
I like C++ so much
I like Rupesh sir

Outline
 Basics of Object and Class in C++

 Private and Public Members

 Static data and Function Members

 Constructors and their types

 Destructors

 Operator Overloading

 Type Conversion

Weightage: 15%

Object and Class in C++

I like C++ so much
I like Rupesh sir

What is an Object?

Pen Board Laptop

Bench Projector

Physical objects…

Bike

I like C++ so much
I like Rupesh sir

What is an Object? (Cont…)

Logical objects…

Result Bank Account

I like C++ so much
I like Rupesh sir

Attributes and Methods of an Object

Methods
Eat
Sleep
Walk

Object: Person

Attributes
Name
Age
Weight

Methods
Start
Drive
Stop

Object: Car

Attributes
Company
Color
Fuel type

Bank Account

Methods
Deposit
Withdraw
Transfer

Object: Account

Attributes
AccountNo
HolderName
AccountType

I like C++ so much
I like Rupesh sir

Class

A Class describes the object

A Class is a blueprint of an object

I like C++ so much
I like Rupesh sir

Class car

Class: Car

Class: Car

Properties (Describe)

Company

Model

Color

Mfg. Year

Price

Fuel Type

Mileage

Gear Type

Power Steering

Anti-Lock braking system

Methods (Functions)

Start

Drive

Park

On_break

On_lock

On_turn

I like C++ so much
I like Rupesh sir

Objects of Class Car

Honda City Hyundai i20 Sumo Grand

Mercedes E class Swift Dzire

I like C++ so much
I like Rupesh sir

Class in C++
 A class is a blueprint or template that describes the object.

 A class specifies the attributes and methods of objects.

 In above example class name is car, and car1 is object of that

class.

Example:
class car
{

// data members and member functions
}car1;

I like C++ so much
I like Rupesh sir

Specifying Class

How to declare / write class ?

How to create an object
(instance/variable of class)?

How to access class members ?

I like C++ so much
I like Rupesh sir

How to declare / write class ?

class car
{
private:

int price;
float mileage;

public:
void start();
void drive();

};

Class

Methods
Start
Drive

Car

Attributes
Price
Mileage

I like C++ so much
I like Rupesh sir

How to create an object ?

className objectVariableName;

Syntax:

int main()

{

car c1;

c1.start();

}

Objectclass car
{

private:
int price;
float mileage;

public:
void start();
void drive();

};

Class

I like C++ so much
I like Rupesh sir

Object in C++
 An object is an instance of a class

 An object is a variable of type class

class car
{
private:
int price;
float mileage;

public:
void start();
void drive();

};

int main()
{

car c1;
c1.start();
c1.drive();

}

Class Object

I like C++ so much
I like Rupesh sir

Program: class, object
 Write a C++ program to create class Test having data members

mark and spi.

 Create member functions SetData() and DisplayData()to

demonstrate class and objects.

#include <iostream>
using namespace std;
class Test
{

private:
int mark;
float spi;

public:
void SetData()
{
mark = 270;
spi = 6.5;

}
void DisplayData()
{
cout << "Mark= "<<mark<<endl;
cout << "spi= "<<spi;

}
} ;

 Starting point of a Program

Program: class, object

 Creates an object o1 of
type Test

 Calling member function.
Control jumps to definition
of SetData()

 Executes statements and
return to calling function

 Calling member function.
Control jumps to definition
of DisplayData()

int main()
{

Test o1;
o1.SetData();
o1.DisplayData();
return 0;

}

class Test
{

private:
int mark;
float spi;

public:
void SetData()
{
cin>>mark;
cin>>spi;
}
void DisplayData()
{
cout << "Mark= "<<mark;
cout << "spi= "<<spi;
}

} ;

int main()
{

Test o1,o2;
o1.SetData();
o1.DisplayData();
o2.SetData();
o2.DisplayData();
return 0;

}

o1

mark = 50

spi = 7.5

o2

mark = 70

spi = 6.83

I like C++ so much
I like Rupesh sir

Program: class, object
 Write a C++ program to create class Car having data members

Company and Top_Speed.

 Create member functions SetData() and DisplayData()

and create two objects of class Car.

class Car
{
private:

char company[20];
int top_speed;

public:
void SetData(){

cout<<"Enter Company:";
cin>>company;
cout<<"Enter top speed:";
cin>>top_speed;

}
void DisplayData()
{

cout << "\nCompany:"<<company;
cout << "\tTop Speed:"<<top_speed;

}
} ;

int main()
{

Car o1;
o1.SetData();
o1.DisplayData();
return 0;

}

Program: class, object

I like C++ so much
I like Rupesh sir

Program: class, object
 Write a C++ program to create class Employee having data

members Emp_Name, Salary, Age.

 Create member functions SetData() and DisplayData().

 Create two objects of class Employee

class Employee
{

private:
char name[10];
int salary, age;

public:
void SetData()
{

cin>>name>>salary>>age;
}
void DisplayData()
{

cout << “Name= "<<name<<endl;
cout << “salary= "<<salary<<endl;
cout << “age= "<<age;

}
} ;

int main()
{

Employee o1;
o1.SetData();
o1.DisplayData();
return 0;

}

Program: class, object

Private and Public Members

Private Public

I like C++ so much
I like Rupesh sir

Private Members

class car
{
long int price;
float mileage;
void setdata()
{

price = 700000;
mileage = 18.5;

}
};

Class

This feature in OOP is known as Data
hiding / Encapsulation

 Private members of the class can be
accessed within the class and from
member functions of the class.

 A private member variable or
function cannot be accessed, or even
viewed from outside the class.

By default all the members of class
are private

Private:

I like C++ so much
I like Rupesh sir

Private Members
 Private members of the class can be accessed within the class and

from member functions of the class.

 They cannot be accessed outside the class or from other

programs, not even from inherited class.

 If you try to access private data from outside of the class, compiler

throws error.

 This feature in OOP is known as Data hiding / Encapsulation.

 If any other access modifier is not specified then member default

acts as Private member.

I like C++ so much
I like Rupesh sir

Public Members

class car
{
private:

long int price;
float mileage;

public:
char model[10];
void setdata()
{

price = 700000;
mileage=18.53;

}
};

Class Public members are accessible from
anywhere outside the class but

within a program.

int main()

{

car c1;

c1.model = "petrol";

c1.setdata();

}

Object

The public members of a class can
be accessed outside the class using

the object name and dot operator '.'

I like C++ so much
I like Rupesh sir

Public Members
 The public keyword makes data and functions public.

 Public members of the class are accessible by any program from

anywhere.

 Class members that allow manipulating or accessing the class data

are made public.

I like C++ so much
I like Rupesh sir

Data Hiding in Classes

Functions

Public Area

Data

Functions

Private Area

Data

CLASS

No entry to
Private area

X

Entry allowed to
Public area

I like C++ so much
I like Rupesh sir

class Test
{

private:
int data1;
float data2;

public:
void function1()
{
data1 = 2;

}
float function2()
{
data2 = 3.5;
return data2;

}
};

Example Class in C++

private is a Keyword

Private data and functions
can be written here

Public data and functions
can be written here

By Default the members of a
class are private.

public is a
Keyword

Function Definition Outside Class

I like C++ so much
I like Rupesh sir

Function definition outside the class
Syntax:

Return-type class-name :: function-name(arguments)

{

Function body;

}

Example:

 The membership label class-name::
tells the compiler that the function
belongs to class

void Test :: SetData(int i,int j)
{

mark = i;
spi = j;

}

I like C++ so much
I like Rupesh sir

Function Definition outside class

int main()

{

car c1;

c1.setdata();

c1.updatemileage();

}

class car
{

private:
float mileage;

public:
float updatemileage();
void setdata()
{

mileage = 18.5;
}

};

float car :: updatemileage()
{

return mileage+2;
}

void car :: setdata()
{

mileage = 18.5;
}

;

class Test
{

private:
int mark;
float spi;
public:
void SetData(int,float);
void DisplayData();

};
void Test :: SetData(int i,float j){

mark = i;
spi = j;

}
void Test :: DisplayData()
{

cout << "Mark= "<<mark;
cout << "\nspi= "<<spi;

}

int main()
{

Test o1;
o1.SetData(70,6.5);
o1.DisplayData();
return 0;

}

Program: function outside
class

 The membership label Test::
tells the compiler that the
SetData() and
DisplayData() belongs to
Test class

Member Functions with
Arguments

I like C++ so much
I like Rupesh sir

Program: Function with argument
 Define class Time with members hour, minute and second.

Also define function to setTime() to initialize the members,

print() to display time. Demonstrate class Time for two

objects.

I like C++ so much
I like Rupesh sir

Program: Function with argument

#include<iostream>
using namespace std;
class Time
{

private :
int hour, minute, second;

public :
void setTime(int h, int m, int s);
void print();

};

I like C++ so much
I like Rupesh sir

Program: Function with argument

void Time::setTime(int h, int m, int s)
{

hour=h;
minute=m;
second=s;

}
void Time::print()
{
cout<<"hours=\n"<<hour;
cout<<"minutes=\n"<<minute;
cout<<"seconds=\n"<<second;

}

I like C++ so much
I like Rupesh sir

Program: Function with argument

int main()
{

int h,m,s;
Time t1;
cout<<"Enter hours="; cin>>h;
cout<<"Enter minutes="; cin>>m;
cout<<"Enter seconds="; cin>>s;

t1.setTime(h,m,s);
t1.print();
return 0;

}

I like C++ so much
I like Rupesh sir

Program: Function with argument
 Define class Rectangle with members width and height.

Also define function to set_values() to initialize the

members, area() to calculate area. Demonstrate class

Rectangle for two objects.

class Rectangle
{

int width, height;
public:
void set_values (int,int);
int area(){

return width*height;
}

};
void Rectangle::set_values (int x, int y){

width = x; height = y;
}

Program: Function
with argument

int main(){
Rectangle rect;
rect.set_values(3,4);
cout << "area: " << rect.area();
return 0;

}

I like C++ so much
I like Rupesh sir

Program: Function with argument
 Define class Employeewith members age and salary.

1. Also define function to setdata() to initialize the members.

2. Define function displaydata() to display data.

3. Demonstrate class Employee for two objects.

int main(){
Employee yash,raj;
yash.setData(23,1500);
yash.displaydata();

raj.setData(27,1800);
raj. displaydata();
return 0;

}

I like C++ so much
I like Rupesh sir

class Employee{
private :

int age; int salary;
public :

void setData(int , int);
void displaydata();

};
void Employee::setData(int x, int y){

age=x;
salary=y;

}
void Employee::displaydata(){

cout<<"age="<<age<<endl;
cout<<"salary="<<salary<<endl;

}

Program: Function with
argument

Passing Objects as Function
Arguments

I like C++ so much
I like Rupesh sir

Function with argument and returns value
#include <iostream>
using namespace std;

int add(int, int);

int main(){
int a=5,b=6,ans;
ans = add(a,b);
cout<<"Addition is="<<ans;
return 0;

}
int add(int x,int y)
{
return x+y;

}

int main()
{
.....
b = fun1(a);
.....
}

int fun1(int f)
{
.....
.....
return e;

}

Value of
Argument

Function
Result

I like C++ so much
I like Rupesh sir

Object as Function arguments

void add(int x, int y)

{

statements…

}

int main()

{

int a=5,b=6;

add(a,b);

}

void addtime(time x, time y)

{

statements…

}

int main()

{

time t1,t2,t3;

t3.addtime(t1,t2);

}

Function

a b
int int
t1 t2

time time

I like C++ so much
I like Rupesh sir

Object as Function arguments

class Time
{

int hour, minute, second;
public :
void getTime(){
cout<<"\nEnter hours:";cin>>hour;
cout<<"Enter Minutes:";cin>>minute;
cout<<"Enter Seconds:";cin>>second;

}
void printTime(){
cout<<"\nhour:"<<hour;
cout<<"\tminute:"<<minute;
cout<<"\tsecond:"<<second;

}
void addTime(Time x, Time y){
hour = x.hour + y.hour;
minute = x.minute + y.minute;
second = x.second + y.second;

}
};

Program: passing object
as argument

int main()
{
Time t1,t2,t3;

t1.getTime();
t1.printTime();

t2.getTime();
t2.printTime();

t3.addTime(t1,t2);
cout<<"\nafter adding two objects";
t3.printTime();

return 0;
}

Program: passing object
as argument

void addTime(Time x, Time y)
{

hour = x.hour + y.hour;
minute = x.minute + y.minute;
second = x.second + y.second;

}

t3.addTime(t1,t2);

Function Declaration

Here, hour, minute and second represents data of object t3
because this function is called using code t3.addTime(t1,t2)

I like C++ so much
I like Rupesh sir

Program: Passing object as argument
 Define class Complex with members real and imaginary .

Also define function to setdata() to initialize the members,

print() to display values and addnumber() that adds two

complex objects.

 Demonstrate concept of passing object as argument.

class Complex
{
private:

int real,imag;
public:

void readData()
{

cout<<"Enter real and imaginary number:";
cin>>real>> imag;

}
void addComplexNumbers(Complex comp1, Complex comp2)
{

real=comp1.real+comp2.real;
imag=comp1.imag+comp2.imag;

}
void displaySum()
{

cout << "Sum = " << real<< "+" << imag << "i";
}

};

int main()
{

Complex c1,c2,c3;
c1.readData();
c2.readData();
c3.addComplexNumbers(c1, c2);
c3.displaySum();

}

Program: Passing object as
argument

Passing and Returning Objects

I like C++ so much
I like Rupesh sir

Function

Passing and returning object

int add(int x, int y)

{

return

}

int main()

{

int a=5,b=6,result;

result = add(a,b);

}

time addtime(time x, time y)

{

return //object of class time

}

int main()

{

time t1,t2,t3,result;

result = t3.addtime(t1,t2);

}

a b
int int
t1 t2

time time

resultresult

I like C++ so much
I like Rupesh sir

Passing and returning object

I like C++ so much
I like Rupesh sir

Program: Passing and Returning an Object

 Define class Time with members hour, minute and second.

Also define function to getTime() to initialize the members,

printTime() to display time and addTime() to add two

time objects. Demonstrate class Time.

1. Passing object as argument

2. Returning object

class Time{
int hour, minute, second;

public :
void getTime(){
cout<<"\nEnter hours:";cin>>hour;
cout<<"Enter Minutes:";cin>>minute;
}
void printTime(){
cout<<"\nhour:"<<hour;
cout<<"\tminute:"<<minute;
}
Time addTime(Time t1, Time t2){
Time t4;
t4.hour = t1.hour + t2.hour;
t4.minute = t1.minute + t2.minute;
return t4;

}
};

Program: Returning
object

int main()
{

Time t1,t2,t3,ans;

t1.getTime();
t1.printTime();

t2.getTime();
t2.printTime();

ans=t3.addTime(t1,t2);
cout<<"\nafter adding two objects";
ans.printTime();

return 0;
}

Program: Returning
object

I like C++ so much
I like Rupesh sir

Program: Returning object
 C++ program to add two complex numbers by Pass and Return

Object from the Function.

class Complex
{
private:

int real,imag;
public:

void readData()
{

cout<<"Enter real and imaginary number:";
cin>>real>> imag;

}
Complex addComplexNumbers(Complex comp1, Complex comp2)
{

Complex temp;
temp.real=comp1.real+comp2.real;
temp.imag=comp1.imag+comp2.imag;
return temp;

}
void displaySum()
{

cout << "Sum = " << real<< "+" << imag << "i";
}

};

Program: Returning object

int main()
{

Complex c1,c2,c3,ans;
c1.readData();
c2.readData();
ans = c3.addComplexNumbers(c1, c2);
ans.displaySum();

}

Program: Returning object

Nesting Member Functions

I like C++ so much
I like Rupesh sir

Nesting Member functions
 A member function of a class can be called by an object of that

class using dot operator.

 A member function can be also called by another member

function of same class.

 This is known as nesting of member functions.

void set_values (int x, int y)
{

width = x;
height = y;

printdata();
}

I like C++ so much
I like Rupesh sir

Program: Nesting member function
 Define class Rectangle with member width,height. Also

define function to setvalue(), displayvalue().

Demonstrate nested member functions.

I like C++ so much
I like Rupesh sir

Program: Nesting member function
class rectangle{
int w,h;
public:
void setvalue(int ww,int hh)
{
w=ww;
h=hh;
displayvalue();

}
void displayvalue()
{

cout<<"width="<<w;
cout<<"\t height="<<h;

}
};

int main(){
rectangle r1;
r1.setvalue(5,6);
r1.displayvalue();
return 0;

}

I like C++ so much
I like Rupesh sir

Memory allocation of objects
 The member functions are created and placed in the memory

space only once at the time they are defined as part of a class

specification.

 No separate space is allocated for member functions when the

objects are created.

 Only space for member variable is allocated separately for each

object because, the member variables will hold different data

values for different objects.

I like C++ so much
I like Rupesh sir

Memory allocation of objects(Cont…)

Member variable 1 Member variable 1 Member variable 1

Memory created when, Functions defined

Object 1 Object 2 Object 3

Member function 1

Member function 2

Common for all objects

Memory created when Object created

Member variable 2 Member variable 2 Member variable 2

Object A1

Account No 101

Account Type Current

Balance 3400

Object A2

Account No 102

Account Type Saving

Balance 150

Object A3

Account No 103

Account Type Current

Balance 7900

class Account
{

int Account_no,Balance;
char Account_type[10];

public:
void setdata(int an,char at[],int bal)
{

Account_no = an;
Account_type = at;
Balance = bal;

}
};

int main(){
Account A1,A2,A3;
A1.setdata(101,“Current“,3400);
A2.setdata(102,“Saving“,150);
A3.setdata(103,“Current“,7900);
return 0;

}

Static Data members / variables

I like C++ so much
I like Rupesh sir

Static Data members
A static data member is useful,
when all objects of the same class must share a common
information.

It is initialized to zero when first object of class created

Only one copy is created for each object

Just write static keyword prefix to regular variable

Its life time is entire program

class demo
{

static int count;
public:
void getcount()
{
cout<<"count="<<++count;

}
};

int demo::count;

int main()
{

demo d1,d2,d3;
d1.getcount();
d2.getcount();
d3.getcount();
return 0;

}

0

count

d1 d2 d3

123

Static members are declared inside
the class and defined outside the
class.

Static Data members

class demo
{
int count;

public:
void getcount()
{
count = 0;
cout<<"count="<< ++count;

}
};
int main()
{
demo d1,d2,d3;
d1.getcount();
d2.getcount();
d3.getcount();
return 0;

}

d3

count

d1

count

d2

count

0 0 01 1 1

Regular Data members

I like C++ so much
I like Rupesh sir

Static Data Members
 Data members of the class which are shared by all objects are known as

static data members.

 Only one copy of a static variable is maintained by the class and it is

common for all objects.

 Static members are declared inside the class and defined outside the

class.

 It is initialized to zero when the first object of its class is created.

 you cannot initialize a static member variable inside the class

declaration.

 It is visible only within the class but its lifetime is the entire program.

 Static members are generally used to maintain values common to the

entire class.

I like C++ so much
I like Rupesh sir

Program : Static data member
class item
{

int number;
static int count;// static variable declaration
public:
void getdata(int a){
number = a;
count++;

}
void getcount(){
cout<<"\nvalue of count: "<<count;

}
};
int item :: count; // static variable definition

I like C++ so much
I like Rupesh sir

Program : Static data member
int main()

{

item a,b,c;

a.getdata(100);

a.getcount();

b.getdata(200);

a.getcount();

c.getdata(300);

a.getcount();

return 0;

}

Output:
value of count: 1

value of count: 2

value of count: 3

Object a

number
100

Object b

number
200

Object c

number
300

count

0231

I like C++ so much
I like Rupesh sir

Program : Static data member
class shared {

static int a;
int b;

public:
void set(int i, int j) {a=i; b=j;}
void show();

} ;
int shared::a;
void shared::show()
{

cout << "This is static a: " << a;
cout << "\nThis is non-static b: " << b; cout << "\n";

}

int main() {
shared x, y;
x.set(1, 1);
x.show();
y.set(2, 2);
y.show();
x.show();
return 0;

}

 static variable a declared inside class
but, storage is not allocated

 variable a redeclared outside the class
using scope resolution operator.

 Storage for the variable will be allocated

class A
{

int x;
public:

A()
{
cout << "A's constructor called " << endl;

}
};

class B
{

static A a;
public:

B()
{

cout << "B's constructor called " << endl;
}

};

A B::a; // definition of a

int main()
{

B b1, b2, b3;
return 0;

}

Program : Static data member

Output:
A's constructor called
B's constructor called
B's constructor called
B's constructor called

Static Member Functions

I like C++ so much
I like Rupesh sir

Static Member Functions
 Static member functions can access only static members of the

class.

 Static member functions can be invoked using class name, not

object.

 There cannot be static and non-static version of the same

function.

 They cannot be virtual.

 They cannot be declared as constant or volatile.

 A static member function does not have this pointer.

I like C++ so much
I like Rupesh sir

Program: Static Member function
class item
{

int number;
static int count;// static variable declaration
public:
void getdata(int a){
number = a;
count++;

}
static void getcount(){
cout<<”value of count: “<<count;

}
};
int item :: count; // static variable definition

I like C++ so much
I like Rupesh sir

Program: Static Member function

int main()
{
item a,b,c;

a.getdata(100);
item::getcount();

b.getdata(200);
item::getcount();

c.getdata(300);
item::getcount();
return 0;

}

Output:
value of count: 1

value of count: 2

value of count: 3

Friend Function

I like C++ so much
I like Rupesh sir

Friend Function
 In C++ a Friend Function that is a "friend" of a given class is

allowed access to private and protected data in that class.

 A friend function is a function which is declared using friend

keyword.

class A
{

private:
int numA;

public:
void setA();

};

Class
class B
{

private:
int numB;

public:
void setB();

};

Class

void add()
{

}

Friend Function

Access
numA, numB

friend void add();friend void add();

I like C++ so much
I like Rupesh sir

Friend Function
 Friend function can be declared either in public or private part of

the class.

 It is not a member of the class so it cannot be called using the

object.

 Usually, it has the objects as arguments.

Syntax:
class ABC
{

public:
……………………………………………
friend void xyz(argument/s); //declaration
……………………………………………

};

I like C++ so much
I like Rupesh sir

Program: Friend Function
class numbers {

int num1, num2;
public:
void setdata(int a, int b);
friend int add(numbers N);

};
void numbers :: setdata(int a, int b){
num1=a;
num2=b;

}
int add(numbers N){

return (N.num1+N.num2);
}

int main()
{

numbers N1;
N1.setdata(10,20);
cout<<”Sum = ”<<add(N1);
return 0;

}

class Box {
double width;

public:
friend void printWidth(Box);
void setWidth(double wid);

};
void Box::setWidth(double wid) {

width = wid;
}
void printWidth(Box b) {
cout << "Width of box : " << b.width;

}

int main() {
Box box;
box.setWidth(10.0);
printWidth(box);
return 0;
}

Program: Friend
Function

class base
{

int val1,val2;
public:
void get(){

cout<<"Enter two values:";
cin>>val1>>val2;

}
friend float mean(base ob);

};
float mean(base ob){

return float(ob.val1+ob.val2)/2;
}
int main(){

base obj;
obj.get();
cout<<"\n Mean value is : "<<mean(obj);

}

Program: Friend
Function

I like C++ so much
I like Rupesh sir

Member function, friend to another class

 Member functions of one class can

be made friend function of another

class.

 The function f is a member of

class X and a friend of class Y.

class X {
………………………………………
int f();
};
class Y{
………………………………………
friend int X :: f();
};

I like C++ so much
I like Rupesh sir

Friend function to another class

class A
{

private:
int numA;

public:
void setA();

};

Class
class B
{

private:
int numB;

public:
void setB();

};

Class

void add()
{

}

Friend Function

Access
numA, numB

friend void add();friend void add();

I like C++ so much
I like Rupesh sir

Program: Friend function to another class

 Write a program to find out sum of two private data members

numA and numB of two classes ABC and XYZ using a common

friend function. Assume that the prototype for both the classes

will be int add(ABC, XYZ);

class XYZ; //forward declaration

class ABC {
private:
int numA;

public:
void setdata(){
numA=10;
}

friend int add(ABC, XYZ);
};

class XYZ {
private:
int numB;

public:
void setdata(){
numB=25;

}
friend int add(ABC , XYZ);

};

int add(ABC objA, XYZ objB){
return (objA.numA + objB.numB);

}
int main(){

ABC objA; XYZ objB;
objA.setdata(); objB.setdata();
cout<<"Sum: "<< add(objA, objB);

}

Program: Friend to another class

class Square; // forward declaration
class Rectangle
{

int width=5, height=6;
public:

friend void display(Rectangle , Square);
};
class Square
{

int side=9;
public:
friend void display(Rectangle , Square);

};
void display(Rectangle r, Square s)
{

cout<<"Rectangle:"<< r.width * r.height;
cout<<"Square:"<< s.side * s.side;

}

Program: Friend
to another class

int main () {
Rectangle rec;
Square sq;
display(rec,sq);
return 0;

}

Program: Friend
to another class

I like C++ so much
I like Rupesh sir

Use of friend function
 It is possible to grant a nonmember function access to the private

members of a class by using a friend function.

 It can be used to overload binary operators.

Constructors

I like C++ so much
I like Rupesh sir

What is constructor ?

A constructor is a block of code which is,

similar to member function

has same name as class name

called automatically when object of class created

A constructor is used to initialize the objects of class as soon as the
object is created.

I like C++ so much
I like Rupesh sir

Constructor

int main()

{

}

class car
{

private:
float mileage;

public:
void setdata()
{

cin>>mileage;
}

};

car c1;

c1.setdata();

car c1,c2;

c2.setdata();

class car
{

private:
float mileage;

public:

};

car()
{

cin>>mileage;
}

int main()

{

}

car c1;car c1,c2;

Similar to
member
function

Same
name as

class name

Called
automatically
on creation

of object

I like C++ so much
I like Rupesh sir

Properties of Constructor
 Constructor should be declared in public

section because private constructor cannot

be invoked outside the class so they are

useless.

 Constructors do not have return types and

they cannot return values, not even void.

 Constructors cannot be inherited, even though a derived class can
call the base class constructor.

 Constructors cannot be virtual.
 They make implicit calls to the operators new and delete when

memory allocation is required.

class car
{

private:
float mileage;

public:
car()
{
cin>>mileage;

}
};

I like C++ so much
I like Rupesh sir

Constructor (Cont…)
class Rectangle
{
int width,height;
public:
Rectangle(){

width=5;
height=6;
cout<<”Constructor Called”;

}
};
int main()
{
Rectangle r1;
return 0;

}

Types of Constructors

I like C++ so much
I like Rupesh sir

Types of Constructors
1) Default constructor

2) Parameterized constructor

3) Copy constructor

I like C++ so much
I like Rupesh sir

1) Default Constructor
 Default constructor is the one which invokes by default when

object of the class is created.

 It is generally used to initialize the default value of the data

members.

 It is also called no argument constructor.

Object d1

10 10

m n

class demo{
int m,n;

public:
demo()
{
m=n=10;

}
};

int main()
{

demo d1;
}

I like C++ so much
I like Rupesh sir

Program Constructor
class Area
{

private:
int length, breadth;
public:
Area(){
length=5;
breadth=2;
}
void Calculate(){
cout<<"\narea="<<length * breadth;

}
};

int main(){
Area A1;
A1.Calculate();
Area A2;
A2.Calculate();
return 0;
}

A1

5 2

length breadth

A2

5 2

length breadth

I like C++ so much
I like Rupesh sir

2) Parameterized Constructor
 Constructors that can take arguments are called parameterized

constructors.

 Sometimes it is necessary to initialize the various data elements of

different objects with different values when they are created.

 We can achieve this objective by passing arguments to the

constructor function when the objects are created.

I like C++ so much
I like Rupesh sir

class demo
{

int m,n;
public:
demo(int x,int y){ //Parameterized Constructor

m=x;
n=y;
cout<<“Constructor Called“;

}
};
int main()
{

demo d1(5,6);
}

Parameterized Constructor

d1

5 6

m n

 Constructors that can take arguments are called parameterized
constructors.

I like C++ so much
I like Rupesh sir

Program Parameterized Constructor
 Create a class Distance having data members feet and inch.

Create parameterized constructor to initialize members feet and

inch.

I like C++ so much
I like Rupesh sir

3) Copy Constructor
 A copy constructor is used to declare and initialize an object from

another object using an object as argument.

 For example:

demo(demo &d); //declaration

demo d2(d1); //copy object

OR demo d2=d1; //copy object

 Constructor which accepts a reference to its own class as a

parameter is called copy constructor.

I like C++ so much
I like Rupesh sir

3) Copy Constructor
 A copy constructor is used to initialize an object

from another object

using an object as argument.

 A Parameterized constructor which accepts a reference to its own
class as a parameter is called copy constructor.

I like C++ so much
I like Rupesh sir

Copy Constructor
class demo
{

int m, n;
public:
demo(int x,int y){
m=x;
n=y;
cout<<"Parameterized Constructor";

}
demo(demo &x){
m = x.m;
n = x.n;
cout<<"Copy Constructor";

}
};

int main()
{

demo obj1(5,6);
demo obj2(obj1);
demo obj2 = obj1;

}

5 6

m n

obj1

5 6

m n

obj2

obj1 or x

I like C++ so much
I like Rupesh sir

Program: Types of Constructor
 Create a class Rectangle having data members length and

width. Demonstrate default, parameterized and copy

constructor to initialize members.

class rectangle{
int length, width;
public:
rectangle(){ // Default constructor

length=0;
width=0;

}
rectangle(int x, int y){// Parameterized

constructor
length = x;
width = y;

}
rectangle(rectangle &_r){ // Copy constructor

length = _r.length;
width = _r.width;

}
};

Program: Types of Constructor
This is constructor

overloading

int main()
{
rectangle r1; // Invokes default constructor
rectangle r2(10,20); // Invokes parameterized

constructor
rectangle r3(r2); // Invokes copy constructor

}

Program: Types of Constructor (Cont…)

Destructor

Destructor
• Destructor is used to destroy the objects

that have been created by a constructor.

• The syntax for destructor is same as that
for the constructor,

– the class name is used for the name of
destructor,

– with a tilde (~) sign as prefix to it.

Destructor
 never takes any argument nor it returns any value nor it has return

type.
 is invoked automatically by the complier upon exit from the

program.
 should be declared in the public section.

class car
{

float mileage;
public:
car(){
cin>>mileage;

}

~car(){
cout<<" destructor";

}

};

I like C++ so much
I like Rupesh sir

Program: Destructor
class rectangle
{

int length, width;
public:
rectangle(){ //Constructor
length=0;
width=0;
cout<<”Constructor Called”;
}
~rectangle() //Destructor
{
cout<<”Destructor Called”;
}

// other functions for reading, writing and
processing can be written here
};

int main()
{

rectangle x;
// default
constructor is
called
}

I like C++ so much
I like Rupesh sir

Program: Destructor
class Marks{
public:

int maths;
int science;
//constructor
Marks() {

cout << "Inside Constructor"<<endl;
cout << "C++ Object created"<<endl;

}
//Destructor
~Marks() {

cout << "Inside Destructor"<<endl;
cout << "C++ Object destructed"<<endl;

}
};

int main()
{

Marks m1;
Marks m2;
return 0;

}

Operator Overloading

I like C++ so much
I like Rupesh sir

Operator Overloading

int a=5, b=10,c;
c = a + b;

Operator + performs
addition of

integer operands a, b

time t1,t2,t3;
t3 = t1 + t2;

Operator + performs
addition of

objects of type time

string str1=“Hello”
string str2=“Good Day”;
string str3;
str3 = str1 + str2;

Operator + concatenates
two strings str1,str2

I like C++ so much
I like Rupesh sir

Operator overloading
 Function overloading allow you to use same function name for

different definition.

 Operator overloading extends the overloading concept to
operators, letting you assign multiple meanings to C++ operators

 Operator overloading giving the normal C++ operators such as +, *
and == additional meanings when they are applied with user
defined data types.

Some of C++ Operators
are already overloaded

Operator Purpose

* As pointer, As multiplication

<< As insertion, As bitwise shift left

& As reference, As bitwise AND

I like C++ so much
I like Rupesh sir

Operator Overloading

int a=5, b=10,c;
c = a + b;

Operator + performs addition of integer
operands a, b

time t1,t2,t3;
t3 = t1 + t2;

class time
{
int hour, minute;

}; Operator + performs addition of objects of
type time t1,t2

string str1=“Hello”,str2=“Good Day”;
str1 + str2;

Operator + concatenates two strings
str1,str2

I like C++ so much
I like Rupesh sir

Operator Overloading
 Specifying more than one definition for an operator in the same

scope, is called operator overloading.

 You can overload operators by creating “operator functions”.

Syntax:
return-type operator op-symbol(argument-list)
{

// statements
} Keyword substitute the operator

Example:
void operator + (arguments);
int operator - (arguments);
class-name operator / (arguments);
float operator * (arguments);

class complex{
int real,imag;
public:

complex(){
real=0; imag=0;

}
complex(int x,int y){
real=x; imag=y;

}
void disp(){
cout<<"\nreal value="<<real<<endl;
cout<<"imag value="<<imag<<endl;

}
complex operator + (complex);

};
complex complex::operator + (complex c){

complex tmp;
tmp.real = real + c.real;
tmp.imag = imag + c.imag;
return tmp;

}

int main()
{

complex c1(4,6),c2(7,9);
complex c3;
c3 = c1 + c2;
c1.disp();
c2.disp();
c3.disp();
return 0;

}

Similar to function call
c3=c1.operator +(c2);

Overloading Binary operator +

Binary Operator Arguments
result = obj1.operator symbol (obj2);//function notation

result = obj1 symbol obj2; //operator notation

complex operator + (complex x)
{

complex tmp;
tmp.real = real + x.real;
tmp.imag = imag + x.imag;
return tmp;

}

result = obj1.display();

void display()
{

cout<<"Real="<<real;
cout<<"Imaginary="<<imag;

}

I like C++ so much
I like Rupesh sir

Operator Overloading
 Operator overloading is compile time polymorphism.

 You can overload most of the built-in operators available in C++.

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

Operator Overloading using
Friend Function

Invoke Friend Function in operator overloading

result = operator symbol (obj1,obj2);//function notation

result = obj1 symbol obj2; //operator notation

friend complex operator +(complex c1,complex c2)
{

complex tmp;
tmp.r=c1.r+c2.r;
tmp.i=c1.i+c2.i;
return tmp;

}

int main()
{

complex c1(4,7),c2(5,8);
complex c3;
c3 = c1 + c2;
c3 = operator +(c1,c2);

}

Overloading Binary operator ==

class complex{
int r,i;
public:
complex(){
r=i=0;}

complex(int x,int y){
r=x;
i=y;}

void display(){
cout<<"\nreal="<<r<<endl;
cout<<"imag="<<i<<endl;}
int operator==(complex);

};
int complex::operator ==(complex c){

if(r==c.r && i==c.i)
return 1;

else
return 0;}

int main()
{

complex c1(5,3),c2(5,3);
if(c1==c2)
cout<<"objects are equal";

else
cout<<"objects are not equal";

return 0;
}

Overloading Unary Operator

Overloading Unary operator −

class space {
int x,y,z;
public:
space(){
x=y=z=0;}

space(int a, int b,int c){
x=a; y=b; z=c; }

void display(){
cout<<"\nx="<<x<<",y="<<y<<",z="<<z;
}
void operator-();

};

void space::operator-() {
x=-x;
y=-y;
z=-z;

}

int main()
{

space s1(5,4,3);
s1.display();
-s1;
s1.display();
return 0;

}

Overloading Unary operator −−

class space {
int x,y,z;
public:
space(){
x=y=z=0;}

space(int a, int b,int c){
x=a; y=b; z=c; }

void display(){
cout<<"\nx="<<x<<",y="<<y<<",z="<<z;
}
void operator--();

};

void space::operator--() {
x--;
y--;
z--;

}

int main()
{

space s1(5,4,3);
s1.display();
--s1;
s1.display();
return 0;

}

I like C++ so much
I like Rupesh sir

Overloading Prefix and Postfix operator
class demo

{

int m;

public:

demo(){ m = 0;}

demo(int x)

{

m = x;

}

void operator ++()

{

++m;

cout<<"Pre Increment="<<m;

}

void operator ++(int)

{

m++;

cout<<"Post Increment="<<m;

}

};

int main()

{

demo d1(5);

++d1;

d1++;

}

I like C++ so much
I like Rupesh sir

Invoking Operator Function
 Binary operator

operand1 symbol operand2

 Unary operator

operand symbol
symbol operand

 Binary operator using friend function

operator symbol (operand1,operand2)

 Unary operator using friend function

operator symbol (operand)

I like C++ so much
I like Rupesh sir

Rules for operator overloading
 Only existing operator can be overloaded.

 The overloaded operator must have at least one operand that is

user defined type.

 We cannot change the basic meaning and syntax of an operator.

I like C++ so much
I like Rupesh sir

Rules for operator overloading (Cont…)

 When using binary operators overloaded through a member

function, the left hand operand must be an object of the relevant

class.

 We cannot overload following operators.

Operator Name

. and .* Class member access operator

:: Scope Resolution Operator

sizeof() Size Operator

?: Conditional Operator

Type Conversion

I like C++ so much
I like Rupesh sir

Type Conversion
F = C * 9/5 + 32

float int

If different data types are mixed in expression, C++
applies automatic type conversion as per certain
rules.

int a;
float b = 10.54;
a = b;

integer
(Basic)

float
(Basic)

a = 10;
 float is converted to integer automatically

by complier.
 basic to basic type conversion.

 An assignment operator causes automatic type conversion.
 The data type to the right side of assignment operator is automatically

converted data type of the variable on the left.

I like C++ so much
I like Rupesh sir

Type Conversion

Time t1;
int m;
m = t1;

integer
(Basic)

Time
(Class)

t1 = m;

Time
(Class)

integer
(Basic)

 class type will not be converted to
basic type OR basic type will not
be converted class type
automatically.

I like C++ so much
I like Rupesh sir

Type Conversion
 C++ provides mechanism to perform automatic type conversion if

all variable are of basic type.

 For user defined data type programmers have to convert it by

using constructor or by using casting operator.

 Three type of situation arise in user defined data type conversion.

1. Basic type to Class type (Using Constructors)

2. Class type to Basic type (Using Casting Operator Function)

3. Class type to Class type (Using Constructors & Casting

Operator Functions)

I like C++ so much
I like Rupesh sir

(1) Basic to class type conversion

class sample
{

int a;
public:
sample(){}
sample(int x){

a=x;
}
void disp(){

cout<<"The value of a="<<a;
}

};

int main()
{
int m=10;
sample s;
s = m;
s.disp();
return 0;

}

 Basic to class type can be achieved using constructor.

I like C++ so much
I like Rupesh sir

(2) Class to basic type conversion
 The Class type to Basic type conversion is done using casting operator

function.

 The casting operator function should satisfy the following conditions.

1. It must be a class member.

2. It must not mention a return type.

3. It must not have any arguments.

Syntax:
operator destinationtype()
{

....
return

}

I like C++ so much
I like Rupesh sir

Program: Class to basic type conversion
class sample
{

float a;
public:
sample()
{

a=10.23;
}
operator int() //Casting operator

function

{
int x;
x=a;
return x;

}
};

int main()
{

sample S;
int y= S;//Class to Basic

conversion

cout<<"The value of y="<<y;
return 0;

}

Explicit type conversion
y = int (S);

Automatic type conversion
y = S;

I like C++ so much
I like Rupesh sir

Program: Class to basic type conversion

class vector{
int a[5];
public:
vector(){

for(int i=0;i<5;i++)
a[i] = i*2;

}
operator int();

};
vector:: operator int() {

int sum=0;
for(int i=0;i<5;i++)

sum = sum + a[i];
return sum;}

int main()
{
vector v;
int len;
len = v;
cout<<“Length of V="<<len;

return 0;
}

I like C++ so much
I like Rupesh sir

(3) Class type to Class type
 It can be achieved by two ways

1. Using constructor

2. Using casting operator function

class alpha
{

int commona;
public:

alpha(){}
alpha(int x)
{

commona = x;
}
int getvalue()
{

return commona;
}

};

class beta
{

int commonb;
public:

beta(){}
beta(int x)
{

commonb = x;
}
beta(alpha temp) //Constructor

{
commonb = temp.getvalue();

}
operator alpha() //operator function

{
return alpha(commonb);

}
};

int main()
{

alpha obja(10);
beta objb(obja);
beta objb(20);
obja = objb;

}

Program: Class type to Class type

class stock2 ;
class stock1{

int code , item ;
float price ;
public :
stock1 (int a , int b , int c) {
code = a ; item = b ; price = c ;
}
void disp () {
cout << " code " << code << " \n " ;
cout << " items " << item << " \n " ;
cout << " price per item Rs. " << price << " \n " ;
}
int getcode (){ return code; }
int getitem (){ return item ; }
int getprice (){ return price ; }
operator float () {
return (item*price) ;
}

};

Program: Type Conversion

class stock2{
int code ;
float val ;
public :
stock2 () {
code = 0; val = 0 ;

}
stock2(int x , float y){
code = x ; val = y ;

}
void disp () {
cout << " code " << code << " \n " ;
cout << " total value Rs. " << val << " \n " ;
}
stock2(stock1 p) {
code = p.getcode() ;
val = p.getitem() * p.getprice() ;

}
};

Program: Type Conversion

int main()
{

stock1 i1 (101 , 10 ,125.0) ;
stock2 i2 ;
float tot_val = i1;
i2 = i1 ;
cout << " Stock Details : Stock 1 type " << " \n " ;
i1.disp ();
cout << " Stock Value " << " - " ;
cout << tot_val << " \n " ;
cout << " Stock Details : Stock 2 type " << " \n " ;
i2.disp () ;
return 0 ;

}

Program: Type Conversion

Thank You

