point sources of magnetic field exist.  A hint of this has already
been observed, in that magnetic field lines always close on themselves.



Another Maxwell Equation

We may rewrite the closed surface integral of B using the divergence theorem, in which the 
right hand integral is taken over the volume surrounded by the closed surface:

Because the result is zero, it follows that

This result is known as Gauss’ Law for the magnetic field in point form.



Maxwell’s Equations for Static Fields

We have now completed the derivation of Maxwell’s equations for no time variation. In point form, these are:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the Magnetic Field

where, in free space:
Significant changes in the above four
equations will occur when the fields are 
allowed to vary with time, as we’ll see later.



Maxwell’s Equations in Large Scale Form

The divergence theorem and Stokes’ theorem can be applied to the previous four point form equations 
to yield the integral form of Maxwell’s equations for static fields:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the magnetic field



Scalar Magnetic Potential

We are already familiar with the relation between the scalar electric potential and electric field: 

So it is tempting to define a scalar magnetic potential such that:

This rule must be consistent with Maxwell’s equations, so therefore:

But the curl of the gradient of any function is identically zero!  Therefore, the scalar magnetic potential
is valid only in regions where the current density is zero (such as in free space).

So we define scalar magnetic
potential with a condition:



Further Requirements on the Scalar Magnetic Potential

The other Maxwell equation involving magnetic field must also be satisfied.  This is:

in free space

Therefore:

..and so the scalar magnetic potential satisfies Laplace’s equation (again with the restriction
that current density must be zero:



Vector Magnetic Potential

We make use of the Maxwell equation:

.. and the fact that the divergence of the curl of any vector field is identically zero (show this!)

This leads to the definition of the magnetic vector potential, A:

Thus:

and Ampere’s Law becomes 



Equation for the Vector Potential

We start with:

Then, introduce a vector identity that defines the vector Laplacian:

Using a (lengthy) procedure (see Sec. 7.7) it can be proven that

_x0014_We are therefore left with


