

Name of Institute: Indus Institute of Management Studies

Name of Faculty: Dr. Umang Patdiwala

**Course code: ME0003** 

**Course name: Design Thinking (OE)** 

Credit points: 03

Offered Semester: 7<sup>th</sup>

**IMBA** 

### **Course coordinator:**

Full name: Dr. Umang Patdiwala

Department with sitting location: 1<sup>st</sup> Floor, Fluid Mechanics Laboratory,

Bhanwar buildingTelephone: 3102

Email: umangpatdiwala.me@indusuni.ac.in

Consultation times: 9.00am to 5:00pm (Working days)

### **Course lecturer:**

Full name: Dr. Umang Patdiwala

Department with sitting location: 1st Floor, Fluid Mechanics Laboratory,

Bhanwar buildingTelephone: 3102

Email: umangpatdiwala.me@indusuni.ac.in

Consultation times: 9.00am to 5:00pm (Working days)



Students will be contacted throughout the session via mail with importantinformation relating to this course.

# **Course Objectives**

- 1. To excite the student on creative design and its significance
- 2. To make the student aware of the processes involved in design
- 3. To make the student understand the interesting interaction of varioussegments of humanities, sciences and engineering in the evolution of a design
- 4. To get an exposure as to how to engineer a design
- 5. To prepare canvas based on AEIOU.

# **Course Outcomes (CO)**

By participating in and understanding all facets of this course a student will be:

- 1. Able to appreciate the different elements involved in good designs and toapply themin practice when called for.
- 2. Aware of the product oriented and user oriented aspects that make the design asuccess.
- 3. Will be capable to think of innovative designs incorporating different segments of knowledge gained in the course
- 4. Students will have a broader perspective of design covering function, cost, environmental sensitivity, safety and other factors other than engineering analysis
- 5. Students will understand concept of AEIOU through canvas making exercise/ case study.



#### **Course Outline:**

UNIT-I [12]

# **Introduction to Design Thinking**

Design and its objectives; Design constraints, Design functions, Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement; Market survey-customer

requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.

UNIT-II [12

### **Design process**

Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meetingwhat the customer wants; Evaluation and choosing of a design. Design Communication; Realization of the concept into

a configuration, drawing and model. Concept of "Complex is Simple". Design forfunction and strength. Design detailing- Material selection

UNIT-III [12]

# **Prototyping**

Rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis. Engineering the design, From prototype to product. Planning; Scheduling; Supply chains; inventory; handling manufacturing/ construction operations; storage; packaging; shipping; marketing; feed-back on design.

UNIT-IV [09]

### Modular design

Design optimization; Design as a marketing tool; Intellectual Property rights –Trade secret; patent; copy-right; trademarks.

### **Method of delivery**

Offline lectures, Case studies, Hands on exercise for canvas.

### Study time

03 Hrs/Week for lectures

### **CO-PO Mapping (PO: Program Outcomes)**

|     | PO- | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 |
|-----|-----|------|------|------|------|------|------|------|------|-------|
|     | 1   |      |      |      |      |      |      |      |      |       |
| CO- | 2   | 1    | -    | -    | -    | 2    | _    |      |      | 3     |
| 1   |     |      |      |      |      |      |      |      |      |       |
| CO- | -   |      | 1    | 2    | -    |      |      |      | 2    |       |
| 2   |     |      |      |      |      |      |      |      |      |       |
| CO- | 1   | 2    |      |      | 3    |      |      | 1    |      |       |
| 3   |     |      |      |      |      |      |      |      |      |       |
| CO- | 1   |      | 3    |      |      | ·    |      | _    | ·    |       |
| 4   |     |      |      |      |      |      |      |      |      |       |



# **Blooms Taxonomy and Knowledge Retention:**




Figure 1: Blooms Taxonomy

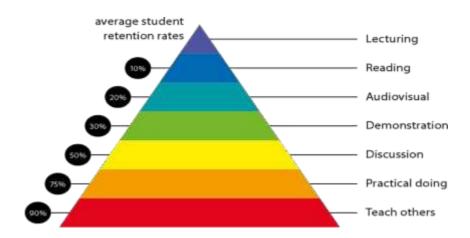



Figure 2: Knowledgeretention



# **Graduate Qualities and Capabilities covered**

| <b>General Graduate Qualities</b>            | <b>Graduate Capabilities</b>                    |
|----------------------------------------------|-------------------------------------------------|
| Informed                                     |                                                 |
| Have a sound knowledge of an area of         | 1 Professional knowledge, grounding & awareness |
| study or profession and understand its       | grounding & awareness                           |
| current issues, locally and internationally. |                                                 |
| Know how to apply this knowledge.            |                                                 |
| Understand how an area of                    |                                                 |
| study has developed and how it               |                                                 |
| relates to other areas.                      |                                                 |
| Totales to other areas.                      |                                                 |
| Independent learners                         | 2 Information literacy,                         |
| Engage with new ideas and ways of            | gathering & processing                          |
| thinking and critically analyze issues.      | gathering at processing                         |
| Seek to extend knowledge through             |                                                 |
| ongoing research, enquiry and                |                                                 |
| reflection. Find and evaluate                |                                                 |
| information, using a variety of sources      |                                                 |
| and technologies.                            |                                                 |
| Acknowledge the work and                     |                                                 |
| ideas of others.                             |                                                 |
| Problem solvers                              | 4 Problem solving skills                        |
| Take on challenges and opportunities.        | Troolem sorving sime                            |
| Apply creative, logical and critical         |                                                 |
| thinking skills to respondeffectively.       |                                                 |
| Make and implement decisions. Be             |                                                 |
| flexible, thorough, innovative and aim for   |                                                 |
| high standards.                              |                                                 |
|                                              |                                                 |
| Effective communicators Articulate           | 5 Written communication                         |
| ideas and convey them effectively            | 6 Oral communication                            |
| using a range of media.Work                  | 7 Teamwork                                      |
| collaboratively and engage with people       |                                                 |
| in different settings.                       |                                                 |
| Recognize how culture can shape              |                                                 |
| communication.                               |                                                 |
| Responsible                                  | 10 Sustainability,                              |
| Understand how decisions can affect          | societal &                                      |
| others and make ethically informed           | environmental impact                            |
| choices. Appreciate and respect              |                                                 |
| diversity.                                   |                                                 |
| Act with integrity as part of local,         |                                                 |
| national, global and professional            |                                                 |
| communities.                                 |                                                 |

# **Practical work:**

This subject doesn't have lab sessions.

### Lecture times

| 7 <sup>th</sup> IMBA |                         |
|----------------------|-------------------------|
| Lecture              | Monday (10:50 to 11:45) |
|                      | Tuesday (1:20 to 2:15)  |
|                      | Friday (11:45 to 12:40) |

#### Marks distribution

| Mid Sem exam            | 40 marks |
|-------------------------|----------|
| One Canvas (out of two) | 05 marks |
| Assignments (two)       | 10 marks |
| Attendance              | 05 marks |

### **Attendance Requirements**

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

# Details of referencing system to be used in written work Text books

- 1. Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design [Part 3 Chapters 17 to 27]
- 2. Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction Wiley.
- 3. Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007. Additional Materials

Lecture materials are available with concern faculties

### ASSESSMENT GUIDELINES

### Your final course mark will be calculated from the following:

### SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e. internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned ME0220. Semester:2<sup>nd</sup>.

Page 8

components.

### **Late Work**

Late assignments will not be accepted without supporting documentation. Late work of the reports will result in a deduction of 10% of the maximum mark per calendar day.

### **Format**

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

### **Retention of Written Work**

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

# **University and Faculty Policies**

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

**Plagiarism** - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except whererequired for a group activity or assessment)

Course schedule:

| Week#   | Topic & contents                                                                                                                                                                                           | CO<br>Addressed | Teaching<br>Learning<br>Activity<br>(TLA) |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------|
| Weeks 1 | Design and its objectives Design constraints, Design functions, Role of Science, Engineeringand Technology in design                                                                                       | CO 1            | PPT,                                      |
| Weeks 2 | Engineering as a business proposition; Functional and Strength Designs. How to initiate creative designs? Initiating the thinking process for designing a product of daily use.                            | CO 1            | Case studies, Board & Chalk               |
| Week 3  | Need identification; Problem Statement; Market survey- customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing onto the Design needs. | CO 2            | PPT, Case<br>Study                        |

|   | Week 4  | Design process  Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"                                  | CO 3 | हार्चन प्रकाशते जगत्<br>INDUS<br>UNIVERSITY |  |
|---|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|--|
| _ | Week 5  | Quality function deployment-<br>meeting what the customer wants;<br>Evaluation and choosing<br>of a design. Design<br>Communication                                        | CO 2 | PPT                                         |  |
|   |         | Communication                                                                                                                                                              |      |                                             |  |
|   | Week 6  | Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing- Material selection | CO 3 | Brainstorming and discussion                |  |
|   | Week 7  | Group Presentation/ discussion/<br>test                                                                                                                                    | CO 4 | PPT                                         |  |
|   | Week 8  | Rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis.                                                             | CO 2 | PPT, Video                                  |  |
|   | Week 9  | Engineering the design, From prototype to product. Planning; Scheduling; Supply chains; inventory; handling manufacturing/ construction                                    | CO 2 | Case studies                                |  |
|   |         | operations; storage; packaging; shipping; marketing; feedback on design.                                                                                                   |      |                                             |  |
|   | Week 10 | Design Canvas                                                                                                                                                              |      |                                             |  |
|   | Week 11 | Modular design and optimization; Design as a marketing too                                                                                                                 | CO-4 | PPT. Case studies                           |  |
|   | Week 12 | Intellectual Property rights Trade secret; patent; copy-right; trademarks.                                                                                                 | CO4  | PPT, Case<br>studies                        |  |
|   | Week 13 | Design Canvas                                                                                                                                                              | CO 5 | Case Study                                  |  |
|   | Week 14 | Discussion and doubt solving for typical topics                                                                                                                            |      |                                             |  |