Intraduction
 Electromagnetics

E距 Department

Scalars and Vectors

- The scalars are the quantity whose values may be represented by a real number.
- The mass ,density, pressure and volume are the scalar quantity.
- Dn the other hand, the vectors are defined by bath magnitude and direction in space.
- Force, velocity and acceleration are example of the vectors.

- In the figure, the two vectors are shown, A and B.
- The vector addition follows the parallelogram law.
- The vector addition follows, the commutative law
- $A+B=B+A$
- The vectar addition follows, the assaciative law.
- $A(B+\Gamma)=(A+B)+\Gamma$
- For vector subtraction, reversed the sign or direction of the second vector,
- $A-B=A+(-B)$
- The vector, when multiplied by a scalar, the magnitude of the vector is changed but the direction remains same if the scalar is positive real number but if scalar is negative real number, the direction is reversed.
- $\quad r(A+B)=r A+r B$
- The division of the vector by a scalar is nothing but the multiplication of the vector by the scalar's reciprocal.
- Two vectors are said to be equal when their difference is zero.
- $A-B=0$

Cartesian Co-ordinate system

(b)

- As shown in figure, Point 'P'(1,2,3) and Point 'Q'(2,-2,1).
- So the desired vector from point P to \square is,
- RPD= $\quad \mathrm{ra}-\mathrm{rp}=(2-1) \mathrm{ax}+(-2-2) \mathrm{ay} y((1-3) \mathrm{az}=\mathrm{ax}-4 \mathrm{ay}-2 \mathrm{az}$
- Any vector B in the Cartesian co-ordinate system is given by.
- $B=B_{x} a_{x}+B_{y}$ ay $+B_{z}$ az
- It's magnitude is given by.

$$
|\mathbf{B}|=\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}
$$

- The unit vector in the direction ot b ı וs,

$$
\mathrm{a}_{B}=\frac{\mathbf{B}}{\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}}=\frac{\mathbf{B}}{|\mathbf{B}|}
$$

(a)

(b)

The Dot Product

- The dot product between twa vectors A and B is given by the praduct of their magnitude and a smaller cosine angle between them,

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta_{A B}
$$

- The dat product is a scalar.
- The dat product obeys the commutative law.

$$
\mathrm{A} \cdot \mathrm{~B}=\mathrm{B} \cdot \mathrm{~A}
$$

- Suppose

$$
\mathrm{A}=\tilde{A}_{x}^{-1} \mathrm{a}_{x}+A_{y} \mathrm{a}_{y}+A_{z} \mathrm{a}_{z} \quad \mathrm{~B}=B_{x} \mathrm{a}_{x}+B_{y} \mathrm{a}_{y}+B_{z} \mathrm{a}_{z}
$$

$$
\mathrm{A} \cdot \mathrm{~B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

$$
\mathbf{a}_{x} \cdot \mathbf{a}_{y}=\mathbf{a}_{y} \cdot \mathbf{a}_{x}=\mathbf{a}_{x} \cdot \mathbf{a}_{z}=\mathbf{a}_{z} \cdot \mathbf{a}_{x}=\mathbf{a}_{y} \cdot \mathbf{a}_{z}=\mathbf{a}_{z} \cdot \mathbf{a}_{y}=0
$$

$$
\mathrm{A} \cdot \mathrm{~A}=A^{2}=|\mathrm{A}|^{2}
$$

- One of the important applications of the dot product is to finding the component of the vector in a given direction.

- As shown in figure, we can obtain the component of B in the direction specified by the unit vector ' a ',

$$
\mathbf{B} \cdot \mathbf{a}=|\mathbf{B}||\mathbf{a}| \cos \theta_{B a}=|\mathbf{B}| \cos \theta_{B a}
$$

- The sign of the component is positive for $0<\theta_{\mathrm{Ba}}<90$ deg, and sign is negative when $90<\theta_{\mathrm{Ba}}<180 \mathrm{deg}$.

The Cross Product

- The cross product of two vector A and B is given by.

$$
\mathbf{A} \times \mathbf{B}=\mathbf{a}_{N}|\mathbf{A}||\mathbf{B}| \sin \theta_{A B}
$$

- The cross product is vector.
- The direction of AxB is perpendicular to the plane containing vectars A and B and it is along that perpedicular which is in the direction of advanced of the right-handed screw as A is turned into B .
- The magnitude of AxB is the product of magnitude of A, B and sine of angle between A and B .
- The cross product is not commutative,
$\mathbf{B} \times \mathbf{A}=-(\mathbf{A} \times \mathbf{B})$

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{lll}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathrm{a}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

$\mathbf{A} \times \mathbf{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{a}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{a}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{a}_{z}$

Cylindrical Courdinate System

- Consider any point as a intersection of three mutually perpendicular surfaces.
- These surfaces are, circular cylinder ($\rho=$ constant), a plane ($\Phi=$ constant), and a plane ($z=$ constant).

- The unit vector ap at a point P is directed radially outward, normal to the cylindrical surface $\rho=\rho 1$. The unit vector a $\boldsymbol{\phi}$ is lies normal to the plane $\Phi=\Phi$ । points in the direction of increasing Φ, lies in the plane $z=z$ and tangent to the cylindrical surface $\rho=\rho$.

- A differential volume element in the cylindrical coordinate system is as shown in figure.
- Here dz and $\mathrm{d} \rho$ are dimensionally a length, but $\mathrm{d} \Phi$ is not a length, the length element is $\rho \mathrm{d} \Phi$.
- The surfaces have area of $\rho d \rho \mathrm{~d} \Phi, \mathrm{~d} \rho \mathrm{dz}$ and $\rho \mathrm{d} \Phi \mathrm{dz}$.
- The valume becomes $\rho d \rho \mathrm{~d} \Phi \mathrm{dz}$.
- The variables of Cartesian coordinate system and cylindrical coordinate are related to each other as,

- $X=\rho \cos \Phi$
- $Y=\rho \sin \Phi$
- $Z=Z$.

\[

\]

Spherical Coordinate System

- There are three variables in the spherical coordinate system, r. θ, and Φ.
- The 'r' defined, the distance from the origin to the point, the surface $\mathrm{r}=$ constant is a sphere.
- θ is the angle between, the l-axis and the line drawn to point from the origin. The surface $\theta=$ constant is a cone, which is a circle of radius r sin θ. The coordinate θ corresponds to the angle in elevation plane (latitude).
- The angle Φ is the angle between the X-axis and the line drawn in the $Z=\square$ plane. The coordinate Φ corresponds to the angle in azimuthpalne (longitude). The surface $\Phi=$ constant is a plane passing through $\theta=0$ line.
- Any point is the intersection of 3 mutually perpendicular surfaces - a sphere, a cone and a plane.
- A differential volume element in the spherical coordinate system is as shown in figure.
- Here $d \mathrm{r}$ is dimensionally a length, but d θ and $d \Phi$ are not a length, the length element are $\mathrm{r} d \theta$ and $\Gamma \sin \theta d \Phi$.
- The surfaces have area of $\mathrm{r} d \mathrm{~d} \theta$, $\mathrm{r} \sin \theta \mathrm{d} \Gamma \mathrm{d} \Phi$ and $\mathrm{r} \sin \theta \mathrm{d} \theta \mathrm{d} \Phi$.
- The volume becames $\Gamma \sin \theta d r d \theta d \Phi$.

$$
2
$$

- $X=r \sin \theta \cos \Phi, Y=r \sin \theta \sin \Phi, Z=r \cos \theta$

	\mathbf{a}_{r}	\mathbf{a}_{θ}	\mathbf{a}_{ϕ}
$\mathbf{a}_{x} \cdot$	$\sin \theta \cos \phi$	$\cos \theta \cos \phi$	$-\sin \phi$
$\mathbf{a}_{y^{\prime}}$.	$\sin \theta \sin \phi$	$\cos \theta \sin \phi$	$\cos \phi$
\mathbf{a}_{z}.	$\cos \theta$	$-\sin \theta$	0

Thank You

