
Simple C++ Program

I like C++ so much
I will score good marks in C++

A Simple C++ Program
#include <iostream> //include header file
using namespace std;
int main()
{

cout << "Hello World"; // C++ statement
return 0;

}

 iostream is just like we include stdio.h in c program.
 It contains declarations for the identifier cout and the insertion

operator <<.
 iostream should be included at the beginning of all programs

that use input/output statements.

I like C++ so much
I will score good marks in C++

A Simple C++ Program (Cont…)
#include <iostream> //include header file
using namespace std;
int main()
{

cout << "Hello World"; // C++ statement
return 0;

}

 A namespace is a declarative region.
 A namespace is a part of the program in which certain names are

recognized; outside of the namespace they’re unknown.
 namespace defines a scope for the identifies that are used in a

program.
 using and namespace are the keywords of C++.

I like C++ so much
I will score good marks in C++

A Simple C++ Program (Cont…)
#include <iostream> //include header file
using namespace std;
int main()
{

cout << "Hello World"; // C++ statement
return 0;

}

 std is the namespace where ANSI C++ standard class libraries are
defined.

 Various program components such as cout, cin, endl are
defined within std namespace.

 If we don’t use the using directive at top, we have to add the std
followed by :: in the program before identifier.

std::cout << “Hello World”;

I like C++ so much
I will score good marks in C++

A Simple C++ Program (Cont…)
#include <iostream> //include header file
using namespace std;
int main()
{

cout << "Hello World"; // C++ statement
return 0;

}

 In C++, main() returns an integer type value.
 Therefore, every main() in C++ should end with a return 0;

statement; otherwise error will occur.
 The return value from the main() function is used by the

runtime library as the exit code for the process.

I like C++ so much
I will score good marks in C++

Insertion Operator <<

 The operator << is called the
insertion operator.

 It inserts the contents of the
variable on its right to the object
on its left.

 The identifier cout is a predefined
object that represents standard
output stream in C++.

 Here, Screen represents the
output. We can also redirect the
output to other output devices.

 The operator << is used as bitwise
left shift operator also.

Output Using Insertion Operator

cout << "Hello World";

I like C++ so much
I will score good marks in C++

Program: Basic C++ program
Write a C++ Program to print following

Name: Darshan
City: Rajkot
Country: India

I like C++ so much
I will score good marks in C++

Program: Basic C++ program
#include <iostream>

using namespace std;

int main()

{

cout << "Name: Darshan";

cout << "City: Rajkot";

cout << "Country: India";

return 0;

}

Output
Name: DarshanCity: RajkotCountry: India

I like C++ so much
I will score good marks in C++

Program: Basic C++ program(Cont…)
#include <iostream>
using namespace std;
int main()
{
cout << "Name: Darshan\n";
cout << "City: Rajkot\n";
cout << "Country: India";
return 0;
}

Output

Name: Darshan

City: Rajkot

Country: India

#include <iostream>
using namespace std;
int main()
{
cout << "Name: Darshan"<<endl;
cout << "City: Rajkot"<<endl;
cout << "Country: India"<<endl;
return 0;
}

 The endl manipulator and \n has same
effect. Both inserts new line to output.

 But, difference is endl immediate flush to the
output while \n do not.

I like C++ so much
I will score good marks in C++

Extraction Operator >>

 The identifier cin is a predefined
object that represents standard
input stream in C++.

 Here, standard input stream
represents the Keyboard.

 The operator >> is used as
bitwise right shift operator also.

 The operator >> is called the
extraction operator.

 It extracts (or takes) the value
from keyboard and assigns it to
the variable on its right.

KeyBoard

cin number1

Object Extraction Operator

Variable

>>

cin >> number1;

I like C++ so much
I will score good marks in C++

Program: Basic C++ program
#include<iostream>
using namespace std;
int main()
{
int number1,number2;

cout<<"Enter First Number: ";
cin>>number1; //accept first number

cout<<"Enter Second Number: ";
cin>>number2; //accept first number

cout<<"Addition : ";
cout<<number1+number2; //Display Addition
return 0;

}

C++ Tokens

I like C++ so much
I will score good marks in C++

C++ Tokens
 The smallest individual unit of a program is known as token.

 C++ has the following tokens:

− Keywords

− Identifiers

− Constants

− Strings

− Special Symbols

− Operators

#include <iostream>
using namespace std;
int main()
{

cout << "Hello World";
return 0;

}

I like C++ so much
I will score good marks in C++

Keywords and Identifier
 C++ reserves a set of 84 words for its own use.

 These words are called keywords (or reserved words), and each of

these keywords has a special meaning within the C++ language.

 Identifiers are names that are given to various user defined

program elements, such as variable, function and arrays.

 Some of Predefined identifiers are cout, cin, main

 We cannot use Keyword as user defined identifier.

I like C++ so much
I will score good marks in C++

Keywords in C++
asm double new switch

auto else operator template

break enum private this

case extern protected throw

catch float public try

char for register typeof

class friend return union

const goto short unsigned

continue if signed virtual

default inline sizeof void

delete int static volatile

do long struct while

I like C++ so much
I will score good marks in C++

Rules for naming identifiers in C++
1. First Character must be an alphabet or underscore.

2. It can contain only letters(a..z A..Z), digits(0 to 9) or

underscore(_).

3. Identifier name cannot be keyword.

4. Only first 31 characters are significant.

I like C++ so much
I will score good marks in C++

Valid, Invalid Identifiers
1) Darshan

2) A

3) Age

4) void

5) MAX-ENTRIES

6) double

7) time

8) G

9) Sue's

10) return

11) cout

12) xyz123

13) part#2

14) "char"

15) #include

16) This_is_a_

17) _xyz

18) 9xyz

19) main

20) mutable

21) double

22) max?out

Valid

Valid

Valid

Reserved word

Invalid

Reserved word

Valid

Valid

Invalid

Reserved word

Standard identifier

Valid

Invalid

Invalid

Invalid

Valid

Valid

Invalid

Standard identifier

Reserved word

Reserved word

Invalid

I like C++ so much
I will score good marks in C++

Constants / Literals
 Constants in C++ refer to fixed values that do not change during

execution of program.

CONSTANTS

INTEGER
CONSTANTS

i.e.
123,-321, 6543

REAL
CONSTANTS

i.e.
0.0083, -0.75

NUMERIC
CONSTANTS

SINGLE
CHARACTER
CONSTANTS

i.e.
‘5’, ‘X’, ‘;’

STRING
CONSTANTS

i.e.
“Hello”, “197”

CHARACTER
CONSTANTS

C++ Operators

I like C++ so much
I will score good marks in C++

C++ Operators
 All C language operators are valid in C++.

1. Arithmetic operators (+, - , *, /, %)

2. Relational operators (<, <=, >, >=, ==, !=)

3. Logical operators (&&, ||, !)

4. Assignment operators (+=, -=, *=, /=)

5. Increment and decrement operators (++, --)

6. Conditional operators (?:)

7. Bitwise operators (&, |, ^, <<, >>)

8. Special operators ()

I like C++ so much
I will score good marks in C++

Arithmetic Operators

Operator example Meaning

+ a + b Addition

- a – b Subtraction

* a * b Multiplication

/ a / b Division

% a % b Modulo division- remainder

I like C++ so much
I will score good marks in C++

Relational Operators

Operator Meaning

< Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

== Equal to

!= Not equal to

I like C++ so much
I will score good marks in C++

Logical Operators
Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

 a && b : returns false if any of the expression is false
 a || b : returns true if any of the expression is true

I like C++ so much
I will score good marks in C++

Assignment operator
 We assign a value to a variable using the basic assignment

operator (=).

 Assignment operator stores a value in memory.

 The syntax is

leftSide = rightSide ;

Always it is a

variable identifier.

It is either a literal |
a variable identifier |
an expression.

Literal: ex. i = 1;
Variable identifier: ex. start = i;
Expression: ex. sum = first + second;

I like C++ so much
I will score good marks in C++

Assignment Operators (Shorthand)
Syntax:

leftSide Op= rightSide ;

Simple assignment
operator

Shorthand operator

a = a+1 a += 1

a = a-1 a -= 1

a = a * (m+n) a *= m+n

a = a / (m+n) a /= m+n

a = a % b a %= b

It is an arithmetic
operator.

Ex:
x=x+3;
x+=3;

I like C++ so much
I will score good marks in C++

Increment and Decrement Operators
 Increment ++

The ++ operator used to increase the value of the variable by one
 Decrement ─ ─

The ─ ─ operator used to decrease the value of the variable by one

Example:
x=100;
x++;

After the execution the value of x will be 101.

Example:
x=100;
x--;

After the execution the value of x will be 99.

I like C++ so much
I will score good marks in C++

Pre & Post Increment operator
Operator Description

Pre increment operator (++x) value of x is incremented before assigning
it to the variable on the left

x = 10 ;
p = ++x;

After execution
x will be 11
p will be 11First increment value of

x by one

Operator Description

Post increment operator (x++) value of x is incremented after assigning it
to the variable on the left

x = 10 ;
p = x++;

After execution
x will be 11
p will be 10

First assign value of x

I like C++ so much
I will score good marks in C++

What is the output of this program?
#include <iostream>
using namespace std;
int main ()
{

int x, y;
x = 5;
y = ++x * ++x;
cout << x << y;
x = 5;
y = x++ * ++x;
cout << x << y;

}

(A) 749735

(B) 736749

(C) 367497

(D) none of the mentioned

I like C++ so much
I will score good marks in C++

Conditional Operator
Syntax:

exp1 ? exp2 : exp3

Working of the ? Operator:
 exp1 is evaluated first

• if exp1 is true(nonzero) then
- exp2 is evaluated and its value becomes the value of the expression

• If exp1 is false(zero) then
- exp3 is evaluated and its value becomes the value of the expression

Ex:
m=2;
n=3;
r=(m>n) ? m : n;

Ex:
m=2;
n=3;
r=(m<n) ? m : n;

Value of r will be 3 Value of r will be 2

I like C++ so much
I will score good marks in C++

Bitwise Operator
Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< Shift left

>> Shift right

I like C++ so much
I will score good marks in C++

Bitwise Operator Examples
8 = 1000 (In Binary)
6 = 0110 (In Binary)

Bitwise & (AND)

int a=8,b=6,c;
c = a & b;
cout<<"Output ="<< c;

Output = 0

Bitwise | (OR)

int a=8,b=6,c;
c = a | b;
cout<<"Output ="<< c;

Output = 14

Bitwise << (Shift Left)

int a=8,b=6,c;
c = a << 1;
cout<<"Output ="<< c;

Output = 16
left shifting is the equivalent of
multiplying a by a power of two

Bitwise >> (Shift Right)

int a=8,b=6,c;
c = a >> 1;
cout<<"Output ="<< c;

Output = 4
right shifting is the equivalent
of dividing a by a power of two

I like C++ so much
I will score good marks in C++

New Operators in C++

:: Scope Resolution

::* Pointer-to-member declarator

->* Pointer-to-member operator

.* Pointer-to-member operator

delete Memory release operator

endl Line feed operator

new Memory allocation operator

setw Field width operator

It allows to access to the global
version of variable

Declares a pointer to a member of
a class

To access pointer to class members

To access pointer to data members
of class

Deallocates memory at run time

It is a manipulator causes a linefeed
to be inserted

Allocates memory at run time

It is a manipulator specifies a field
width for printing value

Scope Resolution
Operator

I like C++ so much
I will score good marks in C++

Scope Resolution Operator(::)
....
....
{

int x=10;
....
....
{

int x=1;
....
....

}
....

}

Block-2
Block-1

Declaration of x in inner block hides
declaration of same variable declared in an

outer block.

Therefore, in this code both variable x
refers to different data.

 In C language, value of x declared in Block-1
is not accessible in Block-2.

 In C++, using scope resolution operator (::),
value of x declared in Block-1 can be
accessed in Block-2.

#include <iostream>
using namespace std;
int m=10;
int main()
{

int m=20;
{

int k=m;
int m=3;
cout<<"we are in inner block\n";
cout<<"k="<<k<<endl;
cout<<"m="<<m<<endl;
cout<<"::m="<<::m<<endl;

}
cout<<"we are in outer block\n";
cout<<"m="<<m<<endl;
cout<<"::m="<<::m<<endl;
return 0;

}

Global declaration of variable m

variable m declared , local to main

variable m
declared again local to inner block

Output:
we are in inner block

k=20

m=3

::m=10

we are in outer block

m=20

::m=10

Scope resolution example

C++ Data Types

I like C++ so much
I will score good marks in C++

Basic Data types

C++ datatypes

User-defined Built-in Derived

Integral Void Floating

structure
union
class

enumeration

array
function
pointer

reference

int char float double

I like C++ so much
I will score good marks in C++

Built in Data types
Data Type Size (bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

short or int 2 -32,768 to 32,767

unsigned int 2 0 to 65535

long 4 -2147483648 to 2147483647

unsigned long 4 0 to 4294967295

float 4 3.4e-38 to 3.4e+308

double 8 1.7e-308 to 1.7e+308

long double 10 3.4e-4932 to 1.1e+4932

Type Conversion

I like C++ so much
I will score good marks in C++

Type Conversion
 Type Conversion is the process of converting one predefined data

type into another data type.

Type Conversion

Implicit

(Automatically converts
one datatype to another

datatype)

Explicit

(Forcefully converts one
datatype to another

datatype)

 Explicit type conversion is also known as type casting.

I like C++ so much
I will score good marks in C++

Type Conversion(Cont…)

int a;

double b=2.55;

a = b; // implicit type conversion

cout << a << endl; // this will print 2

a = int(b); //explicit type conversion

cout << a << endl; // this will print 2

I like C++ so much
I will score good marks in C++

Implicit type conversion hierarchy

char
int

unsigned

int

long int
float

double
long
double

I like C++ so much
I will score good marks in C++

Implicit Type Conversion
#include <iostream>
using namespace std;
int main()
{

int count = 5;
float avg = 10.01;
double ans;

ans = count * avg;

cout<<"Answer=:"<<ans;
return 0;

}
Output:
Answer = 50.05

5 10.01

*

=

double int float

ans count avg

5.0

float
50.05

float

50.05

double

*

I like C++ so much
I will score good marks in C++

Type Casting
 In C++ explicit type conversion is called type casting

 Syntax

type-name (expression) //C++ notation

 Example

average = sum/(float) i; //C notation

average = sum/float (i); //C++ notation

#include <iostream>
using namespace std;
int main()
{

int a, b, c;
a = 19.99 + 11.99;

b = (int) 19.99 + (int) 11.99;
c = int (19.99) + int (11.99);

cout << "a = " << a << ", b = " << b;
cout << ", c = " << c << endl;

char ch = 'Z';
cout << "The code for " << ch << " is ";
cout << int(ch) << endl;
return 0;

}

Output:
a = 31, b = 30, c = 30

The code for Z is 90

Type Casting Example

//adds the values as float
// then converts the result to int

// old C syntax

// new C++ syntax

//print as char
//print as int

Reference Variable

I like C++ so much
I will score good marks in C++

Reference Variable
 A reference provides an alias or a different name for a variable.

 One of the most important uses for references is in passing

arguments to functions.

int a=5;
int &ans = a;

cout<<"a="<<a<<endl;
cout<<"&a="<<&a<<endl;
cout<<"ans="<<ans<<endl;
cout<<"&ans="<<&ans<<endl;
ans++;
cout<<"a="<<a<<endl;
cout<<"ans="<<ans<<endl;

declares variable a

declares ans as reference to a

OUTPUT

a=5

&a=0x6ffe34

ans=5

&ans=0x6ffe34

a=6

ans=6

Its necessary to
initialize the
Reference at the
time of declaration

I like C++ so much
I will score good marks in C++

Reference Variable(Cont…)
 C++ references allow you to create a second name for the a

variable.

 Reference variable for the purpose of accessing and modifying the

value of the original variable even if the second name (the

reference) is located within a different scope.

I like C++ so much
I will score good marks in C++

Reference Vs Pointer

Pointers
int *p = &i;

References
int i;

int &r = i;

ir

addr

p

addr

A pointer is a variable
which stores the address
of another variable.

A reference is a
variable which refers
to another variable.

Enumeration

I like C++ so much
I will score good marks in C++

Enumeration (A user defined Data Type)

 An enumeration is set of named integer constants.

 Enumerations are defined much like structures.

enum days{Sun,Mon,Tues,Wed,Thur,Fri,Sat};

Keyword
Tag

name Integer Values for symbolic constants

0 1 2 3 4 5 6

 Above statement creates days the name of datatype.
 By default, enumerators are assigned integer values starting with 0.
 It establishes Sun, Mon… and so on as symbolic constants for

the integer values 0-6.

I like C++ so much
I will score good marks in C++

Enumeration Behaviour(Cont…)
enum coin { penny, nickel, dime, quarter=100,

half_dollar, dollar};

The values of these symbols are
penny 0
nickel 1
dime 2
quarter 100
half_dollar 101
dollar 102

Enumeration Behaviour
enum days{ sun, mon, tue, wed, thu, fri, sat };
days today;

today = tue;

today = 6;

today++;

today = mon + fri;

int num = sat;

num = 5 + mon;

variable today declared of type days

Valid, because tue is an enumerator. Value 2 will
be assigned in today

Invalid, because 6 is not an enumerator

Invalid, today is of type days. We can not apply
++ to structure variable also

Invalid

Valid, days data type converted to int,
value 6 will be assigned to num

Valid, mon converted to int with value 1

Control Structures

I like C++ so much
I will score good marks in C++

Control Structures
 The if statement:

• Simple if statement

• if…else statement

• else…if ladder

• if…else nested

 The switch statement :

 The do-while statement: An exit controlled loop

 The while Statement: An entry controlled loop

 The for statement: An entry controlled loop

Thank You

