
GRAPHICS
PRIMITIVES

Outline
▪ Points

▪ Line drawing algorithms.

▪ Circle drawing algorithm.

▪ Ellipse drawing algorithm.

▪ Scan-Line polygon filling algorithm.

▪ Inside-Outside test.

▪ Boundary fill algorithm.

▪ Flood fill algorithm.

▪ Character generation.

▪ Line attributes.

▪ Color and grayscale levels

▪ Area fill attributes.

▪ Character attributes.

Point
▪ Point plotting is done by converting a single coordinate position

furnished by an application program into appropriate operations for the

output device in use.

▪ Example: Plot point 𝑃 (3, 2)

➢ Line 𝑥 = 3

➢ Line 𝑦 = 2

➢ Point 𝑃 (3, 2)

▪ To draw the point on the screen we use function

✓ 𝑠𝑒𝑡𝑝𝑖𝑥𝑒𝑙 (𝑥, 𝑦)

▪ To draw the pixel in C language we use function

✓ 𝑝𝑢𝑡𝑝𝑖𝑥𝑒𝑙 (𝑥, 𝑦, 𝑐𝑜𝑙𝑜𝑟)

▪ Similarly for retrieving color of pixel we have function

✓ 𝑔𝑒𝑡𝑝𝑖𝑥𝑒𝑙 (𝑥, 𝑦)

0

1

2

3

4
5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

1 2 3 4

Line
▪ Line drawing is done by calculating intermediate positions along

the line path between two specified endpoint positions.

▪ The output device is then directed to fill in those positions

between the end points with some color.

▪ For some device such as a pen plotter or random scan display, a

straight line can be drawn smoothly from one end point to other.

▪ Digital devices display a straight line segment by plotting discrete

points between the two endpoints.

▪ Discrete coordinate positions along the line path are calculated

from the equation of the line.

0

1

2

3

4

5

0 2 4 6

Contd.
▪ Screen locations are referenced with integer values.

▪ So plotted positions may only approximate actual line positions

between two specified endpoints. For example line position of

(12.36, 23.87) would be converted to pixel position (12, 24).

▪ This rounding of coordinate values to integers causes lines to be

displayed with a stair step appearance (“the Jaggies”).

Line Drawing Algorithms
▪ The Cartesian slop-intercept equation for a straight line is

• 𝑦 = 𝑚𝑥 + 𝑏

• with ‘𝒎’ representing slop and ‘𝒃’ as the intercept.

▪ It is possible to draw line using this equation but for efficiency

purpose we use different line drawing algorithm.

• DDA Algorithm

• Bresenham’s Line Algorithm

▪ We can also use this algorithm in parallel if we have more number

of processors.

Introduction to DDA Algorithm
▪ Full form of DDA is Digital Differential Analyzer

▪ DDA is scan conversion line drawing algorithm based on

calculating either ∆𝑦 or ∆𝑥 using line equation.

▪ We sample the line at unit intervals in one coordinate and find

corresponding integer values nearest the line path for the other

coordinate.

▪ Selecting unit interval in either 𝑥 or 𝑦 direction based on way we

process line.

Unit Step Direction in DDA
Algorithm
▪ Processing from left to right.

✓ Slope is “+ve”, & Magnitude is Less than 1

✓ Slope is “-ve”, & Magnitude is Less than 1

✓ Slope is “+ve”, & Magnitude is greater than 1

✓ Slope is “-ve”, & Magnitude is greater than 1

▪ Processing from right to left.

✓ Slope is “+ve”, & Magnitude is Less than 1

✓ Slope is “-ve”, & Magnitude is Less than 1

✓ Slope is “+ve”, & Magnitude is greater than 1

✓ Slope is “-ve”, & Magnitude is greater than 1

Δ𝑋 = 1

Δ𝑌 = 1
Δ𝑌 = −1

Δ𝑋 = −1

Δ𝑌 = −1
Δ𝑌 = 1

Derivation of DDA Algorithm
▪ We sample at unit 𝑥 interval (∆𝑥 = 1) and calculate each successive 𝑦

value as follow:

▪ 𝑦 = 𝑚𝑥 + 𝑏

▪ 𝑦1 = 𝑚 𝑥 + 1 + 𝑏 [For first intermediate point]

▪ 𝑦𝑘 = 𝑚 𝑥 + 𝑘 + 𝑏 [For 𝑘𝑡ℎ intermediate point]

▪ 𝑦𝑘+1 = 𝑚 𝑥 + 𝑘 + 1 + 𝑏 [For 𝑘 + 1𝑡ℎ intermediate point]

▪ Subtract 𝑦𝑘from 𝑦𝑘+1

▪ 𝑦𝑘+1 − 𝑦𝑘 = 𝑚 𝑥 + 𝑘 + 1 + 𝑏 −𝑚 𝑥 + 𝑘 − 𝑏

▪ 𝑦𝑘+1 = 𝑦𝑘 +𝑚

▪ Using this equation computation becomes faster than normal line

equation.

▪ As 𝒎 is any real value calculated 𝒚 value must be rounded to nearest

integer.

Contd.
▪ We sample at unit 𝑦 interval (∆𝑦 = 1) and calculate each successive 𝑥

value as follow:

▪ 𝑥 = (𝑦 − 𝑏)/𝑚

▪ 𝑥1=((𝑦+1)−𝑏)/𝑚 [For first intermediate point]

▪ 𝑥𝑘=((𝑦+k)−𝑏)/𝑚 [For 𝑘𝑡ℎ intermediate point]

▪ 𝑥𝑘+1=((𝑦+k+1)−𝑏)/𝑚 [For 𝑘 + 1𝑡ℎ intermediate point]

Subtract 𝑥𝑘 from 𝑥𝑘+1

▪ 𝑥𝑘+1 − 𝑥𝑘={((𝑦+k+1)−𝑏)/𝑚} − {((𝑦+k)−𝑏)/𝑚}

▪ 𝑥𝑘+1 = 𝑥𝑘 + 1/𝑚

Similarly

▪ for ∆x = -1: we obtain 𝑦𝑘+1 = 𝑦𝑘 −𝑚

▪ for ∆y = -1: we obtain 𝑥𝑘+1 = 𝑥𝑘 − 1/𝑚

Procedure for DDA line algorithm.
Void lineDDA (int xa, int ya, int xb, int yb)
{

int dx = xb – xa, dy = yb – ya, steps, k;
float xincrement, yincrement, x = xa, y = ya;
if (abs(dx)>abs(dy))
{

Steps = abs (dx);
}
else
{

Steps = abs (dy);
}
xincrement = dx/(float) steps;
yincrement = dy/(float) steps;

setpixel (ROUND (x), ROUND (y));
for(k=0;k<steps;k++)
{

x += xincrement;
y += yincrement;
setpixel (ROUND (x), ROUND (y));

}
}

Example DDA Algorithm
▪ Example: Draw line 𝐴𝐵 with coordinates 𝐴(2,2), 𝐵(6,4).

▪ 𝑚 =
4−2

6−2
=

2

4
=

1

2

▪ 𝑚 is “+ve” and less than 1 so Δ𝑥 = 1.

▪ 𝑥0 = 2, 𝑦0 = 2
[Plot the initial point as given]

▪ 𝑥1 = 3, 𝑦1 = 𝑦0 +𝑚 = 2 + 0.5 = 2.5
[Plot the first intermediate point by rounding it to (3, 3)]

▪ 𝑥2 = 4, 𝑦2 = 𝑦1 +𝑚 = 2.5 + 0.5 = 3
[Plot the second intermediate point by rounding it to (4, 3)]

▪ 𝑥3 = 5, 𝑦3 = 𝑦2 +𝑚 = 3 + 0.5 = 3.5
[Plot the third intermediate point by rounding it to (5, 4)]

▪ 𝑥4 = 6, 𝑦4 = 4
[Plot End point given]

0 1 2 3 4 5 6 7 8

4
3
2
1
0

DDA Algorithm
▪ Advantage:

1. It is a faster method than method of using direct use of line equation.

2. This method does not use multiplication theorem.

3. It allows us to detect the change in the value of x and y ,so plotting of
same point twice is not possible.

4. This method gives overflow indication when a point is repositioned.

5. It is an easy method because each step involves just two additions.

▪ Disadvantage:

1. It involves floating point additions rounding off is done. Accumulations
of round off error cause accumulation of error.

2. Rounding off operations and floating point operations consumes a lot of
time.

3. It is more suitable for generating line using the software. But it is less
suited for hardware implementation.

Introduction to Bresenham’s Line
Algorithm
▪ An accurate and efficient raster line-generating algorithm,

developed by Bresenham.

▪ It scan converts line using only incremental integer calculations.

▪ That can be modified to display circles and other curves.

▪ Based on slop we take unit step in one direction and decide pixel

of other direction from two candidate pixel.

▪ If |Δ𝑥| > |Δ𝑦| we sample at unit 𝒙 interval and vice versa.

Line Path & Candidate pixel
▪ Example |ΔX| > |ΔY|, and ΔY is “+ve”.

➢ Initial point (Xk, Yk)

➢ Line path

➢ Candidate pixels {(Xk+1, Yk), (Xk+1, Yk+1)}
0 1 2 3 4

4
3
2
1
0

▪ Now we need to decide which candidate pixel is more closer to

actual line.

▪ For that we use decision parameter (Pk) equation.

▪ Decision parameter can be derived by calculating distance of

actual line from two candidate pixel.

Derivation Bresenham’s Line
Algorithm
▪ 𝑦 = 𝑚𝑥 + 𝑏 [Line Equation]

▪ 𝑦 = 𝑚(𝑥𝑘) + 𝑏 [Actual Y value at Xk position]

▪ 𝑦 = 𝑚(𝑥𝑘 + 1) + 𝑏 [Actual Y value at Xk +1position]

Distance between actual line position and lower candidate

pixel

▪ 𝑑1 = 𝑦 − 𝑦𝑘

▪ 𝑑1 = 𝑚(𝑥𝑘 + 1) + 𝑏 − 𝑦𝑘

Distance between actual line position and upper

candidate pixel

▪ 𝑑2 = (𝑦𝑘+1) − 𝑦

▪ 𝑑2 = (𝑦𝑘+1) −𝑚 𝑥𝑘 + 1 − 𝑏

0 1 2 3 4

4
3
2
1
0

Contd.
Calculate 𝑑1 − 𝑑2

▪ 𝑑1 − 𝑑2 = 𝑚 𝑥𝑘 + 1 + 𝑏 − 𝑦𝑘 − (𝑦𝑘+1 −𝑚 𝑥𝑘 + 1 − 𝑏}

▪ 𝑑1 − 𝑑2 = 𝑚𝑥𝑘 +𝑚 + 𝑏 − 𝑦𝑘 − {𝑦𝑘 + 1 −𝑚𝑥𝑘 −𝑚 − 𝑏}

▪ 𝑑1 − 𝑑2 = 2𝑚 𝑥𝑘 + 1 − 2𝑦𝑘 + 2𝑏 − 1

▪ 𝑑1 − 𝑑2 = 2(∆𝑦/∆𝑥) 𝑥𝑘 + 1 − 2𝑦𝑘 + 2𝑏 − 1 [Put 𝑚 = Δ𝑦/Δ𝑥]

Decision parameter

▪ 𝑝𝑘 = ∆𝑥(𝑑1 − 𝑑2)

▪ 𝑝𝑘 = ∆𝑥 {2(∆𝑦/∆𝑥) 𝑥𝑘 + 1 − 2𝑦𝑘 + 2𝑏 − 1 }

▪ 𝑝𝑘 = 2∆𝑦𝑥𝑘 − 2∆𝑥𝑦𝑘 + 2∆𝑦 + 2∆𝑥𝑏 − ∆x

▪ 𝑝𝑘 = 2∆𝑦𝑥𝑘 − 2∆𝑥𝑦𝑘 + C [Replacing single constant C for simplicity]

Similarly

▪ 𝑝𝑘+1 = 2∆𝑦𝑥𝑘+1 − 2∆𝑥𝑦𝑘+1 + C

Contd.
Subtract 𝑝𝑘 from 𝑝𝑘+1

▪ 𝑝𝑘+1 − 𝑝𝑘 = 2∆𝑦𝑥𝑘+1 − 2∆𝑥𝑦𝑘+1 + C − 2∆𝑦𝑥𝑘 + 2∆𝑥𝑦𝑘 − C

▪ 𝑝𝑘+1 − 𝑝𝑘 = 2∆𝑦(𝑥𝑘+1−𝑥𝑘) − 2∆𝑥(𝑦𝑘+1 −𝑦𝑘)

[where (𝑥𝑘+1−𝑥𝑘) = 1]

▪ 𝑝𝑘+1 = 𝑝𝑘 + 2∆𝑦 − 2∆𝑥(𝑦𝑘+1 −𝑦𝑘)

[where (𝑦𝑘+1 −𝑦𝑘) = 0 or 1 depending on selection of previous pixel]

Initial Decision parameter
▪ The first decision parameter 𝑝0 is calculated using equation of 𝑝𝑘.

▪ 𝑝𝑘 = 2∆𝑦𝑥𝑘 − 2∆𝑥𝑦𝑘 + 2∆𝑦 + 2∆𝑥𝑏 − ∆x

▪ 𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥𝑏 − ∆x [Put 𝑘 = 0]

▪ 𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥 𝑦0 −𝑚𝑥0 − ∆x

[Substitute 𝑏 = 𝑦0 – 𝑚𝑥0]

▪ 𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥(𝑦0 − (∆𝑦/∆𝑥)𝑥0) − ∆x

[Substitute 𝑚 = ∆𝑦/Δ𝑥]

▪ 𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥𝑦0 − 2∆𝑦𝑥0 − ∆x

▪ 𝑝0 = 2∆𝑦 − ∆x

[Initial decision parameter with all terms are constant]

Bresenham’s Line Algorithm
1. Input the two line endpoints and store the left endpoint in (𝑥0, 𝑦0).

2. Load (𝑥0, 𝑦0) into the frame buffer; that is, plot the first point.

3. Calculate constants ∆𝑥, ∆𝑦, 2∆𝑦, and 2∆𝑦 − 2∆𝑥, and obtain the

starting value for the decision parameter as

𝑝0 = 2∆𝑦 − ∆𝑥

4. At each 𝑥𝑘 along the line, starting at 𝑘 = 0, perform the following test:

If 𝑝𝑘 < 0, the next point to plot is (𝑥𝑘 + 1, 𝑦𝑘) and

𝑝𝑘+1 = 𝑝𝑘 + 2∆𝑦

Otherwise, the next point to plot is (𝑥𝑘 + 1, 𝑦𝑘 + 1) and

𝑝𝑘+1 = 𝑝𝑘 + 2∆𝑦 − 2∆𝑥

5. Repeat step-4 ∆𝑥 times.

Description of Bresenham’s Line
Algorithm
▪ Bresenham’s algorithm is generalized to lines with arbitrary slope.

▪ For lines with positive slope greater than 1 we interchange the roles of

the 𝑥 and 𝑦 directions.

▪ Also we can revise algorithm to draw line from right endpoint to left

endpoint, both 𝑥 and 𝑦 decrease as we step from right to left.

▪ When 𝑝𝑘 = 0 we can choose either lower or upper pixel but same for
whole line.

▪ For the negative slope the procedure are similar except that now one

coordinate decreases as the other increases.

▪ The special case handle separately by loading directly into the frame

buffer without processing.

✓ Horizontal line (∆𝑦 = 0),

✓ Vertical line (∆𝑥 = 0)

✓ Diagonal line with |∆𝑥| = |∆𝑦|

Example Bresenham’s Line
Algorithm
▪ Example: Draw line 𝐴𝐵 with coordinates 𝐴(2,2), 𝐵(6,4).

▪ Plot left end point 𝐴(2, 2).

▪ Calculate:
• ∆𝑥 = 4,

• ∆𝑦 = 2,

• 2∆𝑦 = 4,

• 2∆𝑦 − 2∆𝑥 = −4,

▪ 𝑝0 = 2∆𝑦 − ∆𝑥 = 0

▪ Now 𝑝0 ≮ 0 so we select upper pixel (3, 3).

▪ 𝑝1 = 𝑝0 + 2∆𝑦 − 2∆𝑥 = 0 + −4 = −4

▪ Now 𝑝1 < 0 so we select lower pixel (4, 3).

▪ 𝑝2 = 𝑝1 + 2∆𝑦 = −4 + 4 = 0

▪ Now 𝑝2 ≮ 0 so we select upper pixel (5, 4).

▪ 𝑝3 = 𝑝2 + 2∆𝑦 − 2∆𝑥 = 0 + −4 = −4

▪ Now 𝑝3 < 0 so we select lower pixel (6, 4).

0 1 2 3 4 5 6 7 8

4
3
2
1
0

 Accurate and Efficient
 Use only incremental integer calculations

 Test the sign of an integer parameter

 Case) Positive Slope Less Than 1
 After the pixel (xk, yk) is displayed,

next which pixel is decided to plot

in column xk+1?

➔ (xk+1, yk) or (xk+1, yk+1)

xk

yk

xk+1

yk+1

 Case) Positive Slope Less Than 1
 y at sampling position xk

 Difference

 Decision parameter
xk

yk

xk+1

yk+1

() bxmy k ++= 1

() kkk ybxmyyd −++=−= 11

() bxmyyyd kkk −+−+=−+= 1112

d1– d2 < 0 ➔ (xk+1, yk)

d1– d2 > 0 ➔ (xk+1, yk+1)

()

()

cyxxy

bxyyxxy

ddxp

kk

kk

k

+−=

−++−=

−=

22

12222

21

d1

d2

 Case) Positive Slope Less Than 1
 Decision parameter

 Decision parameter of a starting pixel (x0, y0)

() ()

() ()kkkk

kkkkkk

yyxxxy

cyxxycyxxypp

−−−=

+−−+−=−

++

+++

11

111

22

2222

()kkkk yyxypp −−+= ++ 11 22

()

() ()

xxbyxbxyxy

bxybmxxxy

bxyyxxyp

−++−−=

−+++−=

−++−=

22222

12222

12222

00

00

000

xyp −= 20

 Algorithm for 0<m<1

 Input the two line endpoints and store the left end point in (x0, y0)

 Load (x0, y0) into the frame buffer; that is, plot the first point

 Calculate constants Δx, Δy, 2Δy, and 2Δy− 2Δx, and obtain the

starting value for the decision parameter as

 At each xk along the line, start at k =0, perform the following test:

 If pk < 0, the next point to plot is (xk+1, yk) and

 Otherwise, the next point to plot is (xk+1, yk+1) and

 Repeat step 4 Δx times

xyp −= 20

ypp kk +=+ 21

xypp kk −+=+ 221

void bres_general(int x1, int y1, int x2, int y2)

{

int dx, dy, x, y, d, s1, s2, swap=0, temp;

dx = abs(x2 - x1);

dy = abs(y2 - y1);

s1 = sign(x2-x1);

s2 = sign(y2-y1);

/* Check if dx or dy has a greater range */

/* if dy has a greater range than dx swap dx and dy */

if(dy > dx){temp = dx; dx = dy; dy = temp; swap = 1;}

/* Set the initial decision
parameter and the initial
point */

d = 2 * dy - dx;

x = x1;

y = y1;

int i;

for(i = 1; i <= dx; i++)

{

putpixel(x,y,WHITE);

while(d >=0)

{

if(swap) x = x + s1;

else

y = y + s2;

d = d - 2* dx;

}

if(swap) y = y + s2;

else x = x + s1;

d = d + 2 * dy;

}

}

Circle
▪ A circle is defined as the set of points that are all at a given

distance 𝑟 from a center position say (𝑥𝑐 , 𝑦𝑐).

Center
(𝑥𝑐 , 𝑦𝑐)

r
Radius

Properties of Circle- Cartesion
Coordinate
▪ Cartesian coordinates equation :

▪ (𝑥 − 𝑥𝑐)
2+(𝑦 − 𝑦𝑐)

2= 𝑟2

▪ We could use this equation to calculate circular boundary points.

▪ We increment 1 in 𝑥 direction in every steps from 𝑥𝑐 − 𝑟 to 𝑥𝑐 +

𝑟 and calculate corresponding 𝑦 values at each position as:

▪ (𝑥 − 𝑥𝑐)
2+(𝑦 − 𝑦𝑐)

2= 𝑟2

▪ (𝑦 − 𝑦𝑐)
2= 𝑟2 − (𝑥 − 𝑥𝑐)

2

▪ 𝑦 − 𝑦𝑐 = ± 𝑟2 − (𝑥𝑐 − 𝑥)2

▪ y = 𝑦𝑐 ± 𝑟2 − (𝑥𝑐 − 𝑥)2

Contd.
▪ But this is not best method as it requires more number of

calculations which take more time to execute.

▪ And also spacing between the plotted pixel positions is not
uniform.

▪ We can adjust spacing by stepping through y values and
calculating x values whenever the absolute value of the slop of the
circle is greater than 1.

▪ But it will increases computation time.

Properties of Circle- Polar
Coordinate
▪ Another way to eliminate the non-uniform spacing is to draw circle

using polar coordinates ‘r’ and ‘’.

▪ Calculating circle boundary using polar equation is given by pair of
equations which is as follows.

𝑥 = 𝑥𝑐 + 𝑟 cos 

𝑦 = 𝑦𝑐 + 𝑟 sin 

▪ When display is produce using these equations using fixed angular
step size circle is plotted with uniform spacing.

▪ The step size ‘’ is chosen according to application and display
device.

▪ For a more continuous boundary on a raster display we can set the

step size at
1

𝑟
.

Properties of Circle- Symmetry
▪ Computation can be reduced by considering symmetry city

property of circles.

▪ The shape of circle is similar in each octant.

45𝑂
(X, Y)

(Y, X)

(X, -Y)

(Y, -X)

(-X, -Y)

(-Y, -X)

(-Y, X)

(-X, Y)
(4, 3)

(3, 4)

(4, -3)

(3, -4)

(-4, -3)

(-3, -4)

(-3, 4)

(-4, 3)

Circle Algorithm
▪ Taking advantage of this symmetry property of circle we can

generate all pixel position on boundary of circle by calculating only

one sector from 𝑥 = 0 to 𝑥 = 𝑦.

▪ Determining pixel position along circumference of circle using any

of two equations shown above still required large computation.

▪ More efficient circle algorithm are based on incremental

calculation of decision parameters, as in the Bresenham line

algorithm.

▪ Bresenham’s line algorithm can be adapted to circle generation by

setting decision parameter for finding closest pixel to the

circumference at each sampling step.

Contd.
▪ A method for direct distance comparison to test the midpoint

between two pixels to determine if this midpoint is inside or

outside the circle boundary.

▪ This method is easily applied to other conics also.

▪ Midpoint approach generates same pixel position as generated by

bresenham’s circle algorithm.

▪ The error involve in locating pixel positions along any conic section

using midpoint test is limited to one-half the pixel separation.

Introduction to Midpoint Circle
Algorithm
▪ In this we sample at unit interval and determine the closest pixel

position to the specified circle path at each step.

▪ Given radius 𝑟 and center (𝑥𝑐 , 𝑦𝑐)

▪ We first setup our algorithm to calculate circular path coordinates
for center (0, 0).

▪ And then we will transfer calculated pixel position to center
(𝑥𝑐 , 𝑦𝑐) by adding 𝑥𝑐 to 𝑥 and 𝑦𝑐 to 𝑦.

▪ Along the circle section from 𝑥 = 0 to 𝑥 = 𝑦 in the first quadrant,
the slope of the curve varies from 0 to −1.

▪ So we can step unit step in positive 𝑥 direction over this octant
and use a decision parameter to determine which of the two
possible 𝑦 position is closer to the circular path.

Decision Parameter Midpoint Circle
Algorithm
▪ Position in the other seven octants are then obtain by symmetry.

▪ For the decision parameter we use the circle function which is:

𝑓𝑐𝑖𝑟𝑐𝑙𝑒 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 𝑟2

𝑓𝑐𝑖𝑟𝑐𝑙𝑒 𝑥, 𝑦 ൞

< 0 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 0 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

> 0 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

▪ Above equation we calculate for the mid positions between pixels

near the circular path at each sampling step.

▪ And we setup incremental calculation for this function as we did in

the line algorithm.

Midpoint between Candidate pixel

▪ Figure shows the midpoint between the two candidate pixels at

sampling position 𝑥𝑘 + 1.

▪ Assuming we have just plotted the pixel at 𝑥𝑘 , 𝑦𝑘 .

▪ Next we determine whether the pixel at position 𝑥𝑘 + 1, 𝑦𝑘 or

the one at position 𝑥𝑘 + 1, 𝑦𝑘 − 1 is closer to circle boundary.

xk+2xk+1xk

yk

yk+1

𝒙𝟐 + 𝒚𝟐 − 𝒓𝟐 = 𝟎

Midpoint

Candidate
Pixel

Derivation Midpoint Circle
Algorithm
▪ So for finding which pixel is more closer using decision parameter

evaluated at the midpoint between two candidate pixels as below:

▪ 𝑝𝑘 = 𝑓𝑐𝑖𝑟𝑐𝑙𝑒 𝑥𝑘 + 1, 𝑦𝑘 −
1

2

▪ 𝑝𝑘 = 𝑥𝑘 + 1 2 + 𝑦𝑘 −
1

2

2
− 𝑟2

▪ If 𝑝𝑘 < 0, midpoint is inside the circle and the pixel on the scan

line 𝑦𝑘 is closer to circle boundary.

▪ Otherwise midpoint is outside or on the boundary and we select

the scan line 𝑦𝑘 − 1.

Contd.
▪ Successive decision parameters are obtain using incremental

calculations as follows:

▪ 𝒑𝒌+𝟏 = 𝒇𝒄𝒊𝒓𝒄𝒍𝒆 𝒙𝒌+𝟏 + 𝟏, 𝒚𝒌+𝟏 −
𝟏

𝟐

▪ 𝒑𝒌+𝟏 = 𝒙𝒌 + 𝟏 + 𝟏 𝟐 + 𝒚𝒌+𝟏 −
𝟏

𝟐

𝟐
− 𝒓𝟐

▪ Now we can obtain recursive calculation using equation of 𝑝𝑘+1 and 𝑝𝑘
as follow

▪ 𝒑𝒌+𝟏 − 𝒑𝒌 = 𝒙𝒌 + 𝟏 + 𝟏 𝟐 + 𝒚𝒌+𝟏 −
𝟏

𝟐

𝟐
− 𝒓𝟐 − ൬

൰

𝒙𝒌 + 𝟏 𝟐 +

𝒚𝒌 −
𝟏

𝟐

𝟐
− 𝒓𝟐

▪ 𝑝𝑘+1 − 𝑝𝑘 = 𝑥𝑘 + 1 2 + 2 𝑥𝑘 + 1 + 1 + 𝑦𝑘+1
2 − 𝑦𝑘+1 +

1

4
− 𝑟2 −

𝑥𝑘 + 1 2 − 𝑦𝑘
2 + 𝑦𝑘 −

1

4
+ 𝑟2

Contd.
▪ 𝑝𝑘+1 − 𝑝𝑘 = 𝑥𝑘 + 1 2 + 2 𝑥𝑘 + 1 + 1 + 𝑦𝑘+1

2 − 𝑦𝑘+1 +
1

4
−

𝑟2 − 𝑥𝑘 + 1 2 − 𝑦𝑘
2 + 𝑦𝑘 −

1

4
+ 𝑟2

▪ 𝑝𝑘+1 − 𝑝𝑘 = 2 𝑥𝑘 + 1 + 1 + 𝑦𝑘+1
2 − 𝑦𝑘+1 − 𝑦𝑘

2 + 𝑦𝑘

▪ 𝑝𝑘+1 − 𝑝𝑘 = 2 𝑥𝑘 + 1 + (𝑦𝑘+1
2− 𝑦𝑘

2) − (𝑦𝑘+1−𝑦𝑘) + 1

▪ 𝑝𝑘+1 = 𝑝𝑘 + 𝟐 𝒙𝒌 + 𝟏 + (𝑦𝑘+1
2− 𝑦𝑘

2) − (𝑦𝑘+1−𝑦𝑘) + 1

▪ Now we can put 𝟐𝒙𝒌+𝟏 = 𝟐(𝒙𝒌 + 𝟏)

▪ 𝑝𝑘+1 = 𝑝𝑘 + 𝟐𝒙𝒌+𝟏 + (𝑦𝑘+1
2− 𝑦𝑘

2) − (𝑦𝑘+1−𝑦𝑘) + 𝟏

Contd.
▪ 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + (𝑦𝑘+1

2− 𝑦𝑘
2) − (𝑦𝑘+1−𝑦𝑘) + 1

▪ In above equation 𝒚𝒌+𝟏 is either 𝒚𝒌 or 𝒚𝒌 − 𝟏 depending on the sign of

the 𝑝𝑘.

▪ If we select 𝒚𝒌+𝟏 = 𝒚𝒌 .

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌+𝟏 + 𝟏 𝑶𝑹

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌 + 𝟑 where 𝟐𝒙𝒌+𝟏= 𝟐𝒙𝒌+2

▪ If we select 𝒚𝒌+𝟏 = 𝒚𝒌 – 𝟏.

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌+𝟏 + (𝒚𝒌+𝟏
𝟐− 𝒚𝒌

𝟐) − (𝒚𝒌+𝟏−𝒚𝒌) + 𝟏

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌+𝟏 + (𝒚𝒌+𝟏+𝒚𝒌)(𝒚𝒌+𝟏−𝒚𝒌) − (𝒚𝒌+𝟏−𝒚𝒌) + 𝟏

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌+𝟏 + (𝒚𝒌 – 𝟏 + 𝒚𝒌)(𝒚𝒌 – 𝟏 − 𝒚𝒌) − (𝒚𝒌 – 𝟏 − 𝒚𝒌) +

𝟏

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌+𝟏 + (𝟐𝒚𝒌 – 𝟏)(– 𝟏) − (– 𝟏) + 𝟏

Contd.
▪ 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 − 2𝑦𝑘 + 1 + 1 + 1

▪ 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 − (2𝑦𝑘 − 2) + 1

▪ Now put 2𝑦𝑘+1 = 2𝑦𝑘 − 2.

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌+𝟏 − 𝟐𝒚𝒌+𝟏 + 𝟏

▪ OR

▪ 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘 + 2 − 2𝑦𝑘 + 2 + 1

▪ 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐𝒙𝒌 − 𝟐𝒚𝒌 + 𝟓

where 𝟐𝒙𝒌+𝟏= 𝟐𝒙𝒌+2, 𝟐𝒚𝒌+𝟏= 𝟐𝒚𝒌 − 𝟐

IDP Midpoint Circle Algorithm
▪ The initial decision parameter(IDP) is obtained by evaluating the

circle function at the start position 𝑥0, 𝑦0 = (0, 𝑟) as follows.

▪ 𝑝0 = 𝑓𝑐𝑖𝑟𝑐𝑙𝑒 0 + 1, 𝑟 − 1

2

▪ 𝑝0 = 12 + 𝑟 − 1

2

2
− 𝑟2

▪ 𝑝0 = 1 + 𝑟2 − 𝑟 + 1

4
− 𝑟2

▪ 𝑝0 =
5

4
− 𝑟

▪ 𝑝0 ≈ 1 − 𝑟

Algorithm for Midpoint Circle Generation
1. Input radius r and circle center (𝑥𝑐 , 𝑦𝑐), and obtain the first point on the

circumference of a circle centered on the origin as
𝑥0, 𝑦0 = (0, 𝑟)

2. calculate the initial value of the decision parameter as

𝑝0 =
5
4− 𝑟

3. At each 𝑥𝑘 position, starting at 𝑘 = 0, perform the following test:
If 𝑝𝑘< 0, the next point along the circle centered on (0, 0) is 𝑥𝑘 + 1, 𝑦𝑘 &

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1
Otherwise, the next point along the circle is 𝑥𝑘 + 1, 𝑦𝑘 − 1 &

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1
Where 2𝑥𝑘+1 = 2𝑥𝑘 + 2, & 2𝑦𝑘+1 = 2𝑦𝑘 − 2.

4. Determine symmetry points in the other seven octants.
5. Move each calculated pixel position (𝑥, 𝑦) onto the circular path centered on

(𝑥𝑐 , 𝑦𝑐) and plot the coordinate values:
𝑥 = 𝑥 + 𝑥𝑐, 𝑦 = 𝑦 + 𝑦𝑐

6. Repeat steps 3 through 5 until 𝑥 ≥ 𝑦.

▪ Example: Draw circle with radius 𝑟 = 10, and center of circle is

1, 1 (Only one octant 𝑥 = 0 to 𝑥 = 𝑦)

▪ First we find pixel position for octant 𝑥 = 0 to 𝑥 = 𝑦 for center

0, 0

▪ 𝑝0 = 1 − 𝑟

▪ 𝑝0 = 1 − 10 = −9

▪ Now 𝑝0 < 0 we select (1, 10)

▪ 𝑝1 = 𝑝0 + 2𝑥1 + 1

▪ 𝑝1 = −9 + 2 + 1 = −6

▪ Now 𝑝1 < 0 we select (2, 10)

Example Midpoint Circle Algorithm

𝒌 𝒑𝒌 (𝒙𝒌+𝟏, 𝒚𝒌+𝟏)

0 -9 (1, 10)

1 -6 (2, 10)

2 -1 (3, 10)

3 6 (4, 9)

4 -3 (5, 9)

5 8 (6, 8)

6 5 (7, 7)

▪ 𝑝2 = 𝑝1 + 2𝑥2 + 1

▪ 𝑝2 = −6 + 4 + 1 = −1

▪ Now 𝑝2 < 0 we select (3, 10)

▪ 𝑝3 = 𝑝2 + 2𝑥3 + 1

▪ 𝑝3 = −1 + 6 + 1 = 6

▪ Now 𝑝3 ≮ 0 we select (4, 9)

▪ 𝑝4 = 𝑝3 + 2𝑥4 + 1 − 2𝑦4

▪ 𝑝4 = 6 + 8 + 1 − 18 = −3

▪ Now 𝑝4 < 0 we select (5, 9)

Contd.
𝒌 𝒑𝒌 (𝒙𝒌+𝟏, 𝒚𝒌+𝟏)

0 -9 (1, 10)

1 -6 (2, 10)

2 -1 (3, 10)

3 6 (4, 9)

4 -3 (5, 9)

5 8 (6, 8)

6 5 (7, 7)

▪ 𝑝5 = 𝑝4 + 2𝑥5 + 1

▪ 𝑝5 = −3 + 10 + 1 = 8

▪ Now 𝑝5 ≮ 0 we select (6, 8)

▪ 𝑝6 = 𝑝5 + 2𝑥6 + 1 − 2𝑦6

▪ 𝑝6 = 8 + 12 + 1 − 16 = 5

▪ Now 𝑝6 ≮ 0 we select (7, 7)

▪ Now Loop exit as 𝑥 ≥ 𝑦, as

▪ in our case 7 ≥ 7

Contd.
𝒌 𝒑𝒌 (𝒙𝒌+𝟏, 𝒚𝒌+𝟏)

0 -9 (1, 10)

1 -6 (2, 10)

2 -1 (3, 10)

3 6 (4, 9)

4 -3 (5, 9)

5 8 (6, 8)

6 5 (7, 7)

Contd.
▪ Than we calculate pixel position for given center 1, 1 using

equations:

▪ 𝑥 = 𝑥 + 𝑥𝑐 = 𝑥 + 1

▪ 𝑦 = 𝑦 + 𝑦𝑐 = 𝑦 + 1

Center (0, 0) Center (1, 1)

(1, 10) (2, 11)

(2, 10) (3, 11)

(3, 10) (4, 11)

(4, 9) (5, 10)

(5, 9) (6, 10)

(6, 8) (7, 9)

(7, 7) (8, 8)

Contd.
▪ Plot the pixel.

▪ First plot initial point.

(1, 11)

Center (1, 1)

(2, 11)

(3, 11)

(4, 11)

(5, 10)

(6, 10)

(7, 9)

(8, 8)

12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11

Center
(1, 1)

Ellipse
▪ AN ellipse is defined as the set of points such that the sum of the

distances from two fixed positions (foci) is same for all points.

𝑓1

𝑑1
𝑑2

𝑝(𝑥, 𝑦)

𝑓2

Contd.
▪ If we labeled distance from two foci to any point on ellipse

boundary as 𝑑1 and 𝑑2 then the general equation of an ellipse can

be written as:

𝑑1 + 𝑑2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

▪ Expressing distance in terms of focal coordinates 𝑓1 = 𝑥1, 𝑦1 and

𝑓2 = 𝑥2, 𝑦2 we have

▪ 𝑥 − 𝑥1
2 + 𝑦 − 𝑦1

2 + 𝑥 − 𝑥2
2 + 𝑦 − 𝑦2

2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

[Using Distance formula]

Properties of Ellipse-Specifying
Equations
▪ An interactive method for specifying an ellipse in an arbitrary

orientation is to input

✓ two foci and

✓ a point on the ellipse boundary.

▪ With this three coordinates we can evaluate constant in equation:

𝑥 − 𝑥1
2 + 𝑦 − 𝑦1

2 + 𝑥 − 𝑥2
2 + 𝑦 − 𝑦2

2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

▪ We can also write this equation in the form

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑥𝑦 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0

▪ Where the coefficients 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are evaluated in terms

of the focal coordinates and the dimensions of the major and

minor axes of the ellipse.

Contd.
▪ Then coefficient in 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑥𝑦 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 can be

evaluated and used to generate pixels along the elliptical path.

▪ We can say ellipse is in standard position if their major and minor

axes are parallel to x-axis and y-axis.

▪ Ellipse equation are greatly simplified if we align major and minor

axis with coordinate axes i.e. x-axis and y-axis.

X-axis

Y-axis

Contd.
▪ Equation of ellipse can be written in terms of the ellipse center

coordinates (𝑥𝑐 , 𝑦𝑐) and parameters 𝑟𝑥 and 𝑟𝑦 as.

𝑥 − 𝑥𝑐
𝑟𝑥

2

+
𝑦 − 𝑦𝑐
𝑟𝑦

2

= 1

▪ Using the polar coordinates r and θ, we can also describe the

ellipse in standard position with the parametric equations:

𝑥 = 𝑥𝑐 + 𝑟𝑥 cos θ

𝑦 = 𝑦𝑐 + 𝑟𝑦 sin θ

(𝑥𝑐 , 𝑦𝑐)

𝑟𝑥
𝑟𝑦

▪ Symmetry property further reduced computations.

▪ An ellipse in standard position is symmetric between quadrant.

(−𝑥, 𝑦)

(−𝑥,−𝑦) (𝑥, −𝑦)

(𝑥, 𝑦)

Properties of Ellipse-Symmetry

𝑟𝑦
𝑟𝑥

(𝑥𝑐 , 𝑦𝑐)

(2, 4)

(2, −4)(−2,−4)

(−2, 4)

Introduction to Midpoint Ellipse
Algorithm
▪ Given parameters 𝑟𝑥, 𝑟𝑦 , & (𝑥𝑐 , 𝑦𝑐).

▪ We determine points (𝑥, 𝑦) for an ellipse in standard position

centered on the origin.

▪ Then we shift the points so the ellipse is centered at (𝑥𝑐 , 𝑦𝑐).

▪ If we want to display the ellipse in nonstandard position then we

rotate the ellipse about its center to align with required direction.

▪ For the present we consider only the standard position.

▪ We draw ellipse in first quadrant and than use symmetry property

for other three quadrant.

▪ In this method we divide first quadrant into two parts according to

the slope of an ellipse

▪ Boundary divides region at

• slope = -1.

▪ We take unit step in X direction

• If magnitude of ellipse slope < 1 (Region 1).

▪ We take unit step in Y direction

• If magnitude of ellipse slope > 1 (Region 2).

Regions in Midpoint Ellipse
Algorithm

𝑦

𝑥

Region 1

𝑟𝑦

𝑟𝑥

Region 2

𝑆𝑙𝑜𝑝𝑒 = −1

Ways of Processing Midpoint Ellipse
Algorithm
▪ We can start from (0, 𝑟𝑦) and step clockwise along the elliptical

path in the first quadrant

▪ Alternatively, we could start at (𝑟𝑥, 0) and select points in a

counterclockwise order.

▪ With parallel processors, we could calculate pixel positions in the

two regions simultaneously.

▪ Here we consider sequential implementation of midpoint

algorithm.

▪ We take the start position at (0, 𝑟𝑦) and steps along the elliptical

path in clockwise order through the first quadrant.

Decision Parameter Midpoint Ellipse
Algorithm
▪ We define ellipse function for center of ellipse at (0, 0) as follows.

▪ 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥, 𝑦 = 𝑟𝑦
2𝑥2 + 𝑟𝑥

2𝑦2 − 𝑟𝑦
2𝑟𝑥

2

▪ Which has the following properties:

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥, 𝑦 ൞

< 0 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 0 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

> 0 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

▪ Thus the ellipse function serves as the decision parameter in the

midpoint ellipse algorithm.

▪ At each sampling position we select the next pixel from two

candidate pixel.

Processing Steps of Midpoint Ellipse
Algorithm
▪ Starting at (0, 𝑟𝑦) we take unit step in 𝑥 direction until we reach

the boundary between region-1 and region-2.

▪ Then we switch to unit steps in 𝑦 direction in remaining portion on

ellipse in first quadrant.

𝑦

𝑥

Region 1

𝑟𝑦

𝑟𝑥

Region 2

𝑆𝑙𝑜𝑝𝑒 = −1

▪ At each step we need to test the value

of the slope of the curve for deciding

the end point of the region-1.

Decide Boundary between Region
1 and 2
▪ The ellipse slope is calculated using following equation.

▪
𝑑𝑦

𝑑𝑥
= −

2𝑟𝑦
2𝑥

2𝑟𝑥
2𝑦

▪ At boundary between region 1 and 2 slope= -1 and equation

become.

▪ 2𝑟𝑦
2𝑥 = 2𝑟𝑥

2𝑦

▪ Therefore we move out of region 1 whenever following equation

is false:

▪ 2𝑟𝑦
2𝑥 ≤ 2𝑟𝑥

2𝑦

Midpoint between Candidate pixel in
Region 1
▪ Figure shows the midpoint between the two candidate pixels at

sampling position 𝑥𝑘 + 1 in the first region.

▪ Assume we are at (𝑥𝑘 , 𝑦𝑘) position and we determine the next position

along the ellipse path, by evaluating decision parameter at midpoint

between two candidate pixels.

▪ 𝑝1𝑘 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥𝑘 + 1, 𝑦𝑘 −
1

2

xk+2xk+1xk

yk

yk-1

ry
2x2+rx

2y2-rx
2ry

2=0

Midpoint

Candidate
Pixel

Derivation for Region 1

▪ 𝑝1𝑘 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥𝑘 + 1, 𝑦𝑘 −
1

2

▪ 𝑝1𝑘 = 𝑟𝑦
2(𝑥𝑘 + 1)2+𝑟𝑥

2 𝑦𝑘 −
1

2

2
− 𝑟𝑥

2𝑟𝑦
2

▪ If 𝑝1𝑘 < 0, the midpoint is inside the ellipse and the pixel on scan

line 𝑦𝑘 is closer to ellipse boundary

▪ Otherwise the midpoint is outside or on the ellipse boundary and

we select the pixel 𝑦𝑘 − 1.

Contd.
▪ At the next sampling position decision parameter for region 1 is

evaluated as.

▪ 𝑝1𝑘+1 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥𝑘+1 + 1, 𝑦𝑘+1 −
1

2

▪ 𝑝1𝑘+1 = 𝑟𝑦
2 𝑥𝑘 + 1 + 1 2 + 𝑟𝑥

2 𝑦𝑘+1 −
1

2

2
− 𝑟𝑥

2𝑟𝑦
2

▪ Now subtract 𝑝1𝑘 from 𝑝1𝑘+1

▪ 𝑝1𝑘+1 − 𝑝1𝑘 = 𝑟𝑦
2 𝑥𝑘 + 1 + 1 2 + 𝑟𝑥

2 𝑦𝑘+1 −
1

2

2
− 𝑟𝑥

2𝑟𝑦
2 −

𝑟𝑦
2(𝑥𝑘 + 1)2−𝑟𝑥

2 𝑦𝑘 −
1

2

2
+ 𝑟𝑥

2𝑟𝑦
2

Contd.

▪ 𝑝1𝑘+1 − 𝑝1𝑘 = 𝑟𝑦
2 𝑥𝑘 + 1 + 1 2 + 𝑟𝑥

2 𝑦𝑘+1 −
1

2

2
−

𝑟𝑦
2(𝑥𝑘 + 1)2−𝑟𝑥

2 𝑦𝑘 −
1

2

2

▪ 𝑝1𝑘+1 − 𝑝1𝑘 = 𝑟𝑦
2 𝑥𝑘 + 1 2 + 2𝑟𝑦

2 𝑥𝑘 + 1 + 𝑟𝑦
2 + 𝑟𝑥

2 ቀ

ቁ

𝑦𝑘+1 −

1

2

2
− 𝑟𝑦

2(𝑥𝑘 + 1)2−𝑟𝑥
2 𝑦𝑘 −

1

2

2

▪ 𝑝1𝑘+1 − 𝑝1𝑘 = 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 + 𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ Now making 𝑝1𝑘+1 as subject.

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 + 𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

Contd.

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 + 𝑟𝑥
2 ൤

൨

𝑦𝑘+1 −
1

2

2
−

𝑦𝑘 −
1

2

2

▪ 𝑦𝑘+1 is either 𝑦𝑘 or 𝑦𝑘 − 1, depends on the sign of 𝑝1𝑘

IDP for Region 1
▪ Now we calculate the initial decision parameter 𝑝10 by putting

𝑥0, 𝑦0 = (0, 𝑟𝑦) as follow.

▪ 𝑝10 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 0 + 1, 𝑟𝑦 −
1

2

▪ 𝑝10 = 𝑟𝑦
2(1)2+𝑟𝑥

2 𝑟𝑦 −
1

2

2
− 𝑟𝑥

2𝑟𝑦
2

▪ 𝑝10 = 𝑟𝑦
2 + 𝑟𝑥

2 𝑟𝑦 −
1

2

2
− 𝑟𝑥

2𝑟𝑦
2

▪ 𝑝10 = 𝑟𝑦
2 − 𝑟𝑥

2𝑟𝑦 +
1

4
𝑟𝑥
2

Midpoint between Candidate pixel in
Region 2
▪ Now we similarly calculate over region-2.

▪ Unit stepping in negative 𝑦 direction and the midpoint is now

taken between horizontal pixels at each step.

▪ For this region, the decision parameter is evaluated as follows.

▪ 𝑝2𝑘 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥𝑘 +
1

2
, 𝑦𝑘 − 1

xk+2xk+1xk

yk

yk-1

ry
2x2+rx

2y2-rx
2ry

2=0

Midpoint

Candidate
Pixel

Derivation for Region 2

▪ 𝑝2𝑘 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥𝑘 +
1

2
, 𝑦𝑘 − 1

▪ 𝑝2𝑘 = 𝑟𝑦
2 𝑥𝑘 +

1

2

2
+ 𝑟𝑥

2 𝑦𝑘 − 1 2 − 𝑟𝑥
2𝑟𝑦

2

▪ If 𝑝2𝑘 > 0 the midpoint is outside the ellipse boundary, and we

select the pixel at 𝑥𝑘.

▪ If 𝑝2𝑘 ≤ 0 the midpoint is inside or on the ellipse boundary and

we select 𝑥𝑘 + 1.

Contd.
▪ At the next sampling position decision parameter for region 2 is

evaluated as.

▪ 𝑝2𝑘+1 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥𝑘+1 +
1

2
, 𝑦𝑘+1 − 1

▪ 𝑝2𝑘+1 = 𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
+ 𝑟𝑥

2 𝑦𝑘 − 1 − 1 2 − 𝑟𝑥
2𝑟𝑦

2

▪ Now subtract 𝑝2𝑘 from 𝑝2𝑘+1

▪ 𝑝2𝑘+1 − 𝑝2𝑘 = 𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
+ 𝑟𝑥

2 𝑦𝑘 − 1 − 1 2 − 𝑟𝑥
2𝑟𝑦

2 −

𝑟𝑦
2 𝑥𝑘 +

1

2

2
− 𝑟𝑥

2 𝑦𝑘 − 1 2 + 𝑟𝑥
2𝑟𝑦

2

Contd.

▪ 𝑝2𝑘+1 − 𝑝2𝑘 = 𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
+ 𝑟𝑥

2 𝑦𝑘 − 1 − 1 2 − 𝑟𝑥
2𝑟𝑦

2 −

𝑟𝑦
2 𝑥𝑘 +

1

2

2
− 𝑟𝑥

2 𝑦𝑘 − 1 2 + 𝑟𝑥
2𝑟𝑦

2

▪ 𝑝2𝑘+1 − 𝑝2𝑘 = 𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
+ 𝑟𝑥

2 𝑦𝑘 − 1 2 − 2𝑟𝑥
2 𝑦𝑘 − 1 +

𝑟𝑥
2 − 𝑟𝑦

2 𝑥𝑘 +
1

2

2
− 𝑟𝑥

2 𝑦𝑘 − 1 2

▪ 𝑝2𝑘+1 − 𝑝2𝑘 = 𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
− 2𝑟𝑥

2 𝑦𝑘 − 1 + 𝑟𝑥
2 − 𝑟𝑦

2 𝑥𝑘 +
1

2

2

▪ 𝑝2𝑘+1 − 𝑝2𝑘 = −2𝑟𝑥
2 𝑦𝑘 − 1 + 𝑟𝑥

2 + 𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
− 𝑥𝑘 +

1

2

2

Contd.

▪ 𝑝2𝑘+1 − 𝑝2𝑘 = −2𝑟𝑥
2 𝑦𝑘 − 1 + 𝑟𝑥

2 + 𝑟𝑦
2 ൤

൨

𝑥𝑘+1 +
1

2

2
−

𝑥𝑘 +
1

2

2

▪ Now making 𝑝2𝑘+1 as subject.

▪ 𝑝2𝑘+1 = 𝑝2𝑘 − 2𝑟𝑥
2 𝑦𝑘 − 1 + 𝑟𝑥

2 + 𝑟𝑦
2 ൤

൨

𝑥𝑘+1 +
1

2

2
−

𝑥𝑘 +
1

2

2

▪ Here 𝑥𝑘+1 is either 𝑥𝑘 or 𝑥𝑘 + 1, depends on the sign of 𝑝2𝑘.

IDP for Region 2
▪ In region-2 initial position is selected which is last position of

region one and the initial decision parameter is calculated as

follows.

▪ 𝑝20 = 𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥0 +
1

2
, 𝑦0 − 1

▪ 𝑝20 = 𝑟𝑦
2 𝑥0 +

1

2

2
+ 𝑟𝑥

2 𝑦0 − 1 2 − 𝑟𝑥
2𝑟𝑦

2

▪ For simplify calculation of 𝑝20 we could also select pixel position

in counterclockwise order starting at (𝑟𝑥 , 0).

Algorithm for Midpoint Ellipse Generation
1. Input 𝑟𝑥, 𝑟𝑦 and ellipse center (𝑥𝑐 , 𝑦𝑐), and obtain the first point on an ellipse

centered on the origin as
𝑥0, 𝑦0 = (0, 𝑟𝑦)

2. Calculate the initial value of the decision parameter in region 1 as

𝑝10 = 𝑟𝑦
2 − 𝑟𝑥

2𝑟𝑦 +
1

4
𝑟𝑥
2

3. At each 𝑥𝑘 position in region 1, starting at 𝑘 = 0, perform the following test:
If 𝑝1𝑘 < 0, than the next point along the ellipse is (𝑥𝑘+1, 𝑦𝑘) and

𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2𝑥𝑘+1 + 𝑟𝑦

2

Otherwise, the next point along the ellipse is (𝑥𝑘+1, 𝑦𝑘 − 1) and
𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦

2𝑥𝑘+1 + 𝑟𝑦
2 − 2𝑟𝑥

2𝑦𝑘+1
With

2𝑟𝑦
2𝑥𝑘+1 = 2𝑟𝑦

2𝑥𝑘 + 2𝑟𝑦
2, 2𝑟𝑥

2𝑦𝑘+1 = 2𝑟𝑥
2𝑦𝑘 − 2𝑟𝑥

2

And continue until 2𝑟𝑦
2𝑥 ≤ 2𝑟𝑥

2𝑦

Contd.
4. Calculate the initial value of the decision parameter in region 2 using the last

point 𝑥0, 𝑦0 calculated in region 1 as

𝑝20 = 𝑟𝑦
2 𝑥0 +

1

2

2
+ 𝑟𝑥

2 𝑦0 − 1 2 − 𝑟𝑥
2𝑟𝑦

2

5. At each 𝑦𝑘 position in region-2, starting at 𝑘 = 0, perform the following test:
If 𝑝2𝑘> 0, the next point along the ellipse is (𝑥𝑘 , 𝑦𝑘 − 1) and

𝑝2𝑘+1 = 𝑝2𝑘 − 2𝑟𝑥
2𝑦𝑘+1 + 𝑟𝑥

2

Otherwise, the next point along the ellipse is (𝑥𝑘 + 1, 𝑦𝑘 − 1) and
𝑝2𝑘+1 = 𝑝2𝑘 − 2𝑟𝑥

2𝑦𝑘+1 + 𝑟𝑥
2 + 2𝑟𝑦

2𝑥𝑘+1
Using the same incremental calculations for 𝑥 and 𝑦 as in region 1.

6. Determine symmetry points in the other three quadrants.

7. Move each calculated pixel position (𝑥, 𝑦) onto the elliptical path centered on
(𝑥𝑐 , 𝑦𝑐) and plot the coordinate values:

𝑥 = 𝑥 + 𝑥𝑐, 𝑦 = 𝑦 + 𝑦𝑐

8. Repeat the steps for region 2 until 𝑦𝑘≥ 0.

Example Midpoint Ellipse
Algorithm
▪ Example: Calculate intermediate pixel position (For first quadrant)

for ellipse with 𝑟𝑥 = 8, 𝑟𝑦 = 6 and ellipse center is at origin

▪ Initial point 0, 𝑟𝑦 = (0, 6)

▪ 𝑝10 = 𝑟𝑦
2 − 𝑟𝑥

2𝑟𝑦 +
1

4
𝑟𝑥
2

▪ 𝑝10 = 62 − 82 ∗ 6 +
1

4
82

▪ 𝑝10 = −332

Contd.
K p1k (xk+1, yk+1)

0 -332 (1, 6)

1 -224 (2, 6)

2 -44 (3, 6)

3 208 (4, 5)

4 -108 (5, 5)

5 288 (6, 4)

6 244 (7, 3)

𝐼𝑓 𝑝1𝑘 < 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘 − 1

Calculation stop when
2𝑟𝑦

2𝑥 > 2𝑟𝑥
2𝑦

▪ 𝑝10 = −332

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 +

𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ 𝑝11 = −332 + 2 ∗ 62 0 + 1 + 62 +

82 6 −
1

2

2
− 6 −

1

2

2
= −224

Contd.
K p1k (xk+1, yk+1)

0 -332 (1, 6)

1 -224 (2, 6)

2 -44 (3, 6)

3 208 (4, 5)

4 -108 (5, 5)

5 288 (6, 4)

6 244 (7, 3)

𝐼𝑓 𝑝1𝑘 < 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘 − 1

Calculation stop when
2𝑟𝑦

2𝑥 > 2𝑟𝑥
2𝑦

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 +

𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ 𝑝12 = −224 + 2 ∗ 62 1 + 1 + 62 +

82 6 −
1

2

2
− 6 −

1

2

2
= −44

Contd.
K p1k (xk+1, yk+1)

0 -332 (1, 6)

1 -224 (2, 6)

2 -44 (3, 6)

3 208 (4, 5)

4 -108 (5, 5)

5 288 (6, 4)

6 244 (7, 3)

𝐼𝑓 𝑝1𝑘 < 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘 − 1

Calculation stop when
2𝑟𝑦

2𝑥 > 2𝑟𝑥
2𝑦

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 +

𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ 𝑝13 = −44 + 2 ∗ 62 2 + 1 + 62 +

82 6 −
1

2

2
− 6 −

1

2

2
= 208

Contd.
K p1k (xk+1, yk+1)

0 -332 (1, 6)

1 -224 (2, 6)

2 -44 (3, 6)

3 208 (4, 5)

4 -108 (5, 5)

5 288 (6, 4)

6 244 (7, 3)

𝐼𝑓 𝑝1𝑘 < 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘 − 1

Calculation stop when
2𝑟𝑦

2𝑥 > 2𝑟𝑥
2𝑦

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 +

𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ 𝑝14 = 208 + 2 ∗ 62 3 + 1 + 62 +

82 5 −
1

2

2
− 6 −

1

2

2
= −108

Contd.
K p1k (xk+1, yk+1)

0 -332 (1, 6)

1 -224 (2, 6)

2 -44 (3, 6)

3 208 (4, 5)

4 -108 (5, 5)

5 288 (6, 4)

6 244 (7, 3)

𝐼𝑓 𝑝1𝑘 < 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘 − 1

Calculation stop when
2𝑟𝑦

2𝑥 > 2𝑟𝑥
2𝑦

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 +

𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ 𝑝15 = −108 + 2 ∗ 62 4 + 1 + 62 +

82 5 −
1

2

2
− 5 −

1

2

2
= 288

Contd.
K p1k (xk+1, yk+1)

0 -332 (1, 6)

1 -224 (2, 6)

2 -44 (3, 6)

3 208 (4, 5)

4 -108 (5, 5)

5 288 (6, 4)

6 244 (7, 3)

𝐼𝑓 𝑝1𝑘 < 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑦𝑘+1 = 𝑦𝑘 − 1

Calculation stop when
2𝑟𝑦

2𝑥 > 2𝑟𝑥
2𝑦

▪ 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2 𝑥𝑘 + 1 + 𝑟𝑦

2 +

𝑟𝑥
2 𝑦𝑘+1 −

1

2

2
− 𝑦𝑘 −

1

2

2

▪ 𝑝16 = 288 + 2 ∗ 62 5 + 1 + 62 +

82 4 −
1

2

2
− 5 −

1

2

2
= 244

Contd.
K p2k (xk+1, yk+1)

0 -23 (8, 2)

1 361 (8, 1)

2 297 (8, 0)

𝐼𝑓 𝑝2𝑘 > 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑥𝑘+1 = 𝑥𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑥𝑘+1 = 𝑥𝑘 + 1

Calculation stop when
𝑦𝑘 ≤ 0

▪ 𝑝20 = 𝑟𝑦
2 𝑥0 +

1

2

2
+ 𝑟𝑥

2 𝑦0 − 1 2 −

𝑟𝑥
2𝑟𝑦

2

▪ 𝑝20 = 62 7 +
1

2

2
+ 82 3 − 1 2 −

8262 = −23

Contd.
K p2k (xk+1, yk+1)

0 -23 (8, 2)

1 361 (8, 1)

2 297 (8, 0)

𝐼𝑓 𝑝2𝑘 > 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑥𝑘+1 = 𝑥𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑥𝑘+1 = 𝑥𝑘 + 1

Calculation stop when
𝑦𝑘 ≤ 0

▪ 𝑝2𝑘+1 = 𝑝2𝑘 − 2𝑟𝑥
2 𝑦𝑘 − 1 + 𝑟𝑥

2 +

𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
− 𝑥𝑘 +

1

2

2

▪ 𝑝21 = −23 − 2 ∗ 82 3 − 1 + 82 +

62 8 +
1

2

2
− 7 +

1

2

2
= 361

Contd.
K p2k (xk+1, yk+1)

0 -23 (8, 2)

1 361 (8, 1)

2 297 (8, 0)

𝐼𝑓 𝑝2𝑘 > 0 𝑠𝑜 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑥𝑘+1 = 𝑥𝑘
Else 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑥𝑘+1 = 𝑥𝑘 + 1

Calculation stop when
𝑦𝑘 ≤ 0

▪ 𝑝2𝑘+1 = 𝑝2𝑘 − 2𝑟𝑥
2 𝑦𝑘 − 1 + 𝑟𝑥

2 +

𝑟𝑦
2 𝑥𝑘+1 +

1

2

2
− 𝑥𝑘 +

1

2

2

▪ 𝑝22 = 361 − 2 ∗ 82 2 − 1 + 82 +

62 8 +
1

2

2
− 8 +

1

2

2
= 297

Contd.
▪ Plot the pixel.

▪ Plot initial point(0, 6)

Center (0, 0)

(1, 6)

(2, 6)

(3, 6)

(4, 5)

(5, 5)

(6, 4)

(7, 3)

12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11
Center
(0, 0)

Center (0, 0)

(8, 2)

(8, 1)

(8, 0)

Filled-Area Primitives
▪ In practical we often use polygon which are filled with some

colour or pattern inside it.

▪ There are two basic approaches to area filling on raster systems.

• One way to fill an area is to determine the overlap intervals for scan line

that cross the area.

• Another method is to start from a given interior position and paint outward

from this point until we encounter boundary.

Scan-Line Polygon Fill Algorithm

▪ For each scan-line crossing a polygon, the algorithm locates the

intersection points are of scan line with the polygon edges.

▪ This intersection points are stored from left to right.

▪ Frame buffer positions between each pair of intersection point are

set to specified fill color.

Scan line

Contd.
▪ Scan line intersects at vertex are required special handling.

▪ For vertex we must look at the other endpoints of the two line

segments which meet at this vertex.

• If these points lie on the same (up or down) side of the scan line, then that

point is counts as two intersection points.

• If they lie on opposite sides of the scan line, then the point is counted as

single intersection.

Scan line

Scan line

Scan line

Edge Intersection Calculation with Scan-
Line
▪ Coherence methods often involve incremental calculations applied

along a single scan line or between successive scan lines.

▪ In determining edge intersections, we can set up incremental

coordinate calculations along any edge by exploiting the fact that

the slope of the edge is constant from one scan line to the next.

▪ For above figure we can write slope equation for polygon

boundary as follows.

▪ 𝑚 =
𝑦𝑘+1−𝑦𝑘

𝑥𝑘+1−𝑥𝑘

▪ Since change in 𝑦 coordinates between the two scan lines is

simply

▪ 𝑦𝑘+1 − 𝑦𝑘 = 1

Contd.
▪ So slope equation can be modified as follows

▪ 𝑚 =
𝑦𝑘+1−𝑦𝑘

𝑥𝑘+1−𝑥𝑘

▪ 𝑚 =
1

𝑥𝑘+1−𝑥𝑘

▪ 𝑥𝑘+1 − 𝑥𝑘 =
1

𝑚

▪ 𝑥𝑘+1 = 𝑥𝑘 +
1

𝑚

▪ Each successive 𝑥 intercept can thus be calculated by adding the

inverse of the slope and rounding to the nearest integer.

Edge Intersection Calculation with Scan-Line for parallel
execution

▪ For parallel execution of this algorithm we assign each scan line to

separate processor in that case instead of using previous 𝑥 values

for calculation we use initial 𝑥 values by using equation as.

▪ 𝑥𝑘 = 𝑥0 +
𝑘

𝑚

▪ Now if we put 𝑚 =
∆𝑦

∆𝑥
in incremental calculation equation 𝑥𝑘+1 =

𝑥𝑘 +
1

𝑚
then we obtain equation as.

▪ 𝑥𝑘+1 = 𝑥𝑘 +
∆𝑥

∆𝑦

▪ Using this equation we can perform integer evaluation of 𝑥

intercept.

Simplified Method for Edge Intersection Calculation with
Scan-Line

1. Suppose 𝑚 = 7/3

2. Initially, set counter to 0, and increment to 3 (which is Δ𝑥).

3. When move to next scan line, increment counter by adding ∆𝑥

4. When counter is equal to or greater than 7 (which is Δ𝑦),

increment the 𝑥 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (in other words, the 𝑥 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

for this scan line is one more than the previous scan line), and

decrement counter by 7(which is ∆𝑦).

𝑥0

𝑦0

∆𝑥 = 3, ∆𝑦 = 7

Counter=0Counter=3Counter=6Counter=2Counter=5Counter=1Counter=4Counter=0

Use of Sorted Edge table in Scan-Line Polygon Fill
Algorithm

▪ To efficiently perform a polygon fill, we can first store the polygon

boundary in a sorted edge table.

▪ It contains all the information necessary to process the scan lines

efficiently.

▪ We use bucket sort to store the edge sorted on the smallest 𝑦

value of each edge in the correct scan line positions.

▪ Only the non-horizontal edges are entered into the sorted edge

table.

𝑦𝐶

Contd.

A

B

C

D

C E

Scan Line 𝑦𝐶

Scan Line 𝑦𝐷

Scan Line 𝑦𝐴

0
1

.

.

.

𝑦𝐴

.

.

.

.

.

.

𝑦𝐷

𝑦𝐶

Scan Line
Number

𝑦𝐸 𝑥𝐴 1/𝑚𝐴𝐸

𝑦𝐵 𝑥𝐴 1/𝑚𝐴𝐵

𝑥𝐷 1/𝑚𝐷𝐶

𝑦𝐸 𝑥𝐷 1/𝑚𝐷𝐸

𝑦𝐵 𝑥𝐶 1/𝑚𝐶𝐵

Inside-Outside Tests
▪ In area filling and other graphics operation often required to find

particular point is inside or outside the polygon.

▪ For finding which region is inside or which region is outside most

graphics package use either

1. Odd even rule OR

2. Nonzero winding number rule

Odd Even/ Odd Parity/ Even Odd
Rule
▪ By conceptually drawing a line from any position 𝑝 to a distant

point outside the coordinate extents of the object.

▪ Than counting the number of edges crossing by this line.

1. If Edge count is odd, than p is an interior point.

2. Otherwise p is exterior point.

▪ To obtain accurate edge count we must sure that line selected is

does not pass from any vertices.

𝑝

𝑞

𝑟

Boundary of Screen

1

1

2

Nonzero Winding Number Rule
▪ This method counts the number of times the polygon edges wind

around a particular point in the counterclockwise direction.

▪ This count is called the winding number.

▪ We apply this rule by initializing winding number with 0.

▪ Then draw a line for any point 𝑝 to distant point beyond the

coordinate extents of the object.

𝑝

Boundary of Screen

Winding number=0

Contd.
▪ The line we choose must not pass through vertices.

▪ Then we move along that line we find number of intersecting

edges.

1. If edge cross our line from right to left We add 1 to winding number

2. Otherwise subtract 1 from winding number

▪ IF the final value of winding number is nonzero then the point is

interior otherwise point is exterior.

𝑝

𝑞

𝑟

Boundary of Screen

-1

+1

-1
Winding number=0Winding number=-1Winding number=+1-1=0

Comparison between Odd Even Rule and Nonzero
Winding Rule

▪ For standard polygons and simple object both rule gives same

result but for more complicated shape both rule gives different

result.

Odd Even Rule Nonzero Winding Rule

Scan-Line Fill of Curved Boundary
Areas
▪ Scan-line fill of region with curved boundary is more time

consuming as intersection calculation now involves nonlinear

boundaries.

▪ For simple curve such as circle or ellipse scan line fill process is

straight forward process.

▪ We calculate the two scan line intersection on opposite side of the

curve.

▪ This is same as generating pixel position along the curve boundary

using standard equation of curve.

▪ Then we fill the color between two boundary intersections.

▪ Symmetry property is used to reduce the calculation.

Introduction to Boundary / Edge Fill
Algorithm
▪ In this method, edges of the polygons are drawn.

▪ Then starting with some seed (any point inside the polygon) we

examine the neighbouring pixels to check whether the boundary

pixel is reached.

▪ If boundary pixels are not reached, pixels are highlighted and the

process is continued until boundary pixels are reached.

▪ Selection of neighbour pixel is either 4-cormected or 8-connected.

4-Cormected Region 8-Cormected Region

Contd.
▪ In some cases, an 8-connected algorithm is more accurate than

the 4-connected algorithm.

▪ Some times 4-connected algorithm produces the partial fill.

Seed

Boundary / Edge Fill Algorithm
Procedure:

boundary-fill4(x, y, f-colour, b-colour)

{

if(getpixel (x,y) ! = b-colour && gepixel (x, y) ! = f-colour)

{

putpixel (x, y, f-colour)

boundary-fill4(x + 1, y, f-colour, b-colour);

boundary-fill4(x, y + 1, f-colour, b-colour);

boundary-fill4(x - 1, y, f-colour, b-colour);

boundary-fill4(x, y - l, f-colour, b-colour);

}

}

Problem of Staking and Efficient
Method
▪ Same procedure can be modified according to 8 connected region

algorithm by including four additional statements to test diagonal
positions.

▪ This procedure requires considerable stacking of neighbouring
points more, efficient methods are generally employed.

▪ Efficient method fill horizontal pixel spans across scan lines,
instead of proceeding to 4 connected or 8 connected
neighbouring points.

▪ Then we need only stack a beginning position for each horizontal
pixel span, instead of stacking all unprocessed neighbouring
positions around the current position.

▪ Starting from the initial interior point with this method, we first fill
in the contiguous span of pixels on this starting scan line.

Contd.
▪ Then we locate and stack starting positions for spans on the

adjacent scan lines.

▪ Spans are defined as the contiguous horizontal string of positions

bounded by pixels displayed in the area border colour.

▪ At each subsequent step, we unstack the next start position and

repeat the process.

▪ For e.g.

Contd.

6

4

5

1
(c)

4

5

1

6

4

5

1
(d)

4

5

1

1

2
(a)

2

1

3

1

(b)

3

1

Introduction to Flood-Fill
Algorithm
▪ Sometimes it is required to fill in an area that is not defined within

a single colour boundary.

▪ In such cases we can fill areas by replacing a specified interior

colour instead of searching for a boundary colour.

▪ This approach is called a flood-fill algorithm. Like boundary fill

algorithm, here we start with some seed and examine the

neighbouring pixels.

▪ However, here pixels are checked for a specified interior colour

instead of boundary colour and they are replaced by new colour.

▪ Using either a 4-connected or 8-connected approach, we can step

through pixel positions until all interior point have been filled.

Flood-Fill Algorithm
Procedure :

flood-fill4(x, y, new-colour, old-colour)

{

if(getpixel (x,y) = = old-colour)

{

putpixel (x, y, new-colour)

flood-fill4 (x + 1, y, new-colour, old -colour);

flood-fill4 (x, y + 1, new -colour, old -colour);

flood-fill4 (x - 1, y, new -colour, old -colour);

flood-fill4 (x, y - l, new -colour, old-colour);

}

}

Character Generation
▪ We can display letters and numbers in variety of size and style.

▪ The overall design style for the set of character is called typeface.

▪ Today large numbers of typefaces are available for computer

application for example Helvetica, Arial etc.

▪ Originally, the term font referred to a set of cast metal character

forms in a particular size and format.

▪ Example: 10-point Courier Italic or 12- point Palatino Bold.

Contd.
▪ Now, the terms font and typeface are often used interchangeably,

since printing is no longer done with cast metal forms.

▪ Methods of character generation are:

➢ Bitmap Font/ Bitmapped Font

➢ Outline Font

➢ Stroke Method

➢ Starbust Method

Bitmap Font/ Bitmapped Font
▪ A simple method for representing the

character shapes in a particular typeface is to

use rectangular grid patterns.

▪ In frame buffer, the 1 bits designate which

pixel positions are to be displayed on the

monitor.

0 0 1 11 1 0
0 1 1 11 1 1 0
1 1 0 00 0 1 1
1 1 0 00 0 1 1
1 1 1 11 1 1 1
1 1 1 11 1 1 1
1 1 0 00 0 1 1
1 1 0 00 0 1 1

0

▪ Bitmap fonts are the simplest to define and display.

▪ Bitmap fonts require more space.

▪ It is possible to generate different size and other variation from

one set but this usually does not produce good result.

Outline Font
▪ In this method character is generated using curve

section and straight line as combine assembly.

▪ To display the character we need to fill interior

region of the character.

▪ This method requires less storage since each

variation does not required a distinct font cache.

▪ We can produce boldface, italic, or different sizes

by manipulating the curve definitions for the

character outlines.

▪ But this will take more time to process the outline

fonts, because they must be scan converted into

the frame buffer.

• It uses small line segments to generate
a character.

• The small series of line segments are
drawn like a stroke of a pen to form a
character.

Stroke Method

• We can generate our own stroke method by calling line
drawing algorithm.

• Here it is necessary to decide which line segments are
needs for each character and then draw that line to
display character.

• It support scaling by changing length of line segment.

Starbust Method
▪ In this method a fix pattern of lines (24 line) segments are used to

generate characters.

▪ We highlight those lines which are necessary to draw a particular

character.

▪ Pattern for particular character is stored in the form of 24 bit code.

▪ In which each bit represents corresponding line having that number.

▪ We put bit value 1 for highlighted line and 0 for other line.

03

24

23

22
21

20
19

1817

16 15

1413

01

02

04

05

06

07

08

0910

11

12

Contd.
▪ Example letter V

▪ Code for letter V = 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

▪ This technique is not used now a days because:

• It requires more memory to store 24 bit code for single character.

• It requires conversion from code to character.

• It doesn’t provide curve shapes.

03

24

23

22
21

20
19

1817

16 15

1413

01

02

04

05

06

07

08

0910

11

12

Line Attributes
▪ Basic attributes of a straight line segment are:

• Type

• Dimension

• color

• pen or brush option.

Line Type
▪ Possible selection for the line-type attribute includes solid lines, dashed

lines, and dotted lines etc.

▪ We modify a line –drawing algorithm to generate such lines by setting
the length and spacing of displayed solid sections along the line path.

▪ To set line type attributes in a PHIGS application program, a user invokes
the function: setLinetype(It)

▪ Where parameter lt is assigned a positive integer value of 1, 2, 3, 4… etc.
to generate lines that are, respectively solid, dashed, dotted, or dotdash
etc.

1

2

3

4

Solid

Dashed

Dotted

Dotdash

Line Width
▪ Implementation of line-width options depends on the capabilities

of the output device.

▪ A heavy line on a video monitor could be displayed as adjacent

parallel lines, while a pen plotter might require pen changes.

▪ To set line width attributes in a PHIGS application program, a user

invokes the function: setLinewidthScalFactor (lw)

▪ Line-width parameter lw is assigned a positive number to indicate

the relative width of the line to be displayed.

▪ Values greater than 1 produce lines thicker than the standard line

width and values less than the 1 produce line thinner than the

standard line width.

Contd.
▪ In raster graphics we generate thick line by plotting

• above and below pixel of line path when slope |m|<1. &

• left and right pixel of line path when slope |m|>1.

Line Width at Endpoints and Join

▪ As we change width of the line we can also change line end and

join of two lines which are shown below

Butt caps

Projecting square caps

Round caps

Miter join

Round join

Bevel join

Line color
▪ The name itself suggests that it is defining color of line displayed

on the screen.

▪ By default system produce line with current color but we can

change this color by following function in PHIGS package as

follows: setPolylinecolorIndex (lc)

▪ In this lc is constant specifying particular color to be set.

• In some graphics packages line is
displayed with pen and brush
selections.

• Options in this category include
shape, size, and pattern.

• These shapes can be stored in a
pixel mask that identifies the
array of pixel positions that are
to be set along the line path.

• Also, lines can be displayed with
selected patterns by
superimposing the pattern
values onto the pen or brush
mask.

Pen and Brush Options

Color and Grayscale Levels
▪ Various colors and intensity-level options can be made available to

a user, depending on the capabilities and design objectives of a

particular system.

▪ General purpose raster-scan systems, for example, usually provide

a wide range of colors, while random-scan monitors typically offer

only a few color choices, if any.

▪ In a color raster system, the number of color choices available

depends on the amount of storage provided per pixel in the frame

buffer

Contd.
▪ Also, color-information can be stored in the frame buffer in two

ways:

• We can store color codes directly in the frame buffer OR

• We can put the color codes in a separate table and use pixel values as an

index into this table

▪ With direct storage scheme we required large memory for frame

buffer when we display more color.

▪ While in case of table it is reduced and we call it color table or

color lookup table.

Color Lookup Table
▪ Color values of 24 bit is stored in lookup table and in frame buffer

we store only 8 bit index of required color.

▪ So that size of frame buffer is reduced and we can display more

color.
Color

Lookup

Table

196

255

0

196 2081 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

To Red Gun
To Green Gun

To Blue Gun

Frame Buffer

Greyscale
▪ With monitors that have no color capability, color function can be

used in an application program to set the shades of grey

(greyscale) for display primitives.

▪ Numeric values between 0-to-1 can be used to specify greyscale

levels.

▪ This numeric values is converted in binary code for store in raster

system. Example: frame buffer with 2 bits per pixel.

Intensity Code Stored Intensity Values In The Displayed Greyscale

Frame Buffer Binary Code

0.0 0 00 Black

0.33 1 01 Dark grey

0.67 2 10 Light grey

1.0 3 11 White

Area-Fill Attributes
▪ For filling any area we have choice between solid colors or pattern

to fill all these are include in area fill attributes. Which are:

• Fill Styles

• Pattern Fill

• Soft Fill

Fill Styles
▪ Area are generally displayed with three basic style.

1. hollow with color border

2. filled with solid color

3. filled with some design

▪ In PHIGS package fill style is selected by following function:

setInteriorStyle (fs)

▪ Value of fs include hollow ,solid, pattern etc.

Contd.
▪ Another values for fill style is hatch, which is patterns of line like

parallel line or crossed line.

▪ For setting interior color in PHIGS package we use:

setInteriorColorIndex (fc)

▪ Where fc specify the fill color.

Hollow Solid Pattern Diagonal
Hatch Fill

Diagonal Cross-
Hatch Fill

• We select the pattern with
setInteriorStyleIndex (pi)

• Where pattern index parameter pi
specifies position in pattern table
entry.

• For example:

– SetInteriorStyle(pattern) ;

– setInteriorStyleIndex (2) ;

– fillArea (n, points);

Pattern Fill

Index(pi) Pattern(cp)

1 4 0
0 4

2 2 1 2
1 2 1
2 1 2

Pattern Table

Contd.
▪ We can also maintain separate table for hatch pattern.

▪ We can also generate our own table with required pattern.

▪ Other function used for setting other style as follows:

setpatternsize (dx, dy)

▪ setPaternReferencePoint (position)

▪ We can create our own pattern by setting and resetting group of

pixel and then map it into the color matrix.

Soft Fill
▪ Soft fill is filling layer of color on back ground color so that we can

obtain the combination of both color.

▪ It is used to recolor or repaint so that we can obtain layer of

multiple color and get new color combination.

▪ One use of this algorithm is soften the fill at boundary so that

blurred effect will reduce the aliasing effect.

▪ For example if we fill t amount of foreground color then pixel color

is obtain as:

▪ 𝑝 = 𝑡𝐹 + 1 − 𝑡 𝐵

▪ Where F is foreground color and B is background color

Contd.
▪ If we see this color in RGB component then:

▪ 𝑝 𝑝𝑖𝑥𝑒𝑙 = 𝑝𝑟 , 𝑝𝑔, 𝑝𝑏

▪ 𝑓(𝑓𝑜𝑟𝑔𝑟𝑜𝑢𝑛𝑑) = (𝑓𝑟 , 𝑓𝑔, 𝑓𝑏)

▪ 𝑏(𝑏𝑎𝑐𝑘𝑔𝑜𝑢𝑛𝑑) = (𝑏𝑟 , 𝑏𝑔, 𝑏𝑏)

▪ Then we can calculate t as follows:

▪ 𝑡 =
𝑃𝑘−𝐵𝑘

𝐹𝑘−𝐵𝑘

▪ If we use more then two color say three at that time equation

becomes as follow:

▪ 𝑝 = 𝑡0𝐹 + 𝑡1𝐵1 + (1 − 𝑡0 − 𝑡1)𝐵2

▪ Where the sum of coefficient 𝑡0, 𝑡1, and (1 − 𝑡0 − 𝑡1) is 1.

Character Attributes
▪ The appearance of displayed characters is controlled by attributes

such as:

• Font

• Size

• Color

• Orientation.

▪ Attributes can be set for entire string or may be individually.

Text Attributes
▪ In text we are having so many style and design like italic fonts,

bold fonts etc.

▪ For setting the font style in PHIGS package we have function:

setTextFont (tf)

▪ Where tf is used to specify text font.

▪ For setting color of character in PHIGS we have function:

setTextColorIndex (tc)

▪ Where text color parameter tc specifies an allowable color code.

▪ For setting the size of the text we use function:

setCharacterheight (ch)

▪ Where ch is used to specify character height.

Contd.
▪ For scaling the character we use function:

setCharacterExpansionFacter (cw)

▪ Where character width parameter cw is set to a positive real

number that scale the character body width.

▪ Spacing between character is controlled by function:

▪ setCharacterSpacing (cs)

▪ Where character spacing parameter cs can be assigned any real

value.

Contd.
▪ The orientation for a displayed character string is set according to

the direction of the character up vector:

setCharacterUpVector (upvect)

▪ Parameter upvect in this function is assigned two values that

specify the x and y vector components.

▪ Text is then displayed so that the orientation of characters from

baseline to cap line is in the direction of the up vector.

▪ For setting the path of the character we use function:

setTextPath (tp)

▪ Where the text path parameter tp can be assigned the value:

right, left, up, or down.

Contd.
▪ For setting the alignment we use function:

setTextAlignment (h, v)

▪ Where parameter h and v control horizontal and vertical

alignment respectively.

▪ For specifying precision for text display is given with function:

setTextPrecision (tpr)

▪ Where text precision parameter tpr is assigned one of the values:

string, char, or stroke.

▪ The highest-quality text is produced when the parameter is set to

the value stroke.

Marker Attributes
▪ A marker symbol display single character in different color and in

different sizes.

▪ For marker attributes implementation by procedure that load the

chosen character into the raster at defined position with the

specified color and size.

▪ We select marker type using function: setMarkerType (mt)

▪ Where marker type parameter mt is set to an integer code.

Contd.
▪ Typical codes for marker type are the integers 1 through 5,

specifying, respectively:

1. a dot (.)

2. a vertical cross (+)

3. an asterisk (*)

4. a circle (o)

5. a diagonal cross (x).

▪ Displayed marker types are centred on the marker coordinates.

Contd.
▪ We set the marker size with function:

SetMarkerSizeScaleFactor (ms)

▪ Where parameter marker size ms assigned a positive number

according to need for scaling.

▪ For setting marker color we use function:

setPolymarkerColorIndex (mc)

▪ Where parameter mc specify the color of the marker symbol.

Aliasing
▪ Primitives generated in raster graphics by various algorithms have

stair step shape or jagged appearance.

▪ Jagged appearance is due to integer calculation by rounding actual

values.

▪ This distortion of actual information due to low frequency

sampling is called aliasing.

▪ Minimise effect of aliasing by some way is known as antialiasing.

▪ In periodic shape distortion may be occurs due to under sampling.

▪ To avoid losing information from such periodic objects, we need to
set the sampling frequency to at least twice that of the highest
frequency occurring in the object.

▪ This is referred to as the Nyquist sampling frequency (or Nyquist
sampling rate):

𝑓𝑠 = 2𝑓𝑚𝑎𝑥

Antialiasing

Contd.
▪ In other words sampling interval should be no larger than one-half the

cycle. Which is called nyquist sampling interval.

∆𝑥𝑠 =
∆𝑥𝑐𝑦𝑐𝑙𝑒

2
▪ One way to solve this problem is to display image on higher resolution.

▪ But it has also limit that how much large frame buffer we can maintain

along with maintaining refresh rate 30 to 60 frame per second.

▪ And also on higher resolution aliasing will remains up to some extents.

▪ With raster systems that are capable of displaying more than two

intensity levels (color or grayscale), we can apply antialiasing methods to
modify pixel intensities.

▪ By appropriately varying the intensities of pixels along the boundaries of

primitives, we can smooth the edges to lessen the aliasing effect.

Antialiasing Methods
1. Supersampling Straight Line Segments

2. Pixel-Weighting Masks

3. Area Sampling Straight Line Segments

4. Filtering Techniques

5. Pixel Phasing

6. Compensating For Line Intensity Differences

7. Antialiasing Area Boundaries

Supersampling Straight Line
Segments
▪ For the greyscale display of a straight-line segment, we can divide

each pixel into a number of sub pixels and determine the number

of sub pixel along the line path.

▪ Then we set intensity level of each pixel proportional to number of

sub pixel along the line path.

▪ E.g. in figure area of each pixel is

divided into nine sub pixel and then we

determine how many number of sub

pixel are along the line (it can be 3 or 2

or 1 as we divide into 9 sub pixel).

▪ Based on number 3 or 2 or 1 we assign

intensity value to that pixel.

Contd.
▪ We can achieve four intensity levels by dividing pixel into 16 sub

pixels and five intensity levels by dividing into 25 sub pixels etc.

▪ Lower intensity gives blurred effect and hence performs
antialiasing.

▪ Other way is we considered pixel areas of finite size, but we
treated the line as a mathematical entity with zero width.

▪ Actually, displayed lines have a width approximately equal to that
of a pixel.

▪ If we take finite width of the line into account, we can perform
supersampling by setting each pixel intensity proportional to the

number of sub pixels inside the polygon representing the line
area.

Contd.
▪ A sub pixel can be considered to be

inside the line if its lower left corner is

inside the polygon boundaries.

▪ Advantage of this is that it having

number of intensity equals to number of

sub pixel.

▪ Another advantage of this is that it will distribute total intensity

over more pixels.

▪ E.g. in figure pixel below and left to (10, 20) is also assigned some

intensity levels so that aliasing will reduce.

▪ For color display we can modify levels of color by mixing

background color and line color.

Pixel-Weighting Masks
▪ Supersampling method are often implemented by giving more

weight to sub pixel near the center of pixel area.

▪ As we expect centre sub pixel to be more important in

determining the overall intensity of a pixel.

▪ For the 3 by 3 pixel subdivisions we have considered so far, a

weighting scheme as in fig. could be used.

▪ The center sub pixel here is weighted four times that of the corner

sub pixels and twice that of the remaining sub pixels.

▪ By averaging the weight of sub pixel which are

along the line and assign intensity proportional to

average weight will reduce aliasing effect.

Area Sampling Straight Line
Segments
▪ In this scheme we treat line as finite width rectangle, and the

section of the line area between two adjacent vertical or two

adjacent horizontal screen grid lines is then a trapezoids.

▪ Overlap areas for pixels are calculated by determining how much

of the trapezoid overlaps each pixel in that vertical column (or

horizontal row).

▪ E.g. pixel with screen grid coordinates

(10, 20) is about 90 percent covered by

the line area, so its intensity would be

set to 90 percent of the maximum

intensity.

Contd.
▪ Similarly, the pixel at (10 21) would be set to an intensity of about

15-percent of maximum.

▪ With color displays, the areas of pixel overlap with different color

regions is calculated and the final pixel color is taken as the

average color of the various overlap areas.

Filtering Techniques
▪ It is more accurate method for antialiasing.

▪ Common example of filter is rectangular, conical and Gaussian

filters.

▪ Methods for applying the filter function are similar to applying a

weighting mask, but now we integrate over the pixel surface to

obtain the weighted average intensity.

▪ For reduce computation we often use table look up.

Pixel Phasing
▪ On raster system if we pass the electron beam from the closer sub

pixel so that overall pixel is shifted by factor ¼, ½, or ¾ to pixel

diameter.

▪ Where beam strike at that part of pixel get more intensity then

other parts of the pixel and gives antialiasing effect.

▪ Some systems also allow the size of individual pixels to be

adjusted as an additional means for distributing intensities.

Compensating For Line Intensity
Differences
▪ Antialiasing a line to soften the aliasing effect also compensates

for another raster effect, illustrated fig.

▪ As both lines are display with same number of pixel and then also

length of diagonal line is greater than horizontal line by factor 2.

▪ So that diagonal line is display with less intensity then horizontal

line.

▪ For compensating this we display diagonal line with high intensity

and horizontal line with low intensity so that this effect is

minimize.

▪ In general we set intensity according to slope of

the line.

Antialiasing Area Boundaries
▪ Methods we discuss for antialiasing line can also be applied for

area boundary.

▪ If system capabilities permit the repositioning of pixels, area

boundaries can be smoothen by adjusting boundary pixel

positions.

▪ Other method is to adjust each pixel intensity at boundary

position according to percent of area inside the boundary.

Contd.
▪ In fig. pixel at (x, y) is assigned half the intensity as its ½ area is

inside the area boundary.

▪ Similar adjustments based on percent of area of pixel inside are

applied to other pixel.

