Nodal Circuit Analysis Using KCL

- Most useful for when we have mostly current sources
- Node analysis uses KCL to establish the currents

Procedure

(1) Choose one node as the common (or datum) node

- Number (label) the nodes
- Designate a voltage for each node number
- Each node voltage is with respect to the common or datum node
- Number of nodes used $=$ number of nodes $-1=n-1$
- Note: number of nodes = branches $-1=\mathrm{b}-1$
- Thus less equations with node analysis than mesh analysis
(2) For each node write the KCL for current flows in each node - Use differences in the node voltages to calculate currents - Assume the current directions and write the KCL
- Generally assume the node is a positive V relative to all others
- Current directions different for same branch in each node
- Often better to use conductance equations

$$
I=I_{R 1}+I_{R 2}=\frac{V_{1}}{R_{1}}+\frac{V_{1}}{R_{2}}=V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]
$$

(3) Solve the equations for the node voltages

- Get currents in each branch from the voltage differences

Example Nodal Circuit Analysis

- Consider the 2 node, 3 loop circuit below
(1) Setting the base node, and node voltages
- Set the common node to ground
- Label voltages on the others
(2) For each node write KCL for current flows
- For node 1,
- Defining the current directions for I_{1} as into the node
- Use differences in the node voltages for currents
- Collect each voltage into one term

$$
\frac{V_{1}}{R_{1}}+\frac{\left(V_{1}-V_{2}\right)}{R_{3}}=V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}\right]-\frac{V_{2}}{R_{3}}=I_{1}
$$

- Or in the conductance form

Example Nodal Circuit Analysis continued

- For node 2,
- Defining the current directions for I_{2} as into the node
- This means current in R_{3} different from node 1

$$
\frac{V_{2}}{R_{2}}+\frac{\left(V_{2}-V_{1}\right)}{R_{3}}=-\frac{V_{1}}{R_{3}}+V_{2}\left[\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]=I_{2}
$$

- Or if changing to conductance form

$$
V_{2} G_{2}+\left(V_{2}-V_{1}\right) G_{3}=-V_{1} G_{3}+V_{2}\left(G_{2}+G_{3}\right)=I_{2}
$$

- Now have two equations and unknowns (V's)

$$
\begin{aligned}
& V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}\right]-\frac{V_{2}}{R_{3}}=I_{1} \\
&- \frac{V_{1}}{R_{3}}+V_{2}\left[\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]=I_{2}
\end{aligned}
$$

- Could solve this algebraically
- Instead use the numerical methods

Example Nodal Circuit Analysis

- Putting the equations in numerical form
- for node 1 :

$$
\begin{aligned}
& V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}\right]-\frac{V_{2}}{R_{3}}=V_{1}\left[\frac{1}{1000}+\frac{1}{4000}\right]-\frac{V_{2}}{4000}=0.013 \\
& V_{1}(0.00125)-V_{2}(0.00025)=0.013
\end{aligned}
$$

- For node 2:

$$
\begin{aligned}
& -\frac{V_{1}}{R_{3}}+V_{2}\left[\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]=-\frac{V_{1}}{4000}+V_{2}\left[\frac{1}{2000}+\frac{1}{4000}\right]=0.003 \\
& -V_{1}(0.00025)+V_{2}(0.00075)=0.003
\end{aligned}
$$

- Using substitution method for node 1

$$
V_{1}=\frac{0.013+V_{2}(0.00025)}{0.00125}
$$

- Thus using node 2 for the solution

Example Nodal Circuit Analysis Continued

- Solving for node 1

$$
V_{1}=\frac{0.013+V_{2}(0.00025)}{0.00125}=\frac{0.013+8(0.00025)}{0.00125}=12 \mathrm{~V}
$$

- Current in resistances is

$$
I_{R 3}=\frac{\left(V_{1}-V_{2}\right)}{R_{3}}=\frac{12-8}{4000}=1 \mathrm{~mA}
$$

- In the direction of node 2

$$
\begin{aligned}
& I_{R 1}=\frac{V_{1}}{R_{1}}=\frac{12}{1000}=12 \mathrm{~mA} \\
& I_{R 2}=\frac{V_{2}}{R_{2}}=\frac{8}{2000}=4 \mathrm{~mA}
\end{aligned}
$$

Nodal Analysis General Equations

- In general the nodal equations have the form:

$$
\begin{aligned}
& +V_{1} g_{11}-V_{2} g_{12}-V_{3} g_{13} \cdots \cdots-V_{n} g_{1 n}=I_{1} \\
& -V_{1} g_{21}+V_{2} g_{22}-V_{3} g_{23} \cdots \cdots-V_{n} g_{2 n}=I_{2}
\end{aligned}
$$

until

$$
-V_{1} g_{n 1}-V_{2} g_{n 2}-V_{3} g_{n 3} \cdots \cdots+V_{n} g_{n n}=I_{n}
$$

where
$\mathrm{g}_{\mathrm{ij}}=$ branch conductance between " i "th node and " j "th node $\mathrm{g}_{\mathrm{ii}}=$ all branch conductance seen by "i"th node

- Thus in the example circuit

$$
\begin{aligned}
& +V_{1}\left(G_{1}+G_{3}\right)-V_{2} G_{2}=+V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}\right]-\frac{V_{2}}{R_{3}}=I_{1} \\
& -V_{1} G_{3}+V_{2}\left(G_{2}+G_{3}\right)=-\frac{V_{1}}{R_{3}}+V_{2}\left[\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]=I_{2}
\end{aligned}
$$

- And the terms are

$$
\begin{array}{ll}
g_{11}=G_{1}+G_{3}=\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}\right] & g_{12}=G_{2}=-\frac{1}{R_{3}} \\
g_{21}=G_{3}=-\frac{V_{1}}{R_{3}} & g_{22}=\left(G_{2}+G_{3}\right)=\left[\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]
\end{array}
$$

Dummy Nodes and Voltage Sources

- How do we solve a Node circuits containing voltages sources?
- A Voltage source fully defines the node voltage
- This creates a "dummy node" or supernode
- Creates a node constraint equation that defines the voltage
- Example: the circuit below has current and voltage sources
- But V1 is fully defined by voltage source

$$
\mathrm{V}_{1}=\mathrm{V}
$$

- Use this constraint equation to remove one unknown
- This reduces the number of equations to solved by 1 node
- Thus eliminate the unknown current of the voltage source
- Thus node 1 can be eliminated and node 2 becomes

$$
\frac{V_{2}}{R_{2}}+\frac{\left(V_{2}-V\right)}{R_{1}}=V_{2}\left[\frac{1}{R_{2}}+\frac{1}{R_{1}}\right]-\frac{V}{R_{1}}=I
$$

- Thus node 2 can be solved directly

$$
V_{2}=\left[I+\frac{V}{R_{1}}\right]\left[\frac{1}{R_{2}}+\frac{1}{R_{1}}\right]^{-1}
$$

Mesh Analysis using KVL (EC 4)

- Most useful when we have mostly voltage sources
- Mesh analysis uses KVL to establish the currents

Procedure

(1) Define a current loop

- Set a direction for each simple closed path
- Number of loops needed = number of branches $-1=b-1$
- Loop currents can overlap: often many possible combinations
- Must cover all branches with the loop set
- Each loop is called a Mesh
(2) For each mesh write the KVL equation for the loops
- When loop currents overlap:
- Add currents if in same direction
- Subtract currents if in opposite direction
- Voltage sources add if in the direction of loop current
- Voltage sources subtract if opposite to the loop current

$$
V=V_{R 2}=I_{3} R_{2}
$$

(3) Solve the simultaneous equations for the loop currents

- Get currents in each branch from the loop currents
- Voltages calculated from the currents

Example Mesh Analysis of Circuit

- Simple two source network, with 3 branches
(1) Establish two mesh currents (other loops ignored)
- Number of loops $=\mathrm{b}-1=3-1=2$
(2) Now write the KVL equations
- For loop 1:

$$
V_{1}-R_{1} I_{1}-R_{3}\left(I_{1}-I_{2}\right)=0
$$

- Or more commonly putting V on the right

$$
I_{1}\left(R_{1}+R_{3}\right)-I_{2} R_{3}=V_{1}
$$

- For loop 2:
$-V_{2}-R_{2} I_{2}-R_{3}\left(I_{2}-I_{1}\right)=0$
- Again getting V on the right

$$
-I_{1} R_{3}+I_{2}\left(R_{2}+R_{3}\right)=-V_{2}
$$

- These are the basic equations of the network

Example Mesh Analysis of Circuit Cont'd (EC 4.5)

- Solving these two equations and unknowns
- Typically use substitution methods for simple equations
- Use matrix methods for more complex circuits
- First solving the loop 1 equations for I_{1}

$$
I_{1}\left(R_{1}+R_{3}\right)-I_{2} R_{3}=V_{1}
$$

- Using substitution methods

$$
I_{1}=\frac{V_{1}+R_{3} I_{2}}{R_{1}+R_{3}}
$$

Now substituting for I_{1} in the loop 2 equation

$$
\begin{gathered}
-I_{1} R_{3}+I_{2}\left(R_{2}+R_{3}\right)=-V_{2} \\
-\left[\frac{V_{1}+R_{3} I_{2}}{R_{1}+R_{3}}\right] R_{3}+I_{2}\left(R_{2}+R_{3}\right)=-V_{2}
\end{gathered}
$$

Solving for I_{2} and bringing everything to a common denominator

$$
\begin{gathered}
I_{2}\left[\frac{-R_{3}^{2}+\left(R_{1}+R_{3}\right)\left(R_{2}+R_{3}\right)}{\left(R_{1}+R_{3}\right)}\right] R_{3}=\frac{-V_{2}\left(R_{1}+R_{3}\right)+V_{1} R_{3}}{\left(R_{1}+R_{3}\right)} \\
I_{2}\left[R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right]=-V_{2}\left(R_{1}+R_{3}\right)+V_{1} R_{3} \\
I_{2}=\frac{-V_{2}\left(R_{1}+R_{3}\right)+V_{1} R_{3}}{\left[R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right]}
\end{gathered}
$$

- Much more difficult solving if do everything algebraically

Example Mesh Analysis of Circuit Cont'd (EC 4.5)

- Consider the specific circuit then

$$
\begin{aligned}
& I_{2}=\frac{-V_{2}\left(R_{1}+R_{3}\right)+V_{1} R_{3}}{\left[R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right]}=\frac{-1 \times(1000+3000)+5 \times 3000}{1000(2000)+1000(3000)+2000(3000)} \\
& I_{2}=1 \mathrm{~mA}
\end{aligned}
$$

- Solving for I_{1} then

$$
I_{1}=\frac{V_{1}+R_{3} I_{2}}{R_{1}+R_{3}}=\frac{5+3000 \times 0.001}{1000+3000}=2 \mathrm{~mA}
$$

- Then the current through R_{3} is
$I_{R 3}=I_{1}-I_{2}=0.002-0.001=1 \mathrm{~mA}$
- Then solving for the voltage across the resistors
- Use current through each resistor

$$
\begin{aligned}
& V_{R 1}=I_{1} R_{1}=0.002 \times 1000=2 \mathrm{~V} \\
& V_{R 2}=I_{2} R_{2}=0.001 \times 2000=2 \mathrm{~V} \\
& V_{R 3}=I_{R 3} R_{3}=0.001 \times 3000=3 \mathrm{~V}
\end{aligned}
$$

- Now current through each V source

$$
\begin{aligned}
& I_{\mathrm{V} 1}=I_{1}=2 \mathrm{~mA} \\
& I_{\mathrm{V} 2}=-I_{2}=-1 \mathrm{~mA}
\end{aligned}
$$

- Note: V_{2} has current into + side: thus it is being charged
- Having all V's \& I's completely solves the circuit

Mesh Analysis of Circuit: Matrix Solutions

- For solving this using matrices use numerical equations
- For loop 1:

$$
I_{1}\left(R_{1}+R_{3}\right)-I_{2} R_{3}=I_{1}(1000+3000)-I_{2} 3000=5
$$

- For loop 2:

$$
-I_{1} R_{3}+I_{2}\left(R_{2}+R_{3}\right)=-I_{1} 3000+I_{2}(2000+3000)=-1
$$

- This makes manipulation easier
- Note: some calculators have multiple equation/unknown solvers
- Alternatively solve using matrixes (see EC appendix A)
- Resistors become a $2 x 2$ R matrix
- Current a $2 x 1$ column matrix I
- Voltage a 2×1 column matrix V

$$
\begin{gathered}
{[R][I]=[V]} \\
{\left[\begin{array}{ll}
+4000 & -3000 \\
-3000 & +5000
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
+5 \\
-1
\end{array}\right]}
\end{gathered}
$$

- Then solve the equations by inverting the R matrix

$$
[I]=[R]^{-1}[V]
$$

Matrix Method and Spread Sheets

- Easy to use matrix method in Excel or Matlab or Maple
- Use minvert and mmult array functions in Excel
- Create the R and V matrix in a spreadsheet
- First invert the matrix: select output cells with same array size
- Enter =minverse(
- Then select the R matrix cells eg =minverse(B4:C5)
- Then press control+shift+enter (very important)
- Does not properly enter array if you do not do that
- This creates inverse of matrix at desired location
- Then need to multiply inverse times V column: use =mmult(
- Select output column 1 cells then comma
- Select R^{-1} cells and V cells (eg =mmult(B8:C9,D8:D6))
- Then press control+shift+enter
- Here is example from previous page

E220 example lesson 5

Mesh Analysis General Equations

- In general the mesh equations have the form:

$$
\begin{aligned}
& +I_{1} r_{11}-I_{2} r_{12}-I_{3} r_{13} \cdots \cdots-I_{n} r_{1 n}=V_{1} \\
& -I_{1} r_{21}+I_{2} r_{22}-I_{3} r_{23} \cdots \cdots-I_{n} r_{2 n}=V_{2}
\end{aligned}
$$

- until

$$
-I_{1} r_{n 1}-I_{2} r_{n 2}-I_{3} r_{n 3} \cdots \cdots+I_{n} r_{n n}=V_{n}
$$

- where
$\mathrm{r}_{\mathrm{ij}}=$ total resistance in the "i"th mesh seen by current "j"
$r_{i i}=$ total resistance in the "i"th mesh seen by the "i"th current loop
- Eg. in the example circuit for loop 1

$$
I_{1}\left(R_{1}+R_{3}\right)-I_{2} R_{3}=V_{1}
$$

- Then the matrix terms are

$$
\begin{gathered}
r_{11}=\left(R_{1}+R_{3}\right) \\
r_{12}=R_{3}
\end{gathered}
$$

- This is the general form of the equations/unknowns
- Also the general matrix form

Dummy Meshes and Current Sources

- How do we do mesh circuits containing a current source?
- A Current source fully defines the mesh current
- This creates a "dummy mesh" or "supermesh":
- Creates a mesh constraint equation that defines the currents
- Eg. I and V source the circuit below (same as in the dummy node)
- Then I_{2} is fully defined by the I source

$$
I_{2}=-I
$$

- Use this constraint equation to remove the unknown current I_{2}
- Reduces the number of equations to solve by 1 mesh
- Thus eliminates the unknown voltage of current source
- Thus loop 2 can be eliminated and loop 1 becomes

$$
\begin{gathered}
I_{1}\left(R_{1}+R_{2}\right)+I R_{2}=V \\
I_{1}=\frac{V-I R_{2}}{\left(R_{1}+R_{2}\right)}
\end{gathered}
$$

- Thus I_{1} loop 1 can be solved directly

Dual Networks

- Two networks are Duals when then have similar equations
- For the dual of a mesh network
(1) Write the mesh equations
(2) Replace the currents with voltages and vise versa
(3) Replace the resistances with conductance
- Example for the mesh circuit example below

$$
\begin{aligned}
& +I_{1}\left(R_{1}+R_{3}\right)-I_{2} R_{2}=V_{1} \\
& -I_{1} R_{3}+I_{2}\left(R_{2}+R_{3}\right)=V_{2}
\end{aligned}
$$

- Then the dual circuit is

$$
\begin{aligned}
& +V_{1}\left(G_{1}+G_{3}\right)-V_{2} G_{2}=I_{1} \\
& -V_{1} G_{3}+V_{2}\left(G_{2}+G_{3}\right)=I_{2}
\end{aligned}
$$

- Note: current direction of I_{2} is in loop 2 direction

