
PRINCIPAL OF DATABASE MANAGEMENT

SYSTEMS

SUBJECT CODE: CE 410304

B.E. 3rd Semester

BY.

Prof. Sejal Thakkar

Unit2
• Relational Model:

• Structure of relational databases, relational

model, relations, relational integrity, Domains,

Relational Algebra(fundamental and extended)

and query

• Relation database design: Functional

Dependency – definition, trivial and non-

trivial FD, closure of FDset, closure of

attributes, irreducible set of FD,

Normalization – 1Nf, 2NF,3NF, composition

using FD- dependency preservation, BCNF,

Multivalued dependency, 4NF, Join

dependency and 5NF

Relational Model

Unit 2

p

Relational Model

• Relational model is a collection of tables

representing an E‐R database schema.

For each entity set and for each

relationship set in the database, there is a

unique table having the name of the

corresponding entity set or relationship

set. Each table has multiple columns

which correspond to attributes in E‐R

schema.

• A relational model is a tabular

representation of ER model. The ER

diagram represents the conceptual level of

• database design intended as a description

of real‐world entities while a relational

schema is at the logical level

of database design.

In relational model

---Table represents a schema/relation

---row represents a relational instance (also called tuple)

---column represents an attribute Column headers are

known as attributes.

---cardinality represents number of rows

---degree represents number of columns

Name Major GPA Name Major GPA Name Major
GPA

1234 John CS 2.8

5678 Mary EE 3.6

Cardinality=2

Degree = 4

Relational Algebra

Relational Algebra: 5 Basic Operations

• Selection () Selects a subset of rows from

relation (horizontal).

• Projection () Retains only wanted columns from

relation (vertical).

• Cross-product (x) Allows us to combine two

relations.

• Set-difference (–) Tuples in r1, but not in r2.

• Union () Tuples in r1 and/or in r2.

• Intersection Tuples in r1 and r2 both



p



Example

Instances
R1

S1

S2

sid bid day

22 101 10/10/96

58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

Projection

page S()2

– Column wise selection..

– Vertical selection

– Denoted by pi

– Unary operation

• Examples: ;

)2(
,

S
ratingsname

p

Projection

)2(
,

S
ratingsname

p

page S()2

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10

age

35.0
55.5

Selection ()


rating

S
8

2() p 
sname rating rating

S
,

(())
8

2

• Selects rows that satisfy selection condition.

• Used to find horizontal subset of relation.

• Denoted by sigma

• Unary operation

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

Union

• All of these operations take two input relations,

which must be union-compatible:

– Same number of fields.

– Corresponding’ fields have the same datatype.

duplicate elimination required?

Union

S S1 2

S1

S2

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

Intersection

• Used to find common tuples between two

relations.

• It is denoted by 

Intersection

S1

S2

21 SS 

sid sname rating age

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

Set-Difference

• It is a binary operation

• Which is used to find tuples that are

present in one relation but not in other

relation.

• Denoted by -

Set Difference

S1

S2

S S1 2−

S2 – S1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

sid sname rating age

28 yuppy 9 35.0

44 guppy 5 35.0

Cross-Product

• Cartesian product is a binary operation which is

used to combine information of any two relations.

• Relation R1 is having m tuple and relation R2 is

having n tuples then R1 x R2 hase m x n tuples

• Denoted by x
• R1 x S1 : Each row of R1 paired with each row of

S1.

Cross Product Example

R1 S1

R1 X S1 =

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Division

A/B contains all x tuples such that for every
y tuple in B, there is an xy tuple in A.

Symbol is /

Examples of Division A/B

sno pno

s1 p1

s1 p2

s1 p3

s1 p4

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno

s1
s2
s3
s4

sno

s1
s2
s3
s4

A

B1
B2 B3

A/B1 A/B2
A/B3

JOIN

• A SQL join clause combines records from

two or more tables in a database.

• It creates a set that can be saved as a

table or used as is.

• A JOIN is a means for combining fields

from two tables by using values common

to each.

• ANSI standard SQL specifies four types of

JOINs: INNER, OUTER, LEFT, and

RIGHT

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Table_%28database%29

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

INNER JOIN

• SELECT *

• FROM employee, department

• WHERE employee.DepartmentID =

department.DepartmentID;

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID

Robinson 34 Clerical 34

Jones 33 Engineering 33

Smith 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

Cross join

• CROSS JOIN returns the Cartesian product of

rows from tables in the join. In other words, it will

produce rows which combine each row from the

first table with each row from the second table.

• Example of an explicit cross join:

• SELECT *

• FROM employee CROSS JOIN department;

• Example of an implicit cross join:

• SELECT *

• FROM employee, department;

http://en.wikipedia.org/wiki/Cartesian_product

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID

Rafferty 31 Sales 31

Jones 33 Sales 31

Steinberg 33 Sales 31

Smith 34 Sales 31

Robinson 34 Sales 31

John NULL Sales 31

Rafferty 31 Engineering 33

Jones 33 Engineering 33

Steinberg 33 Engineering 33

Smith 34 Engineering 33

Robinson 34 Engineering 33

John NULL Engineering 33

Rafferty 31 Clerical 34

Jones 33 Clerical 34

Steinberg 33 Clerical 34

Smith 34 Clerical 34

Robinson 34 Clerical 34

John NULL Clerical 34

Rafferty 31 Marketing 35

Outer joins

• An outer join does not require each record in

the two joined tables to have a matching record.

The joined table retains each record—even if no

other matching record exists. Outer joins

subdivide further into left outer joins, right outer

joins, and full outer joins, depending on which

table(s) one retains the rows from (left, right, or

both).

Left outer join

• The result of a left outer join (or simply left join) for table

A and B always contains all records of the "left" table (A),

even if the join-condition does not find any matching

record in the "right" table (B). This means that if the ON

clause matches 0 (zero) records in B, the join will still

return a row in the result—but with NULL in each column

from B. This means that a left outer join returns all the

values from the left table, plus matched values from the

right table (or NULL in case of no matching join

predicate). If the right table returns one row and the left

table returns more than one matching row for it, the

values in the right table will be repeated for each distinct

row on the left table.

• LEFT OUTER JOIN statement can be used as well as

(+).

Left outer join

• SELECT * FROM employee LEFT OUTER JOIN

department ON employee.DepartmentID =

department.DepartmentID;

OR

• SELECT * FROM employee, department WHERE

employee.DepartmentID = department.DepartmentID(+)

Employee.LastName Employee.DepartmentID
Department.DepartmentNa

me
Department.DepartmentID

Jones 33 Engineering 33

Rafferty 31 Sales 31

Robinson 34 Clerical 34

Smith 34 Clerical 34

John NULL NULL NULL

Steinberg 33 Engineering 33

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

Right outer join

• Every row from the "right" table (B) will

appear in the joined table at least once. If

no matching row from the "left" table (A)

exists, NULL will appear in columns from

A for those records that have no match in

B. A right outer join returns all the values

from the right table and matched values

from the left table (NULL in case of no

matching join predicate). For example, this

allows us to find each employee and his or

her department

• SELECT *

• FROM employee RIGHT OUTER JOIN

department

• ON employee.DepartmentID =

department.DepartmentID;

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

NULL NULL Marketing 35

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

Full outer join

• Conceptually, a full outer join combines the

effect of applying both left and right outer joins.

Where records in the FULL OUTER JOINed

tables do not match, the result set will have

NULL values for every column of the table that

lacks a matching row. For those records that do

match, a single row will be produced in the result

set (containing fields populated from both

tables).

• For example, this allows us to see each

employee who is in a department and each

department that has an employee, but also see

each employee who is not part of a department

and each department which doesn't have an

employee.

• SELECT *

• FROM employee

• FULL OUTER JOIN department

• ON employee.DepartmentID =

department.DepartmentID;

Employee.LastName Employee.DepartmentID Department.DepartmentName
Department.Department

ID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

John NULL NULL NULL

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

NULL NULL Marketing 35

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

• What is data independence ? Explain the

difference between physical and logical

data independence with example.

• What are the responsibilities of a DBA ?

• What is join ? Explain various type of joins

with example

• Describe various disadvantages of file

system compare to Data base

management system.

• Explain database system architecture with

diagram in detail.

• List the benefits of database approach.

• List relational algebra operators and

explain any two with example.

One data in one cell no change in data due to order

Find age of student using roll no pk

• Relational Calculus

• In contrast to Relational Algebra,

Relational Calculus is a non-procedural

query language, that is, it tells what to do

but never explains how to do it.

• Relational calculus exists in two forms −

• Tuple Relational Calculus (TRC)

• Filtering variable ranges over tuples

• Notation − {T | Condition}

• Returns all tuples T that satisfies a condition.

• For example −

• { T.name | Author(T) AND T.article = 'database' }

• Output − Returns tuples with 'name' from Author who has written

article on 'database'.

• TRC can be quantified. We can use Existential (∃) and Universal

Quantifiers (∀).

• For example −

• { R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

• Output − The above query will yield the same result as the previous

one.

• Domain Relational Calculus (DRC)

• In DRC, the filtering variable uses the

domain of attributes instead of entire tuple

values (as done in TRC, mentioned

above).

• Notation −

• { a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

• Where a1, a2 are attributes and P stands

for formulae built by inner attributes.

• For example −

• {< article, page, subject > | ∈ TutorialsPoint ∧
subject = 'database'}

• Output − Yields Article, Page, and Subject from

the relation TutorialsPoint, where subject is

database.

• Just like TRC, DRC can also be written using

existential and universal quantifiers. DRC also

involves relational operators.

• The expression power of Tuple Relation

Calculus and Domain Relation Calculus is

equivalent to Relational Algebra.

•

