

Name of Institute: INSTITUTE OF TECHNOLOGY & ENGINEERING Name of Faculty: Prof. Sejal Thakkar.

Course code:

Course name: Machine Learning

Pre-requisites: NIL Credit points: 4 Offered Semester: III

Course Coordinator

Full Name: Sejal Thakkar Department with siting location: Computer Engineering (4rd floor,Faculty room, Bhanwar building) Telephone: 9033380982,7990552332 Email: sejalthakkar.ce@indusuni.ac.in Consultation times: Wednesday (4:00 PM to 5:00 PM)

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. Understand the key algorithms and theory that form the foundation of Machine Learning.
- 2. Understand a wide variety of learning algorithms.
- 3. Recognize the characteristics of machine learning that make it useful to real-world problems.
- 4. Understand how to perform evaluation of learning algorithms and model selection.
- 5. Develop skills of using recent machine learning software in order to solve practical problems.
- 6. Understand and learn state of the art machine learning techniques to provide employability in industry.

Course Outcomes (CO)

After successful completion of the course, student will able:

- 1. Get exposure of machine learning concepts and range of problems that can be handled by machine learning
- 2. Compare and parameterize different learning algorithms
- 3. Apply the machine learning concepts in real life problems

- 4. Understand learning in machines with different techniques
- 5. Understand and apply various recognition techniques.
- 6. Learn about parameter selection and feature extraction. Compare and parameterize different learning algorithms
- 7. Learn comparison of various algorithms

Course Outline

CNN, ANN, Regression, Classification

Method of delivery

- 1. Chalk & Talk
- 2. PPT presentation

Study time

3 lectures per week

2 hour labs per week

Course Outcom	Program Outcomes								Program Specific Outcomes						
e	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	\checkmark	\checkmark	\checkmark								\checkmark		\checkmark	\checkmark	\checkmark
CO2		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark					\checkmark
CO3	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark				\checkmark				\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark		\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark												\checkmark
CO6			\checkmark	\checkmark	\checkmark										\checkmark
CO7	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark						

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies.	2 Information literacy, gathering & processing

Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible	6 Oral communication 7 Teamwork 10 Sustainability, societal &
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity.	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national,	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact

Practical work:

(Mention what practical work this Course involves)

As a part of practical, student have to perform various Python in machine learning project relevant activities.

Lecture/tutorial times

(Give lecture times in the format below)

For 3 Sem IT A and B

Monday:11 AM to 12 PM: LectureMonday:2 PM to 4: 10 PM: LaboratoryTuesday:11:10 AM to 12:10 PM: LectureWednesday:11:10 AM to 12:10 PM: LectureFriday:2 PM to 4:10 PM: Laboratory

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum

attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

Text Book :

- 1. Compare and parameterize different learning algorithms
- 2. Compare and parameterize different learning algorithms

Additional Materials

Reference Book:

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:		
Theory: Internal evaluation	20% Objective (1-3-4)
10 marks as attendance 5 bonus for all stude 10 marks for assignment or case studies, limi Mid semester Final exam (closed book)	nts having attendance ited to minimum 02 ass 40% (due week 10) 40%	> 80% signments per course Objectives (2-5) Objectives (1-5)
Practical: 20% for Internal Project 20% Lab file 20% Research related activities/Presentations 40% end semester project exam +Viva		

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

	Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
	Weeks 1	Introduction Learning Problems, designing a learning system, Issues with machine learning. Concept Learning, Version Spaces and Candidate Eliminations.	CO1	
	Weeks 2	Inductivebias, Supervised/Unsupervised Learning, Loss functions and generalization, Parametric vs Non-parametric methods, Evaluating Machine Learning algorithms and Model Selection	CO1, CO2	
	Week 3	Introduction to Statistical Learning Theory, Ensemble Methods, Bagging, Boosting, Random Forest	CO4	
	Week 4	Supervised Learning Regression/Classification) Basic methods: Distance-based methods, Nearest-Neighbors, Decision Trees, Naive Bayes, Linear models: Linear Regression, Logistic Regression, Generalized Linear Models.	CO3,CO4,CO5	
	Week 5	Support Vector Machines, Nonlinearity and Kernel Methods, Beyond Binary Classification: Multi-class/Structured Outputs, Ranking Unsupervised Learning Clustering: K-means/Kernel K-means, Dimensionality Reduction -PCA, CCA, LDA, ICA, MNF	CO4,CO5	

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 6	Canonical Variates - Feature Selection vs Feature Extraction, Generative Models (mixture models and latent factor models)	CO5	
Week 7	Bayesian Learning Bayes Theorem, Bayes Theorem and Concept Learning, Maximum Likelihood and Least squared Error Hypothesis, Maximum likelihood hypothesis for Predicting Probabilities.	CO2,CO3,CO5	
Week 8	Minimum Description Length, Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes, Classifier.	CO4, CO6	
Week 9	Bayesian Belief Network, EM Algorithm, Case Study: Learning to classify text.	CO5	
Week 10	Artificial Neural networks Neural Network Representation, Appropriate problems for Neural Network Learning, Perceptron, Multilayer Networks and Back Propagation,	CO2, CO3, CO5, CO7	
Week 11	Algorithms, Remarks on Back Propagation Algorithms, Case Study: face Recognition Advanced topics Semi-supervised, ActiveLearning, Reinforcement Learning,	CO2, CO5, CO7	
Week 12	Recent trends in various learning techniques of machine learning and classification methods, Overview of typical application areas, such as Recommender System.	CO2, CO5, CO7	

PROGRAM MAP for Bachelor of Engineering (CE / CSE / IT)

COMPUTER ENGINEERING DEPARTMENT COURSE DEPENDANCY CHART