
Unit-3
Angular JS & Node JS

Angular JS

Introduction

• AngularJS is a very powerful JavaScript
Framework. It is used in Single Page Application
(SPA) projects.

• It extends HTML DOM with additional attributes
and makes it more responsive to user actions.

• AngularJS is open source, completely free, and
used by thousands of developers around the
world.

• It is licensed under the Apache license version
2.0.

Why to Learn AngularJS?

• AngularJS was originally developed in 2009 by Misko
Hevery and Adam Abrons. It is now maintained by Google.

• AngularJS is a efficient framework that can create Rich
Internet Applications (RIA).

• AngularJS provides developers an options to write client
side applications using JavaScript in a clean Model View
Controller (MVC) way.

• Applications written in AngularJS are cross-browser
compliant.

• AngularJS automatically handles JavaScript code suitable
for each browser.

• Overall, AngularJS is a framework to build large scale, high-
performance, and easy-to-maintain web applications.

Core Features

• Data-binding − It is the automatic synchronization of
data between model and view components.

• Scope − These are objects that refer to the model. They
act as a glue between controller and view.

• Controller − These are JavaScript functions bound to a
particular scope.

• Services − AngularJS comes with several built-in
services such as $http to make a XMLHttpRequests.
These are singleton objects which are instantiated only
once in app.

• Filters − These select a subset of items from an array
and returns a new array.

Core Features

• Directives − Directives are markers on DOM
elements such as elements, attributes, css, and
more. These can be used to create custom HTML
tags that serve as new, custom widgets. AngularJS
has built-in directives such as ngBind, ngModel,
etc.

• Templates − These are the rendered view with
information from the controller and model. These
can be a single file (such as index.html) or
multiple views in one page using partials.

• Routing − It is concept of switching views.

Core Features

• Model View Whatever − MVW is a design pattern for
dividing an application into different parts called Model,
View, and Controller, each with distinct responsibilities.
AngularJS does not implement MVC in the traditional
sense, but rather something closer to MVVM (Model-View-
ViewModel).

• Deep Linking − Deep linking allows to encode the state of
application in the URL so that it can be bookmarked. The
application can then be restored from the URL to the same
state.

• Dependency Injection − AngularJS has a built-in
dependency injection subsystem that helps the developer
to create, understand, and test the applications easily.

Concepts

Advantages of AngularJS

• It provides the capability to create Single Page Application
in a very clean and maintainable way.

• It provides data binding capability to HTML. Thus, it gives
user a rich and responsive experience.

• AngularJS code is unit testable.
• AngularJS uses dependency injection and make use of

separation of concerns.
• AngularJS provides reusable components.
• With AngularJS, the developers can achieve more

functionality with short code.
• In AngularJS, views are pure html pages, and controllers

written in JavaScript do the business processing.

Disadvantages of AngularJS

• Not Secure − Being JavaScript only framework,
application written in AngularJS are not safe.
Server side authentication and authorization is
must to keep an application secure.

• Not degradable − If the user of your
application disables JavaScript, then nothing
would be visible, except the basic page.

AngularJS - MVC Architecture

• Model View Controller or MVC as it is popularly
called, is a software design pattern for developing
web applications. A Model View Controller
pattern is made up of the following three parts −

• Model − It is the lowest level of the pattern
responsible for maintaining data.

• View − It is responsible for displaying all or a
portion of the data to the user.

• Controller − It is a software Code that controls
the interactions between the Model and View.

AngularJS - MVC Architecture

• MVC is popular because it isolates the
application logic from the user interface layer
and supports separation of concerns. The
controller receives all requests for the
application and then works with the model to
prepare any data needed by the view. The
view then uses the data prepared by the
controller to generate a final presentable
response. The MVC abstraction can be
graphically represented as follows.

AngularJS - MVC Architecture

• The Model-
The model is responsible for managing application
data. It responds to the request from view and to
the instructions from controller to update itself.
• The View-
A presentation of data in a particular format,
triggered by the controller's decision to present the
data. They are script-based template systems such
as JSP, ASP, PHP and very easy to integrate with
AJAX technology.

• The Controller
The controller responds to user input and
performs interactions on the data model
objects. The controller receives input, validates
it, and then performs business operations that
modify the state of the data model.

AngularJS Directives

The AngularJS framework can be divided into
three major parts −
• ng-app − This directive defines and links an

AngularJS application to HTML.
• ng-model − This directive binds the values of

AngularJS application data to HTML input
controls.

• ng-bind − This directive binds the AngularJS
application data to HTML tags.

Creating AngularJS Application

Step 1: Load framework
• Being a pure JavaScript framework, it can be

added using <Script> tag.
• <script src =

"https://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angul
ar.min.js"> </script>

Creating AngularJS Application

Step 2: Define AngularJS application using ng-
app directive
• <div ng-app = ""> ... </div>

Step 3: Define a model name using ng-model
directive
• <p>Enter your Name: <input type = "text" ng-model =

"name"></p>

Creating AngularJS Application

• Step 4: Bind the value of above model defined
using ng-bind directive

• <p>Hello !</p>

Code Hello
<html>

<head>
<title>AngularJS First Application</title>

</head>

<body>
<h1>Sample Application</h1>

<div ng-app = "">
<p>Enter your Name: <input type = "text" ng-model = "name"></p>
<p>Hello !</p>

</div>

<script src =
"https://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">

</script>

</body>
</html>

AngularJS - Directives

• AngularJS directives are used to extend HTML. They are
special attributes starting with ng-prefix. Let us discuss
the following direc ves −

• ng-app − This direc ve starts an AngularJS Application.
• ng-init − This direc ve ini alizes applica on data.
• ng-model − This direc ve defines the model that is

variable to be used in AngularJS.
• ng-repeat − This direc ve repeats HTML elements for

each item in a collection.
• List of other AngularJS directives

ng-app directive

• The ng-app directive starts an AngularJS
Application. It defines the root element. It
automatically initializes or bootstraps the
application when the web page containing
AngularJS Application is loaded.

• In the following example, we define a default
AngularJS application using ng-app attribute
of a <div> element.

• <div ng-app = ""> ... </div>

ng-init directive

• The ng-init directive initializes an AngularJS
Application data. It is used to assign values to
the variables. In the following example, we
initialize an array of countries. We use JSON
syntax to define the array of countries.

• <div ng-app = "" ng-init = "countries = [{locale:'en-US',name:'United States'},
{locale:'en-GB',name:'United Kingdom'}, {locale:'en-FR',name:'France'}]"> ... </div>

ng-model directive

• The ng-model directive defines the
model/variable to be used in AngularJS
Application. In the following example, we
define a model named name.

• <div ng-app = ""> ... <p>Enter your Name: <input type = "text"
ng-model = "name"></p> </div>

ng-repeat directive

• The ng-repeat directive repeats HTML
elements for each item in a collection. In the
following example, we iterate over the array
of countries.

<div ng-app = ""> ... <p>List of Countries with locale:</p>

<li ng-repeat = "country in countries"> {{ 'Country: ' +
country.name + ', Locale: ' + country.locale }}

</div>

AngularJS Expressions

• AngularJS expressions can be written inside
double braces: {{ expression }}.

• AngularJS expressions can also be written inside a
directive: ng-bind="expression".

• AngularJS will resolve the expression, and return
the result exactly where the expression is written.

• AngularJS expressions are much like JavaScript
expressions: They can contain literals, operators,
and variables.

• Example {{ 5 + 5 }} or {{ firstName + " " +
lastName }}

Example

• <!DOCTYPE html>
<html>
<script src="https://ajax.googleapis.com/ajax/libs
/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="">
<p>My first expression: {{ 5 + 5 }}</p>

</div>

</body>
</html>

AngularJS Controllers

• AngularJS applications are controlled by
controllers.

• The ng-controller directive defines the
application controller.

• A controller is a JavaScript Object, created by
a standard JavaScript object constructor.

Example
<!DOCTYPE html>
<html>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">

First Name: <input type="text" ng-model="firstName">

Last Name: <input type="text" ng-model="lastName">

Full Name: {{firstName + " " + lastName}}

</div>

<script>
var app = angular.module('myApp', []);
app.controller('myCtrl', function($scope) {

$scope.firstName = "John";
$scope.lastName = "Doe";

});
</script>

</body>
</html>

AngularJS Filters

AngularJS provides filters to transform data:
• currency - Format a number to a currency format.
• date - Format a date to a specified format.
• filter - Select a subset of items from an array.
• json - Format an object to a JSON string.
• limitTo - Limits -an array/string, into a specified number

of elements/characters.
• lowercase - Format a string to lower case.
• number - Format a number to a string.
• orderBy - Orders an array by an expression.
• uppercase - Format a string to upper case.

Example
<!DOCTYPE html>
<html>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="myApp" ng-controller="personCtrl">

<p>The name is {{firstName + " " + lastName | uppercase }}</p>

</div>

<script>
angular.module('myApp', []).controller('personCtrl', function($scope) {

$scope.firstName = "John",
$scope.lastName = "Doe"

});
</script>

</body>
</html>

AngularJS Tables

• The ng-repeat directive is perfect for
displaying tables.

Example

<div ng-app="myApp" ng-controller="customersCtrl">

<table>
<tr ng-repeat="x in names">
<td>{{ x.Name }}</td>
<td>{{ x.Country }}</td>

</tr>
</table>

</div>

AngularJS HTML DOM

• AngularJS has directives for binding
application data to the attributes of HTML
DOM elements.

Example
<!DOCTYPE html>
<html>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="" ng-init="mySwitch=true">
<p>
<button ng-disabled="mySwitch">Click Me!</button>
</p>
<p>
<input type="checkbox" ng-model="mySwitch"/>Button
</p>
<p>
{{ mySwitch }}
</p>
</div>

</body>
</html>

Explaination

• The ng-disabled directive binds the
application data mySwitch to the HTML
button's disabled attribute.

• The ng-model directive binds the value of the
HTML checkbox element to the value
of mySwitch.

• If the value of mySwitch evaluates to true, the
button will be disabled:

AngularJS Forms

• Forms in AngularJS provides data-binding and
validation of input controls.

Input controls are the HTML input elements:
• input elements
• select elements
• button elements
• textarea elements

Data-Binding
• Input controls provides data-binding by using

the ng-model directive.
• <input type="text" ng-model="firstname">
• The application does now have a property

named firstname.
• The ng-model directive binds the input

controller to the rest of your application.
• The property firstname, can be referred to in a

controller:

Checkbox

• A checkbox has the value true or false. Apply
the ng-model directive to a checkbox, and use its
value in your application.

• <form>
Check to show a header:
<input type="checkbox" ng-model="myVar">

</form>

<h1 ng-show="myVar">My Header</h1>

Radiobuttons

• Bind radio buttons to your application with the ng-
model directive.

• Radio buttons with the same ng-model can have different
values, but only the selected one will be used.

• <form>
Pick a topic:
<input type="radio" ng-

model="myVar" value="dogs">Dogs
<input type="radio" ng-

model="myVar" value="tuts">Tutorials
<input type="radio" ng-model="myVar" value="cars">Cars

</form>

Select box

• Bind select boxes to your application with the ng-
model directive.

• The property defined in the ng-model attribute will have
the value of the selected option in the select box.

• <form>
Select a topic:
<select ng-model="myVar">
<option value=“">
<option value="dogs">Dogs
<option value="tuts">Tutorials
<option value="cars">Cars

</select>
</form>

AJAX Introduction

• What is AJAX?
• AJAX = Asynchronous JavaScript And XML.
• AJAX is not a programming language.
• AJAX just uses a combination of:
• A browser built-in XMLHttpRequest object (to

request data from a web server)
• JavaScript and HTML DOM (to display or use

the data)

AJAX Introduction

• AJAX allows web pages to be updated
asynchronously by exchanging data with a
web server behind the scenes. This means
that it is possible to update parts of a web
page, without reloading the whole page.

Explaination

1. An event occurs in a web page (the page is loaded, a
button is clicked)
2. An XMLHttpRequest object is created by JavaScript
3. The XMLHttpRequest object sends a request to a web
server
4. The server processes the request
5. The server sends a response back to the web page
6. The response is read by JavaScript
7. Proper action (like page update) is performed by
JavaScript

NodeJS

What is Node.js?

• Node.js is an open source server environment
• Node.js is free
• Node.js runs on various platforms (Windows,

Linux, Unix, Mac OS X, etc.)
• Node.js uses JavaScript on the server

Why Node.js?

• A common task for a web server can be to open a
file on the server and return the content to the
client.

Here is how PHP or ASP handles a file request:
• Sends the task to the computer's file system.
• Waits while the file system opens and reads the

file.
• Returns the content to the client.
• Ready to handle the next request.

Why Node.js?

Here is how Node.js handles a file request:
• Sends the task to the computer's file system.
• Ready to handle the next request.
• When the file system has opened and read the

file, the server returns the content to the client.
• Node.js eliminates the waiting, and simply

continues with the next request.
• Node.js runs single-threaded, non-blocking,

asynchronously programming, which is very
memory efficient.

What Can Node.js Do?

• Node.js can generate dynamic page content
• Node.js can create, open, read, write, delete,

and close files on the server
• Node.js can collect form data
• Node.js can add, delete, modify data in your

database

What is a Node.js File?

• Node.js files contain tasks that will be
executed on certain events

• A typical event is someone trying to access a
port on the server

• Node.js files must be initiated on the server
before having any effect

• Node.js files have extension ".js"

Node.js Get Started

Download Node.js
• The official Node.js website has installation

instructions for Node.js: https://nodejs.org

Node.js Get Started

• Once you have downloaded and installed
Node.js on your computer, let's try to display
"Hello World" in a web browser.

• Create a Node.js file named "myfirst.js", and
add the following code:

Node.js Get Started

• var http = require('http');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-

Type': 'text/html'});
res.end('Hello World!');

}).listen(8080);

Node.js Get Started

• Save the file on your computer: C:\Users\Your
Name\myfirst.js

• Navigate to the folder that contains the file
"myfirst.js“

• Start your command line interface, write node
myfirst.js and hit enter:

• C:\Users\Your Name>node myfirst.js
• http://localhost:8080

What is Callback?

• Callback is an asynchronous equivalent for a
function. A callback function is called at the
completion of a given task. Node makes heavy
use of callbacks. All the APIs of Node are
written in such a way that they support
callbacks.

What is Callback?

• For example, a function to read a file may start
reading file and return the control to the
execution environment immediately so that the
next instruction can be executed.

• Once file I/O is complete, it will call the callback
function while passing the callback function, the
content of the file as a parameter.

• So there is no blocking or wait for File I/O. This
makes Node.js highly scalable, as it can process a
high number of requests without waiting for any
function to return results.

Blocking Code Example

• Create a text file named input.txt with the
following content −

• Create a js file named main.js with the following
code −

• To include the File System module, use
the require() method-

• var fs = require("fs");
• var data = fs.readFileSync('input.txt');
• console.log(data.toString());
• console.log("Program Ended");

Event-Driven Programming

• Node.js uses events heavily and it is also one
of the reasons why Node.js is pretty fast
compared to other similar technologies.

• As soon as Node starts its server, it simply
initiates its variables, declares functions and
then simply waits for the event to occur.

Event-Driven Programming

• In an event-driven application, there is
generally a main loop that listens for events,
and then triggers a callback function when
one of those events is detected.

Event-Driven Programming

• Although events look quite similar to callbacks, the
difference lies in the fact that callback functions are
called when an asynchronous function returns its
result, whereas event handling works on the observer
pattern.

• The functions that listen to events act as Observers.
Whenever an event gets fired, its listener function
starts executing.

• Node.js has multiple in-built events available through
events module and EventEmitter class which are used
to bind events and event-listeners.

Creating Buffers

• Node Buffer can be constructed in a variety of
ways.

Method 1
• Following is the syntax to create an uninitiated

Buffer of 10 octets −
var buf = new Buffer(10);

Creating Buffers

• Method 2
• Following is the syntax to create a Buffer from

a given array −
var buf = new Buffer([10, 20, 30, 40, 50]);

Writing to Buffers

buf.write(string[, offset][, length][, encoding])
• string − This is the string data to be wri en to

buffer.
• offset − This is the index of the buffer to start

writing at. Default value is 0.
• length − This is the number of bytes to write.

Defaults to buffer.length.
• encoding − Encoding to use. 'u 8' is the default

encoding.

Reading from Buffers

buf.toString([encoding][, start][, end])
• encoding − Encoding to use. 'u 8' is the

default encoding.
• start − Beginning index to start reading,

defaults to 0.
• end − End index to end reading, defaults is

complete buffer.

What are Streams?
Streams are objects that let you read data from a
source or write data to a destination in continuous
fashion.
In Node.js, there are four types of streams −
• Readable − Stream which is used for read

operation.
• Writable − Stream which is used for write

operation.
• Duplex − Stream which can be used for both read

and write operation.
• Transform − A type of duplex stream where the

output is computed based on input.

What are Streams?

Each type of Stream is an EventEmitter instance and
throws several events at different instance of times.
For example, some of the commonly used events are −
• data − This event is fired when there is data is available

to read.
• end − This event is fired when there is no more data to

read.
• error − This event is fired when there is any error

receiving or writing data.
• finish − This event is fired when all the data has been

flushed to underlying system.

What are Streams?

• var fs = require("fs");
• // Create a readable stream var readerStream

= fs.createReadStream('input.txt');
• // Create a writable stream var writerStream =

fs.createWriteStream('output.txt');
• // Pipe the read and write operations
• // read input.txt and write data to output.txt

readerStream.pipe(writerStream);
console.log("Program Ended");

What are Streams?

• Now run the main.js to see the result −
• $ node main.js Verify the Output.
• Program Ended
• Open output.txt created in your current

directory; it should contain the following input
file data.

File System

• Node implements File I/O using simple
wrappers around standard POSIX functions.

• POSIX, the Portable Operating System
Interface, defines the standard APIs for Unix.

• The Node File System (fs) module can be
imported using the following syntax −

• var fs = require("fs")

Synchronous vs Asynchronous

• Every method in the fs module has synchronous
as well as asynchronous forms.

• Asynchronous methods take the last parameter
as the completion function callback and the first
parameter of the callback function as error.

• It is better to use an asynchronous method
instead of a synchronous method, as the former
never blocks a program during its execution,
whereas the second one does.

Example

• Create a text file named input.txt with the
following content −

• Let us create a js file named main.js with the
following code −

Example

• var fs = require("fs");
• // Asynchronous read fs.readFile('input.txt',

function (err, data) { if (err) { return
console.error(err); } console.log("Asynchronous
read: " + data.toString()); });

• // Synchronous read var data =
fs.readFileSync('input.txt');
console.log("Synchronous read: " +
data.toString()); console.log("Program Ended");

• Now run the main.js to see the result −
• $ node main.js
• Verify the Output.

Object

• Node.js global objects are global in nature and
they are available in all modules. We do not
need to include these objects in our
application, rather we can use them directly.
These objects are modules, functions, strings
and object itself as explained below.

__filename

• The __filename represents the filename of
the code being executed. This is the resolved
absolute path of this code file. For a main
program, this is not necessarily the same
filename used in the command line. The value
inside a module is the path to that module
file.

• console.log(__filename);

__dirname

• The __dirname represents the name of the
directory that the currently executing script
resides in.

• console.log(__dirname);

Node.js - Utility Modules

• There are several utility modules available
in Node.js module library. These modules
are very common and are frequently used
while developing any Node based
application.

Node.js - Utility Modules

Sr.No. Module Name & Description

1 OS Module- Provides basic operating-system related utility
functions.

2 Path Module- Provides utilities for handling and transforming file
paths.

3 Net Module- Provides both servers and clients as streams. Acts as a
network wrapper.

4 DNS Module- Provides functions to do actual DNS lookup as well as
to use underlying operating system name resolution functionalities.

5 Domain Module- Provides ways to handle multiple different I/O
operations as a single group.

What is REST architecture?

• REST stands for REpresentational State
Transfer. REST is web standards based
architecture and uses HTTP Protocol. It
revolves around resource where every
component is a resource and a resource is
accessed by a common interface using HTTP
standard methods. REST was first introduced
by Roy Fielding in 2000.

What is REST architecture?

• A REST Server simply provides access to
resources and REST client accesses and
modifies the resources using HTTP protocol.
Here each resource is identified by URIs/
global IDs. REST uses various representation to
represent a resource like text, JSON, XML but
JSON is the most popular one.

HTTP methods

• Following four HTTP methods are commonly
used in REST based architecture.

• GET − This is used to provide a read only
access to a resource.

• PUT − This is used to create a new resource.
• DELETE − This is used to remove a resource.
• POST − This is used to update a existing

resource or create a new resource.

Thank you

