PRINCIPAL OF DATABASE MANAGEMENT
SYSTEMS

SUBJECT CODE: CE 410304

B.E. 3"d Semester

./../ \-‘ -“
- BY.

Prof. Sejal Thakkar

Unit2

 Relational Model:

« Structure of relational databases, relational
model, relations, relational integrity, Domains,
Relational Algebra(fundamental and extended)
and query

* Relation database design: Functional
Dependency — definition, trivial and non-
trivial FD, closure of FDset, closure of
attributes, irreducible set of FD,
Normalization — 1Nf, 2NF,3NF, composi
using FD-dependenci:presewvaiion,
Multivalued dependency, ANF®Join
dependency and 5NF

Relational Model '
Unit 2 ﬁ
< ‘

Relational Model

* Relational model is a collection of tables
representing an E-R database schema.
For each entity set and for each

relationship set in the database, there is a
unique table having the name of the
corresponding entity set or relationship
set. Each table has multiple columns
which correspond to attributes in E-R

schema.v
J w — &

" -
»

* A relational model is a tabular
representation of ER model. The ER
diagram represents the conceptual level of

« database design intended as a description
of real-world entities while a relational
schema is at the logical level

of database design.

~”
o \-‘

In relational model

---Table represents a schemal/relation

---row represents a relational instance (also called tuple)
---column represents an attribute Column headers are
known as attributes.

---cardinality represents number of rows

---degree represents number of columns

Name Major GPA Name Major GPA Name Major

GPA
Degree =4
1234 John CS 2.8
5678 Mary EE 3.6
F - —r o
)

Cardinality=2 e

Relational Algebra

relational algebra

set operations relational database set functions
& specific operations *
U set union G sclection ST
avg

M set intersection projection

T count
set difference N join dILy
max
9
¢

X cartesian product set division min

Relational Algebra: 5 Basic Operations

Selection (o) Selects a subset of rows from
relation (horizontal).

Projection (7r) Retains only wanted columns from
relation (vertical).

Cross-product (X) Allows us to combine two
relations.

Set-difference (=) Tuplesin rl, but not in r2.

Union (\) Tuples inrl and/or in r2.
Intersection=(\ Tuples#a rl and rz both

. -
e

Example
Instances

S1

S

r1 [sid |bid day
22 (101 |10/10/96
58 (103 |11/12/96
sid |sname |rating |age
22 | dustin [45.0
31 |[lubber | 8 55.5
58 |rusty 10 [35.0
sid |sname |rating |age
28 |yuppy
31 |lubber
44 | glippy 0
58 |rusty 4® 10 |35.0

Projection

— Column wise selection..
— Vertical selection
— Denoted by pi
— Unary operation
« Examples: ;

(S2) T . (52)

age Shame,rating

sname |rating
Projection|yurpy |
lubber |8
guppy |5
rusty |10
sid |sname |rating |age T . (S2
31 |lubber | 8 55.5
44 |guppy | 5 |35.0 age
58 |rusty 10 |35.0 35.0
S2 55.5
g .bq e
Q ﬂage(SZ).

Selects rows that satisfy selection condition.
Jsed to find horizontal subset of relation.
Denotec
Jnary o

Selection (o)

by sigma

neration

SName

rating

yuppy
Hubber

LLDN\/

\ >4
q/5

bPp
usty

—

10

Q

rating>8

2

ﬂsname, rating(Gating >8

2))

Union

 All of these operations take two input relations,
which must be union-compatible:

— Same number of fields.
— Corresponding’ fields have the same datatype.

duplicate elimination required?

Union

S2

sid |sname |rating |age sid |sname |rating |age
22 |dustin | 7 450 |22 |dustin |7 45.0
31 |lubber | 8 55 E 31 |lubber |8 55.5
58 |rusty 10 |350 [°° |tusty 10 35.0
— |44 |guppy |5 35.0
- 28 |yuppy |9 35.0
sid |sname |rating |age
28 |yuppy | 9 |35.0
31 |lubber | 8 55.5
44 |guppy |5 |35.0 |o
58 |rusty | 10 [35.0°

Intersection

» Used to find common tuples between two
relations.

* |tis denoted by M

Intersection

sid

sname

rating

age

31
58

lubber
rusty

10

55.5
35.0

sid [sname |[rating |age

22 |dustin ! 45.0

31 |lubber | 8 55.5

58 |rusty 10 |35.0

S1

sid |sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | o 35.0&
58 |rusty | 10 |35.0]

S2

X

Set-Difference

* ItiIs a binary operation

* Which iIs used to find tuples that are

present in one relation but not in other
relation.

» Denoted by ~

e — &

»

A

Set Difference

sid |sname |rating |age

22 |dustin / 45.0

31 |lubber | 8 55.5

58 |rusty 10 (35.0

S1

sid |sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | o 35.0_
58 |rusty | 10 [35.0]

S2

)

sid [sname |rating |age

22 |dustin |7 45.0
S1-S2

sid |sname |rating |age

28 |yuppy

44 [guppy

Q — @2 — S

Cross-Product

Cartesian product is a binary operation which is
used to combine information of any two relations.

Relation R1 is having m tuple and relation R2 is
having n tuples then R1 x R2 hase m x n tuples

Denoted by X

R1 x S1 : Each row of R1 paired with each row of
S1.

- o e — &

»

Cross Product Example

Sname

rating

— | age sid \bid | day
22 |dustin 7 45.0 29 1101 110/10/96
58 |rusty 10 |35.0
R1 S1
(sid) |sname |rating |age |(sid) |bid |day
22 |dustin 7 450 | 22 [101 |[10/10/¢
R1 X §1 =| 22 |dustin 7 450 | 58 |103 |11/12/¢
31 |lubber 8 55.5 22 |101 0/¢
31 _|lubber 8Q 55.5 58 |10 L
58 |rusty | 10 3570'1'92 101 0/
58 |rusty 10 |[35.0 | 58 io 2/

Division

A/B contains all x tuples such that for every
y tuple in B, there is an xy tuple in A.

Symbol is/

Examples of Division A/B

sSno |pno pno
sl |pl P2
sl |p2
sl p3 B 1
sl p4
s2 pl SNO
sS2 p2 Sl
s3 p2 82
s4 |p2 s3

4 4
s4 p4 |~ 4 A

JOIN

A SOL join clause combines records from
two or more tables in a database.

It creates a set that can be saved as a
table or used as Is.

A JOIN is a means for combining fields
from two tables by using values common
to each.

ANSI standard SQL specifies four ty
JOINs: INNER, OUTFER, L_I;FL and&
RIGHT a

-~

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Table_%28database%29

Employee Table

LastName DepartmentlD

Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34
John NULL
~”

Department Table

DepartmentlD DepartmentName

31 Sales

33 Engineering
34 Clerical
35 Marketing

INNER JOIN

IMMER JOIR

« SELECT *
« FROM employee, department

« WHERE employee.DepartmentID =
department.DepartmentiD;

Employee Table Department Table

LastName DepartmentIiD
P DepartmentlD DepartmentName

Rafferty 31 31 Sales
J(-)nes 33 33 Engineering
Stelr-1berg 33 34 Clerical
Robinson 34 35 Marketing
Smith 34
John NULL

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentiD

Robinson 34 Clerical 34
Jones 33 Engineering 33
Smith 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

Cross join

CROSS JOIN returns the Cartesian product of
rows from tables in the join. In other words, it will
produce rows which combine each row from the
first table with each row from the second table.

Example of an explicit cross join:
SELECT *
FROM employee CROSS JOIN department;
Example of an implicit cross join:
SELECT *

FROM employee, department;
“ ‘Q —r o

. -
e

http://en.wikipedia.org/wiki/Cartesian_product

Employee Table

LastName DepartmentlD

Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34
John NULL
~”

Department Table

DepartmentlD DepartmentName

31 Sales

33 Engineering
34 Clerical
35 Marketing

Employee.LastName

Rafferty
Jones

Steinberg
Smith
Robinson
John
Rafferty
Jones
Steinberg
Smith
Robinson
John
Rafferty
Jones
Steinberg
Smith
Robinson
John

Rafferty

Employee.DepartmentID

31
33

33
34
34

NULL
31
33
33
34
34

NULL
31
33
33
34
34

NULL
31

Department.DepartmentName

Sales
Sales

Sales
Sales
Sales
Sales
Engineering
Engineering
Engineering
Engineering
Engineering
Engineering
Clerical
Clerical
Clerical
Clerical
Clerical
Clerical

Marketing

Department.DepartmentID

Sk
31

31
31
31
31
33
33
33
33
33
33
34
34
34
34
34
34
35

Outer joins

* An outer join does not require each record In
the two joined tables to have a matching record.
The joined table retains each record—even if no
other matching record exists. Outer joins
subdivide further into left outer joins, right outer
joins, and full outer joins, depending on which
table(s) one retains the rows from (left, right, or
both).

Left outer join

« The result of a left outer join (or simply left join) for table
A and B always contains all records of the "left" table (A),
even If the join-condition does not find any matching
record in the "right" table (B). This means that if the ON
clause matches 0O (zero) records in B, the join will still
return a row in the result—but with NULL in each column
from B. This means that a left outer join returns all the
values from the left table, plus matched values from the
right table (or NULL in case of no matching join
predicate). If the right table returns one row and the left
table returns more than one matching row for it, the
values in the right table will be repeated for each
row on the Ieft table. A

 LEFT OUTER JOIN statement can b‘used as

(+). -

Left outer join

LEFT JClk

« SELECT * FROM employee LEFT OUTER JOIN
department ON employee.DepartmentID =
department.Department|D;

OR

« SELECT * FROM employee, department WHERE
employee.DepartmentID = department.Departmentl|

+)

- o e — &

" ®
»

Employee Table Department Table

LastName DepartmentiD
DepartmentlD DepartmentName

Rafferty 31 31 Sales
Jc-)nes 33 o Engineering
Stelr-lberg 33 34 Clerical
Robinson 34 35 Marketing
Smith 34
John NULL
Employee.LastName Employee.DepartmentID Department.nlaspartmentNa Department.DepartmentiD
Jones 33 Engineering 33
Rafferty 31 Sales 31
Robinson 34 Clerical 34
Smith 34 Clerical 34
John NULL NULL NULL
Steinberg 33 Engineering 33

Right outer join

FlGaHT ST

* Every row from the "right" table (B) will
appear in the joined table at least once. If
no matching row from the "left" table (A)
exists, NULL will appear in columns from
A for those records that have no match in
B. A right outer join returns all the values
from the right table and matched values
from the left table (NULL in case of no
matching join predicate). For example, this
allows us to find each employee and

her depaftment ~% e
- -

4

« SELECT *

« FROM employee RIGHT OUTER JOIN
department

. ON employee.Department|D =
department.DepartmentlD;

Employee Table

LastName
Rafferty
Jones
Steinberg
Robinson
Smith
John

Employee.LastName
Smith
Jones

Robinson

Steinberg

Rafferty
NULL

31
33
33
34
34

DepartmentID

NULL

Employee.DepartmentID

34
33
34
33
31
NULL

Department Table

DepartmentlD DepartmentName

31 Sales

33 Engineering
34 Clerical
35 Marketing

Department.DepartmentName Department.DepartmentiD

Clerical 34
Engineering 33
Clerical 34
Engineering ES
Sales 31
Marketing 35

» ™

Full outer join

« Conceptually, a full outer join combines the
effect of applying both left and right outer joins.
Where records in the FULL OUTER JOINed
tables do not match, the result set will have
NULL values for every column of the table that
lacks a matching row. For those records that do
match, a single row will be produced in the result
set (containing fields populated from both
tables).

* For example, this allows us to see each
employee who Is in a department and each
department that has an employee but al
each employee who ts- ot P f<& depar
and each depaftment which doesn't Wv
employee.

SELECT *
FROM employee
FULL OUTER JOIN department

ON employee.DepartmentID =
department.DepartmentlD;

Employee Table

LastName
Rafferty
Jones
Steinberg
Robinson
Smith
John

Employee.LastName

Smith
Jones
Robinson
John
Steinberg
Rafferty

NULL

DepartmentID
il
33
33
34
34
NULL

Employee.DepartmentID Department.DepartmentName

34
33
34
NULL
33
31

NULL

Department Table

DepartmentlD DepartmentName

31 Sales

33 Engineering
34 Clerical
35 Marketing

Department.Department

ID

Clerical 34

Engineering 33

Clerical 34
NULL NULL

Engineering 33

Sales 31

Marketing 35

What Is data independence ? Explain the
difference between physical and logical

data independence with example.
What are the responsibilities of a DBA ?

What is join ? Explain various type of joins
with example

Describe various disadvantages of file
system compare to Data base
management system.
- w — &
-)
~

* Explain database system architecture with
diagram in detall.

* List the benefits of database approach.

* List relational algebra operators and
explain any two with example.

12 Codd’s Rule

Rules that a DBMS shovuld follow fo be
classified as fully relational

« 1985 Dr. E.F. Codd the originator

» Proposed to test DBMSs for confirmation
to concept of Codd’s Relational model

» Hardly any commercial product follows all

‘ T—

»

One data in one cell no change in data due to order

Next Tutonal

Rule |:Information Rule

» Informationis to be represented as
data stored in cells.

» The rows and columns have to be
strictly unordered

id ' Name Address Contact
10 Shyam MDS 4564132

20 Ram Indore 5674521

“»

Find age of student using roll no pk

Rule 2: Guaranteed Access Rule

« All data must be accessible

« Each uvnigue piece of data [atomic
valuoe) should be accessible by the
combination of ;

TableMame +Prirmmary ey [o)
+Atribute (Colurmn)

MyS5qgl> Select name from student where }
id=10;

&M

“Sysfemaﬂc Treatment of

null Values

« RDBMS must dallow each attribute to
remain null, Specifically .it must support a
representation of missing information and
inapplicable information

« NULLs may mean: Missing data, Not
applicable, No value

« Shovuld be handled consistently - Not Zero
or Blank

Lt Primary keys — Not NULL
. -y

>

“\Ctive Online Catalog Based

on the Relational model

« Data dictionary should be stored as
relational tables and accessible through the
regular data access language.

« Database dictionary (Catalog) to have
description of the Database

» The same query language to be used on
catalog as on the application database

i Noto:_sc;l..is_usad.for. both gne nurnod
a
o

Rule 5:The Data Sublanguage Rule

« One well defined language to provide all
manners of access to data

= Example: SQL

* |t support data definition, data manipulation,
security. integrity constraints and transaction

management) r

)

Rule 6:The View Updating Rule

« All views that are theoretically
updatable should be updatable

« View = "Virtual table”, temporarily derived
from base tables

« Example:If a view is formed from tables,
changes to view should be reflected in base
tables.

d

“Iigh Level Insert, Update and

Delete

» The System must support set at a time insert
.update,and delete operations. =

» Set operations like Union, Intersection and
Minus should be supported

[SEnsebeiRUle 8: Physical Data

Independence

- The physical storage of data should not
matter to the system o

- If say. some file supporting table was
renamed or moved from one disk fo
another, it shovuld not effect the
applications

Q - b
» WX

Rule 10: Integrity Independence

= The database should bBbe able o enforce
its o Iindegrty rather thanm wsing other

o O-CIrcIrms =

- Integrity rules = Filter to allow comrect data,
should be stored in Data Dictionary

« Key and check constraints, tnggers etc
showuld be stored in Data Dictionary

Q - |
» WX

Rule | |: Distribution Subversion

« The distribution of portion of the
database to variocous location should be
invisible to the user of the database.

- A database should work properly
regardiess of its distribution across o
network

« This lays foundation of Distributed
databases

| Subscribe |
Rule |12:The Non Subversion Rule

= If low-level access is allowed, it must not
bypass security nor integrity rules

= If low level access is allowed to a system it
should not be able to subvert or bypass
integrity rules to change data

= This may be achieved by some sort of
locking or encryption

e Relational Calculus

* In contrast to Relational Algebra,
Relational Calculus is a non-procedural
guery language, that is, it tells what to do
but never explains how to do It.

 Relational calculus exists in two forms —

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation — {T | Condition}

Returns all tuples T that satisfies a condition.

For example -

{ T.name | Author(T) AND T.article = 'database'}

Output — Returns tuples with 'name' from Author who has written
article on 'database’.

TRC can be quantified. We can use Existential (3) and Universal
Quantifiers (V).

For example -

{ R| 3T € Authors(T.article='database' AND R.name=T.name)}

Output — The above query will yield the same result as the previous
one.

- o e — &

»

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the
domain of attributes instead of entire tuple
values (as done in TRC, mentioned
above).

Notation —
{a, a,, a, .., a,| P(a, a,, as, ... ,a,)}

Where al, a2 are attributes and P st
for formulae built by dgnner attributes
- — o
- S
&~

For example -

{< article, page, subject > | € TutorialsPoint A
subject = 'database'}

Output — Yields Article, Page, and Subject from
the relation TutorialsPoint, where subject Is
database.

Just like TRC, DRC can also be written using
existential and universal quantifiers. DRC also
Involves relational operators.

The expregsion power of Tuple Relation
Calculus and Domain-Relatior-€aleulus |
equivalent to Rélational Algebra. -

