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3D Translation
▪ Similar to 2D translation, which used 3 × 3 matrices, 3D

translation use 4 × 4 matrices (𝑥, 𝑦, 𝑧, ℎ).

▪ In 3D translation point (𝑥, 𝑦, 𝑧) is to be translated by amount 𝑡𝑥,

𝑡𝑦 and 𝑡𝑧 to location (𝑥 ,, 𝑦 ,, 𝑧 ,).

𝑥 , = 𝑥 + 𝑡𝑥, 𝑦 , = 𝑦 + 𝑡𝑦, 𝑧 , = 𝑧 + 𝑡𝑧

▪ Matrix equation,

𝑃′ = 𝑇 ∙ 𝑃 =

𝑥 ,

𝑦′

𝑧 ,

1

=

1 0 0 𝑡𝑥

0 1 0 𝑡𝑦

0 0 1 𝑡𝑧

0 0 0 1

∙

𝑥
𝑦
𝑧
1

y

xz

(x, y, z)

(x’, y’, z’)



Example- 3D Translation
▪ Translate the given point 𝑃(10, 10, 10) into 3D space with

translation factor 𝑇(10, 20, 5).

𝑃′ = 𝑇 ∙ 𝑃

𝑥 ,

𝑦′

𝑧 ,

1

=

1 0 0 𝑡𝑥

0 1 0 𝑡𝑦

0 0 1 𝑡𝑧

0 0 0 1

∙

𝑥
𝑦
𝑧
1

=

1 0 0 10
0 1 0 20
0 0 1 5
0 0 0 1

∙

10
10
10
1

=

20
30
15
1

▪ Final coordinate after translation is 𝑃
,
(20, 30, 15).



Rotation
▪ For 3D rotation we need to pick an axis to rotate about.

▪ The most common choices are the 𝑋 − 𝑎𝑥𝑖𝑠, the 𝑌 − 𝑎𝑥𝑖𝑠, and 

the 𝑍 − 𝑎𝑥𝑖𝑠, it is known as coordinate axis rotation.

▪ We can also chose other arbitrary axis for rotation.

Source: http://www.c-jump.com



Z-Axis Rotation
▪ Two dimension rotation equations can be easily convert into 3D

𝑍 − 𝑎𝑥𝑖𝑠 rotation equations.

▪ Rotation about 𝑧 axis we leave 𝑧 coordinate unchanged.

𝑥 , = 𝑥 𝑐𝑜𝑠 𝜃 − 𝑦 𝑠𝑖𝑛 𝜃

𝑦 , = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 𝑐𝑜𝑠 𝜃

𝑧 , = 𝑧

where Parameter 𝜃 specify rotation angle.

▪ Matrix equation is written as,

𝑃′ = 𝑅𝑧 𝜃 ∙ 𝑃 =

𝑥 ,

𝑦′

𝑧 ,

1

=

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0

0 0 1 0
0 0 0 1

∙

𝑥
𝑦
𝑧
1

X

Y

Z



X-Axis Rotation
▪ Transformation equation for X − 𝑎𝑥𝑖𝑠 is obtain from equation of 

Z − 𝑎𝑥𝑖𝑠 rotation by replacing cyclically as 𝑥 → 𝑦 → 𝑧 → 𝑥

▪ Rotation about 𝑋 − 𝑎𝑥𝑖𝑠 we leave 𝑥 coordinate unchanged.

𝑦 , = 𝑦 𝑐𝑜𝑠 𝜃 − 𝑧 𝑠𝑖𝑛 𝜃

𝑧 , = 𝑦 𝑠𝑖𝑛 𝜃 + 𝑧 𝑐𝑜𝑠 𝜃

𝑥 , = 𝑥

where Parameter 𝜃 specify rotation angle.

▪ Matrix equation is written as,

𝑃′ = 𝑅𝑥 𝜃 ∙ 𝑃 =

𝑥 ,

𝑦′

𝑧 ,

1

=

1 0 0 0
0 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 0 1

∙

𝑥
𝑦
𝑧
1

X

Y

Z



Y-Axis Rotation
▪ Transformation equation for Y − 𝑎𝑥𝑖𝑠 is obtain from equation of 

𝑋 − 𝑎𝑥𝑖𝑠 rotation by replacing cyclically as 𝑥 → 𝑦 → 𝑧 → 𝑥

▪ Rotation about Y − 𝑎𝑥𝑖𝑠 we leave 𝑦 coordinate unchanged.

𝑧 , = 𝑧 𝑐𝑜𝑠 𝜃 − 𝑥 𝑠𝑖𝑛 𝜃

𝑥 , = 𝑧 𝑠𝑖𝑛 𝜃 + 𝑥 𝑐𝑜𝑠 𝜃

𝑦 , = 𝑦

where Parameter 𝜃 specify rotation angle.

▪ Matrix equation is written as,

𝑃′ = 𝑅𝑦 𝜃 ∙ 𝑃 =

𝑥 ,

𝑦′

𝑧 ,

1

=

𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃 0
0 1 0 0

− 𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃 0
0 0 0 1

∙

𝑥
𝑦
𝑧
1

X

Y

Z



Example- Coordinate Axis 
Rotation
▪ Rotate the point 𝑃(5, 5, 5) 90𝑜 about Z-axis.

𝑃′ = 𝑅𝑧(𝜃 = 90𝑜) ∙ 𝑃

𝑥 ,

𝑦′

𝑧 ,

1

=

cos 90𝑜 − sin 90𝑜 0 0
sin 90𝑜 cos 90𝑜 0 0

0 0 1 0
0 0 0 1

∙

𝑥
𝑦
𝑧
1

𝑥 ,

𝑦′

𝑧 ,

1

=

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

∙

5
5
5
1

=

−5
5
5
1

▪ Final coordinate after rotation is 𝑃
,
(−5, 5, 5).



General 3D Rotations
When rotation axis is parallel to one of the standard axis.

▪ Three steps require to complete such rotation these are,

1. Translate the object so that the rotation axis coincides with

the parallel coordinate axis.

2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to

its original position.

▪ This can be represented in equation form as,

𝑃′ = 𝑇−1 ∙ 𝑅(𝜃) ∙ 𝑇 ∙ 𝑃



General 3D Rotations
When rotation axis is inclined in arbitrary direction.

▪ First we need rotations to align the axis with a selected coordinate
axis and to bring the axis back to its original orientation.

▪ Five steps require to complete such rotation these are,

1. Translate the object so that the rotation axis passes through the
coordinate origin.

2. Rotate the object so that the axis of rotation coincides with one of the
coordinate axes.

3. Perform the specified rotation about that coordinate axis.

4. Apply inverse rotations to bring the rotation axis back to its original
orientation.

5. Apply the inverse translation to bring the rotation axis back to its
original position.



Contd.
▪ We can transform rotation axis onto any of the three coordinate

axes. The 𝑍 − 𝑎𝑥𝑖𝑠 is a reasonable choice.

▪ We are given line in the form of two end points 𝑝1 (𝑥1, 𝑦1, 𝑧1),

and 𝑝2 (𝑥2, 𝑦2, 𝑧2).

▪ Let’s discuss procedure step by step.



1. Translate the Object so that the
Rotation Axis Passes Through the
Coordinate Origin
▪ For translation of step one we will bring first end point at origin

and transformation matrix for the same is as below

𝑇 =

1 0 0 −𝑥1

0 1 0 −𝑦1

0 0 1 −𝑧1

0 0 0 1

X

Y

Z

𝑝1

𝑝2



2. Rotate the Object so that the Axis of
Rotation Coincides with One of the
Coordinate Axes
▪ This task can be completed by two rotations first rotation about

𝑋 − 𝑎𝑥𝑖𝑠 and second rotation about 𝑌 − 𝑎𝑥𝑖𝑠.

▪ But here we do not know rotation angle so we will use dot product

and vector product.

▪ Vector notation for rotation axis is,

𝑉 = 𝑃2 − 𝑃1 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)

▪ Unit vector along rotation axis is obtained by dividing vector by its

magnitude.

𝑢 =
𝑉

|𝑉|
=

𝑥2 − 𝑥1

|𝑉|
,
𝑦2 − 𝑦1

|𝑉|
,
𝑧2 − 𝑧1

|𝑉|
= (𝑎, 𝑏, 𝑐)



Contd.
▪ Now we need cosine and sine value of angle between unit vector

𝑢 and 𝑋𝑍 plane.

▪ For that take projection of 𝑢 on 𝑌𝑍 − 𝑝𝑙𝑎𝑛𝑒 say 𝑢’.

▪ Find dot product and cross product of 𝑢’ and 𝑢𝑧 .

▪ Coordinate of 𝑢’ is (0, 𝑏, 𝑐) as we will take projection on 𝑌𝑍 −

𝑝𝑙𝑎𝑛𝑒 𝑥 value is zero.

▪ Dot product,

𝑢′ ∙ 𝑢𝑧 = 𝑢′ |𝑢𝑧| 𝑐𝑜𝑠 𝛼

𝑐𝑜𝑠 𝛼 =
𝑢′ ∙ 𝑢𝑧

𝑢′ |𝑢𝑧|
=

0, 𝑏, 𝑐 (0,0,1)

𝑏2 + 𝑐2
=

𝑐

𝑑

𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑏2 + 𝑐2
𝑋

𝑌

𝑍

𝑢𝑢’

𝑢𝑧

𝛼



Contd.
▪ Cross product,

𝑢′ × 𝑢𝑧 = 𝑢𝑥 𝑢′ |𝑢𝑧| 𝑠𝑖𝑛 𝛼 …(1)

𝑢′ × 𝑢𝑧 = 𝑢𝑥 ∙ 𝑏 … (2)

▪ From (1) and (2),

𝑢𝑥 𝑢′ |𝑢𝑧| 𝑠𝑖𝑛 𝛼 = 𝑢𝑥 ∙ 𝑏

▪ Comparing magnitude

𝑢′ |𝑢𝑧| 𝑠𝑖𝑛 𝛼 = 𝑏

𝑏2 + 𝑐2 ∙ (1) 𝑠𝑖𝑛 𝛼 = 𝑏

𝑑 𝑠𝑖𝑛 𝛼 = 𝑏

𝑠𝑖𝑛 𝛼 =
𝑏

𝑑
𝑋

𝑌

𝑍

𝑢𝑢’

𝑢𝑧

𝛼



Contd.
▪ Now we have 𝑠𝑖𝑛 𝛼 and 𝑐𝑜𝑠 𝛼 so we will write matrix for rotation 

about X-axis.

𝑅𝑥(𝛼) =

1 0 0 0
0 𝑐𝑜𝑠 𝛼 − 𝑠𝑖𝑛 𝛼 0
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0
0 0 0 1

=

1 0 0 0

0
𝑐

𝑑
−

𝑏

𝑑
0

0
𝑏

𝑑

𝑐

𝑑
0

0 0 0 1



Contd.
▪ After performing above rotation 𝑢 will rotated into 𝑢’’ in 𝑋𝑍 −

𝑝𝑙𝑎𝑛𝑒 with coordinates (𝑎, 0, (𝑏2 + 𝑐2)).

▪ As we know rotation about 𝑥 axis will leave 𝑥 coordinate

unchanged.

▪ 𝑢’’ is in 𝑋𝑍 − 𝑝𝑙𝑎𝑛𝑒 so 𝑦 coordinate is zero, and 𝑧 component is

same as magnitude of 𝑢’.

▪ Now rotate 𝑢’’ about 𝑌 − 𝑎𝑥𝑖𝑠 so that it coincides with 𝑍 − 𝑎𝑥𝑖𝑠.

𝑋

𝑌

𝑍

𝑢

𝑢′′

𝑢𝑧

𝛽



Contd.
▪ For that we repeat above procedure between 𝑢’’ and 𝑢𝑧 to find

matrix for rotation about 𝑌 − 𝑎𝑥𝑖𝑠.

▪ Dot product,

𝑢′′ ∙ 𝑢𝑧 = 𝑢′′ |𝑢𝑧| 𝑐𝑜𝑠 𝛽

𝑐𝑜𝑠 𝛽 =
𝑢′′ ∙ 𝑢𝑧

𝑢′′ |𝑢𝑧|

𝑐𝑜𝑠 𝛽 =
𝑎, 0, 𝑏2 + 𝑐2 (0,0,1)

1

𝑐𝑜𝑠 𝛽 = 𝑏2 + 𝑐2 = 𝑑

𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑏2 + 𝑐2

𝑋

𝑌

𝑍

𝑢

𝑢′′

𝑢𝑧

𝛽



Contd.
▪ Cross product,

𝑢′′ × 𝑢𝑧 = 𝑢𝑦 𝑢′′ 𝑢𝑧 𝑠𝑖𝑛 𝛽 … (1)

𝑢′′ × 𝑢𝑧 = 𝑢𝑦 ∙ −𝑎 … (2)

▪ From (1) and (2),

𝑢𝑦 𝑢′′ 𝑢𝑧 𝑠𝑖𝑛 𝛽 = 𝑢𝑦 ∙ (−𝑎)

▪ Comparing magnitude

𝑢′′ 𝑢𝑧 𝑠𝑖𝑛 𝛽 = −𝑎

1 𝑠𝑖𝑛 𝛽 = − 𝑎

𝑠𝑖𝑛 𝛽 = − 𝑎

𝑋

𝑌

𝑍

𝑢

𝑢′′

𝑢𝑧

𝛽



Contd.
▪ Now we have 𝑠𝑖𝑛 𝛽 and 𝑐𝑜𝑠 𝛽 so we will write matrix for rotation about

𝑌 − 𝑎𝑥𝑖𝑠.

𝑅𝑦 𝛽 =

𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽 0
0 1 0 0

− 𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽 0
0 0 0 1

=

𝑑 0 −𝑎 0
0 1 0 0
𝑎 0 𝑑 0
0 0 0 1

▪ Now by combining both rotation we can coincides rotation axis with Z-

axis

𝑅𝑦 𝛽 ∙ 𝑅𝑥 𝛼 =

𝑑 0 −𝑎 0
0 1 0 0
𝑎 0 𝑑 0
0 0 0 1

1 0 0 0

0
𝑐

𝑑
−

𝑏

𝑑
0

0
𝑏

𝑑

𝑐

𝑑
0

0 0 0 1



3. Perform the Specified Rotation
About that Coordinate Axis
▪ As we align rotation axis with 𝑍 − 𝑎𝑥𝑖𝑠 so now matrix for rotation

about 𝑍 − 𝑎𝑥𝑖𝑠,

𝑅𝑧 𝜃 =

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0

0 0 1 0
0 0 0 1

𝑤ℎ𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒



4. Apply Inverse Rotations to Bring the
Rotation Axis Back to it’s Original
Orientation
▪ This step is inverse of step number 2,

𝑅𝑥
−1 𝛼 ∙ 𝑅𝑦

−1 𝛽



5. Apply the Inverse Translation to
Bring the Rotation Axis Back to it’s
Original Position
▪ This step is inverse of step number 1,

𝑇−1 =

1 0 0 𝑥1

0 1 0 𝑦1

0 0 1 𝑧1

0 0 0 1

▪ So finally sequence of transformation for general 3D rotation is

𝑃′ = 𝑇−1 ∙ 𝑅𝑥
−1(𝛼) ∙ 𝑅𝑦

−1(𝛽) ∙ 𝑅𝑧(𝜃) ∙ 𝑅𝑦(𝛽) ∙ 𝑅𝑥(𝛼) ∙ 𝑇 ∙ 𝑃



Scaling
▪ It is used to resize the object in 3D space.

▪ We can apply uniform as well as non uniform scaling by selecting

proper scaling factor.

▪ Scaling in 3D is similar to scaling in 2D. Only one extra coordinate

need to consider into it.



Coordinate Axes Scaling
▪ Simple coordinate axis scaling can be performed as below,

𝑃′ = 𝑆 ∙ 𝑃

𝑥 ,

𝑦′

𝑧 ,

1

=

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

∙

𝑥
𝑦
𝑧
1

Z

𝑌

X

Scaling



Example-Coordinate Axes 
Scaling
▪ Example: - Scale the line 𝐴𝐵 with coordinates (10,20,10) and

(20,30,30) respectively with scale factor 𝑆(3,2,4).

𝑃′ = 𝑆 ∙ 𝑃 =

𝑥 ,

𝑦′

𝑧 ,

1

=

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

∙

𝑥
𝑦
𝑧
1

𝐴𝑥
′ 𝐵𝑥

′

𝐴𝑦
′ 𝐵𝑦

′

𝐴𝑧
′ 𝐵𝑧

′

1 1

=

3 0 0 0
0 2 0 0
0 0 4 0
0 0 0 1

∙

10 20
20 30
10 30
1 1

=

30 60
40 60
40 120
1 1

▪ Final coordinates after scaling are,

𝐴’ (30, 40, 40) 𝑎𝑛𝑑 𝐵’ (60, 60, 120)



Fixed Point Scaling
▪ Fixed point scaling is used when we require scaling of object but

particular point must be at its original position.

▪ Three steps require to complete such fixed point scaling these are,

Z

𝑌

XFixed Point

1. Translate the fixed point
to the origin.

2. Scale the object relative
to the coordinate origin
using coordinate axes
scaling.

3. Translate the fixed point
back to its original
position.



Contd.
▪ Matrix equation

𝑃′ = 𝑇(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) ∙ 𝑆(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) ∙ 𝑇(−𝑥𝑓 , −𝑦𝑓 , −𝑧𝑓) ∙ 𝑃

𝑃′ =

1 0 0 𝑥𝑓

0 1 0 𝑦𝑓

0 0 1 𝑧𝑓

0 0 0 1

∙

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

∙

1 0 0 −𝑥𝑓

0 1 0 −𝑦𝑓

0 0 1 −𝑧𝑓

0 0 0 1

∙ 𝑃

𝑃′ =

𝑠𝑥 0 0 (1 − 𝑠𝑥)𝑥𝑓

0 𝑠𝑦 0 (1 − 𝑠𝑦)𝑦𝑓

0 0 𝑠𝑧 (1 − 𝑠𝑧)𝑧𝑓

0 0 0 1

∙ 𝑃



Other Transformations-
Reflection
▪ Reflection means mirror image produced when mirror is placed at

require position.

▪ When mirror is placed in XY-plane we obtain coordinates of image

by just changing the sign of 𝑧 coordinate.

▪ Transformation matrix for reflection about XY-plane is given

below,

𝑅𝐹𝑧 =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

Source: http://www.yourarticlelibrary.com



Contd.
▪ Similarly Transformation matrix for reflection about YZ-plane is,

𝑅𝐹𝑥 =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

▪ Similarly Transformation matrix for reflection about XZ-plane is,

𝑅𝐹𝑦 =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



Other Transformations-Shear
▪ Shearing transformation can be used to modify object shapes.

▪ They are also useful in 3D viewing for obtaining general projection

transformations.

▪ Here we use shear parameter ‘𝑎’ and ‘𝑏’

▪ Shear matrix for Z-axis is given below,

𝑆𝐻𝑧 =

1 0 𝑎 0
0 1 𝑏 0
0 0 1 0
0 0 0 1

Source: http://140.129.20.249/~jmchen/cg



Other Transformations-Shear
▪ Similarly Shear matrix for X-axis is,

𝑆𝐻𝑥 =

1 0 0 0
𝑎 1 0 0
𝑏 0 1 0
0 0 0 1

▪ Similarly Shear matrix for Y-axis is,

𝑆𝐻𝑦 =

1 𝑎 0 0
0 1 0 0
0 𝑏 1 0
0 0 0 1
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Viewing Co-ordinates
▪ Generating a view of an object is similar to photographing the

object.

▪ We can take photograph from any side with any angle &

orientation of camera.

▪ Similarly we can specify viewing coordinate in ordinary direction.



Specifying the View Plan
▪ We decide view for a scene by first establishing viewing coordinate

system, also referred as view reference coordinate system.

▪ Projection plane is setup in perpendicular direction to 𝑍𝑣 axis.

▪ Projections positions in the scene are transferred to viewing

coordinate.

▪ Then viewing coordinate are projected onto the view plane.

▪ The origin of our viewing coordinate system is called view

reference point.

▪ View reference point is often chosen to be close to or on the

surface as same object scene.

▪ We can choose other point also.



Contd.
▪ Next we select positive direction for the viewing 𝑍𝑣 axis and the

orientation of the view plane by specifying the view plane normal

vector 𝑁.

▪ Finally we choose the up direction for the view by specifying a

vector 𝑉 called the view up vector. Which specify orientation of

camera.

▪ View up vector is generally selected perpendicular to normal

vector but we can select any angle between 𝑉 & 𝑁.



Contd.
▪ By fixing view reference point and changing direction of normal

vector 𝑁 we get different views of same object.

Source: https://sourcemaking.com



World to Viewing Coordinates 
Transformation
▪ Before taking projection of view plane object description is need

to transfer from world to viewing coordinate.

▪ It is same as transformation that superimposes viewing coordinate

system to world coordinate system.

▪ It requires following basic transformation.

1. Translate view reference point to the origin of the world

coordinate system.

2. Apply rotation to align.



Contd.

▪ Consider view reference point in world coordinate system is at

position (𝑥0, 𝑦0, 𝑧0).

▪ For align view reference point to world origin we perform

translation with matrix,

𝑇 =

1 0 0 −𝑥0

0 1 0 −𝑦0

0 0 1 −𝑧0

0 0 0 1

▪ Now we require rotation sequence up-to three coordinate axis

rotations depending upon direction we choose for 𝑁.

▪ In general case 𝑁 is at arbitrary direction then we can align it with

word coordinate axes by rotation sequence 𝑅𝑧 ∙ 𝑅𝑦 ∙ 𝑅𝑥.



Contd.
▪ Another method for generating the rotation transformation matrix

is to calculate 𝑢, 𝑣 & 𝑛 unit vectors and from the composite

rotation matrix directly,

𝑛 =
𝑁

|𝑁|
= (𝑛1, 𝑛2, 𝑛3)

𝑢 =
𝑉 × 𝑁

|𝑉 × 𝑁|
= (𝑢1, 𝑢2, 𝑢3)

𝑣 = 𝑛 × 𝑢 = (𝑣1, 𝑣2, 𝑣3)

▪ This method also automatically adjusts the direction for 𝑢 so that

𝑣 is perpendicular to 𝑛.



Contd.
▪ Than composite rotation matrix for the viewing transformation is,

𝑅 =

𝑢1 𝑢2 𝑢3 0
𝑣1 𝑣2 𝑣3 0
𝑛1 𝑛2 𝑛3 0
0 0 0 1

▪ This aligns 𝑢 to 𝑋𝑤 axis, 𝑣 to 𝑌𝑤 axis and 𝑛 to 𝑍𝑤 axis.

▪ Finally composite matrix for world to viewing coordinate

transformation is given by,

𝑀𝑤𝑐,𝑣𝑐 = 𝑅 ∙ 𝑇

▪ This transformation is applied to object’s coordinate to transfer

them to the viewing reference frame.



Projections
▪ Process of converting three-dimensional coordinates into two-

dimensional scene is known as projection.

▪ There are two projection methods namely,

1. Parallel Projection.

2. Perspective Projection.



Parallel Projections
▪ In a parallel projection, coordinate positions are transformed to 

the view plane along parallel lines.

▪ We can specify a parallel projection with a projection vector that 

defines the direction for the projection lines.

▪ It is further divide into two types,

1. Orthographic parallel projection.

2. Oblique parallel projection. View Plane

𝑝1

𝑝2

𝑝1
′

𝑝2
′



Orthographic Parallel 
Projection
▪ When the projection lines are perpendicular to the view plane, we

have an orthographic parallel projection.

▪ Orthographic projections are most often used to produce the

front, side, and top views of an object.



Contd.
▪ Engineering and architectural drawings commonly use

orthographic projections.

▪ We can also form orthographic projections that display more than

one face of an object.

▪ Such view are called axonometric orthographic projections. Very

good example of it is Isometric projection.

▪ Transformation equations for an orthographic parallel projection

are straight forward.



Contd.
▪ If the view plane is placed at position 𝑧𝑣𝑝 along the 𝑧𝑣 axis.

▪ Then any point (𝑥, 𝑦, 𝑧) in viewing coordinates is transformed to

projection coordinates as,

𝑥𝑝 = 𝑥, 𝑦𝑝 = 𝑦

▪ Original 𝑧-coordinate value is preserved for the depth information.

(𝑋, 𝑌, 𝑍)

(X,Y)

Zv

Xv

Yv



Oblique Parallel Projection
▪ An oblique projection is obtained by projecting points along

parallel lines that are not perpendicular to the projection plane.

▪ (𝑋, 𝑌, 𝑍) is a point of which we are taking oblique projection

(𝑋𝑝, 𝑌𝑝) on the view plane and point (𝑋, 𝑌) on view plane is

orthographic projection of (𝑋, 𝑌, 𝑍).

▪ Now from figure using trigonometric rules we can write,

𝑥𝑝 = 𝑥 + 𝐿 𝑐𝑜𝑠 ∅

𝑦𝑝 = 𝑦 + 𝐿 𝑠𝑖𝑛 ∅

(𝑋, 𝑌, 𝑍)

(X,Y)

Zv

Xv

Yv

(Xp, Yp)
α

Φ
L



Contd.
▪ Length 𝐿 depends on the angle 𝛼 and the 𝑧 coordinate of the

point to be projected,

𝑡𝑎𝑛 𝛼 =
𝑍

𝐿

𝐿 =
𝑍

𝑡𝑎𝑛 𝛼

𝐿 = 𝑍𝐿1 , 𝑊ℎ𝑒𝑟𝑒 𝐿1 =
1

𝑡𝑎𝑛 𝛼

▪ Now put the value of 𝐿 in projection equation.

𝑥𝑝 = 𝑥 + 𝑍𝐿1 𝑐𝑜𝑠 ∅

𝑦𝑝 = 𝑦 + 𝑍𝐿1 𝑠𝑖𝑛 ∅

(𝑋, 𝑌, 𝑍)

(X,Y)

Zv

Xv

Yv

(Xp, Yp)
α

Φ
L



Contd.
▪ Transformation matrix for this equation,

𝑀𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

1 0 𝐿1 𝑐𝑜𝑠 ∅ 0
0 1 𝐿1 𝑠𝑖𝑛 ∅ 0
0 0 0 0
0 0 0 1

▪ This equation can be used for any parallel projection.

▪ For orthographic projection L1=0 and so whole term which is
multiply with z component is zero.

▪ When value of 𝐭𝐚𝐧 𝜶 = 𝟏 projection is known as Cavalier
projection.

▪ When value of 𝐭𝐚𝐧 𝜶 = 𝟐 projection is known as Cabinet
projection.



Perspective Projection
▪ In perspective projection object positions are transformed to the

view plane along lines that converge to a point called the

projection reference point (or center of projection or vanishing

point).

View Plane

𝑝1
′

𝑝1

Projection Reference Point𝑝2
𝑝2

′



Contd.
▪ Suppose we set the projection reference point at position 𝑧𝑝𝑟𝑝

along the 𝑧𝑣 axis.

▪ We place the view plane at 𝑧𝑣𝑝 as shown in figure.

▪ We can write equations describing coordinate positions along this

perspective projection line in parametric form as,

𝑥′ = 𝑥 − 𝑥𝑢

𝑦′ = 𝑦 − 𝑦𝑢

𝑧′ = 𝑧 − (𝑧 − 𝑧𝑝𝑟𝑝)𝑢

▪ Here parameter 𝑢 takes the value from 0 𝑡𝑜 1, which is depends

on the position of object, view plane, and projection reference

point.

𝑃 = (𝑥, 𝑦, 𝑧)
(𝑥𝑝, 𝑦𝑝, 𝑧𝑣𝑝)

𝑧𝑣𝑝 𝑧𝑝𝑟𝑝 𝑧𝑣

View Plane



Contd.
▪ For obtaining value of 𝑢 we will put 𝑧’ = 𝑧𝑣𝑝 and solve equation of

𝑧’.

𝑧′ = 𝑧 − (𝑧 − 𝑧𝑝𝑟𝑝)𝑢

𝑧𝑣𝑝 = 𝑧 − (𝑧 − 𝑧𝑝𝑟𝑝)𝑢

𝑢 =
𝑧𝑣𝑝 − 𝑧

𝑧𝑝𝑟𝑝 − 𝑧

▪ Now substituting value of 𝑢 in equation of 𝑥’ and 𝑦’ we will obtain,

𝑥𝑝 = 𝑥
𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑧𝑝𝑟𝑝 − 𝑧
= 𝑥

𝑑𝑝

𝑧𝑝𝑟𝑝 − 𝑧

𝑦𝑝 = 𝑦
𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑧𝑝𝑟𝑝 − 𝑧
= 𝑦

𝑑𝑝

𝑧𝑝𝑟𝑝 − 𝑧
, 𝑊ℎ𝑒𝑟𝑒 𝑑𝑝 = 𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝



Contd.
▪ Using 3D homogeneous-coordinate representations, we can write

the perspective projection transformation matrix form as,

𝑥ℎ

𝑦ℎ

𝑧ℎ

ℎ

=

1 0 0 0
0 1 0 0
0 0 − Τ𝑧𝑣𝑝 𝑑𝑝 𝑧𝑣𝑝 Τ𝑧𝑝𝑟𝑝 𝑑𝑝

0 0 − Τ1 𝑑𝑝 Τ𝑧𝑝𝑟𝑝 𝑑𝑝

∙

𝑥
𝑦
𝑧
1

▪ In this representation, the homogeneous factor is,

ℎ =
𝑧𝑝𝑟𝑝 − 𝑧

𝑑𝑝
𝑎𝑛𝑑

𝑥𝑝 = Τ𝑥ℎ ℎ 𝑎𝑛𝑑 𝑦𝑝 = Τ𝑦ℎ ℎ



Contd.
▪ There are number of special cases for the perspective

transformation equations.

▪ If view plane is taken to be 𝑢𝑣 plane, then 𝒛𝒗𝒑 = 𝟎 and the

projection coordinates are,

𝑥𝑝 = 𝑥
𝑧𝑝𝑟𝑝

𝑧𝑝𝑟𝑝 − 𝑧
= 𝑥

1

1 − Τ𝑧 𝑧𝑝𝑟𝑝

𝑦𝑝 = 𝑦
𝑧𝑝𝑟𝑝

𝑧𝑝𝑟𝑝 − 𝑧
= 𝑦

1

1 − Τ𝑧 𝑧𝑝𝑟𝑝



Contd.
▪ If we take projection reference point at origin than 𝒛𝒑𝒓𝒑 = 𝟎 and

the projection coordinates are,

𝑥𝑝 = 𝑥
𝑧𝑣𝑝

𝑧
= 𝑥

1

Τ𝑧 𝑧𝑣𝑝

𝑦𝑝 = 𝑦
𝑧𝑣𝑝

𝑧
= 𝑦

1

Τ𝑧 𝑧𝑣𝑝



Contd.
▪ The vanishing point for any set of lines that are parallel to one of

the principal axes of an object is referred to as a principal

vanishing point.

▪ With the orientation of the projection plane, and perspective

projections are accordingly classified as,

1. One-point

2. Two-point

3. Three-point projections.

▪ The number of principal vanishing points in a projection is

determined by the number of principal axes intersecting the view

plane.



View Volumes and General Projection 
Transformations

Parallelepiped 

View Volume

Back 

Plane

Front 

Plane

Window

𝑍𝑣

(a) Parallel Projection

Window

Front 

Plane

Back 

Plane
Projection 

Reference 

Point

Frustum 

View 

Volume

(b) Perspective Projection

𝑍𝑣



Contd.
▪ Based on view window we can generate different image of the

same scene.

▪ Volume which is appears on the display is known as view volume.

▪ Given the specification of the view window, we can set up a view

volume using the window boundaries.

▪ Only those objects within the view volume will appear in the

generated display on an output device, all others are clipped from

the display.

▪ The size of the view volume depends on the size of the window.

▪ Shape of the view volume depends on the type of projection to be

used to generate the display.



Contd.
▪ A finite view volume is obtained by limiting the extent of the

volume in the 𝑧𝑣 direction.

▪ This is done by specifying positions for one or two additional

boundary planes.

▪ These 𝑧𝑣-boundary planes are referred to as the front plane and

back plane, or the near plane and the far plane, of the viewing

volume.

▪ Orthographic parallel projections are not affected by view-plane

positioning.

▪ Because the projection lines are perpendicular to the view plane

regardless of its location.



General Parallel-Projection 
Transformation
▪ Oblique projections may be affected by view-plane positioning,

depending on how the projection direction is to be specified.

▪ Obtain transformation matrix for parallel projection which is

applicable to both orthographic as well as oblique projection.

▪ parallel projection is specified with a projection vector from the

projection reference point to the view window.

View 

Volume

Window 𝑍𝑣

Vp

N



Contd.
▪ Now we will apply shear transformation

▪ View volume will convert into regular parallelepiped and

projection vector will become parallel to normal vector 𝑁.

▪ Let’s consider projection vector 𝑉𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧).

▪ We need to determine the elements of a shear matrix

▪ That will align the projection vector 𝑽𝒑 with the view plane

normal vector 𝑵. This transformation can be expressed as,

𝑉𝑝
′ = 𝑀𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ∙ 𝑉𝑝

Window 𝑍𝑣

𝑉’𝑝View 

Volume

N



Contd.

𝑉𝑝
′ =

0
0
𝑝𝑧

1

where 𝑴𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 is equivalent to the parallel projection matrix

and represents a 𝑧 − 𝑎𝑥𝑖𝑠 shear of the form,

𝑀𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

1 0 𝑎 0
0 1 𝑏 0
0 0 1 0
0 0 0 1



Contd.
▪ Now from above equation we can write,

0
0
𝑝𝑧

1

=

1 0 𝑎 0
0 1 𝑏 0
0 0 1 0
0 0 0 1

∙

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

▪ From matrix we can write,

0 = 𝑝𝑥 + 𝑎𝑝𝑧

0 = 𝑝𝑦 + 𝑏𝑝𝑧

So

𝑎 =
−𝑝𝑥

𝑝𝑧
, 𝑏 =

−𝑝𝑦

𝑝𝑧



Contd.
▪ Thus, we have the general parallel-projection matrix in terms of

the elements of the projection vector as,

𝑀𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

1 0
−𝑝𝑥

𝑝𝑧
0

0 1
−𝑝𝑦

𝑝𝑧
0

0 0 1 0
0 0 0 1

▪ For an orthographic parallel projection, 𝑝𝑥 = 𝑝𝑦 = 0, and is the

identity matrix.



General Perspective-Projection 
Transformations
▪ The projection reference point can be located at any position in

the viewing system, except on the view plane or between the

front and back clipping planes.

View 

Plane

Frustum 

Centerline

View 

Volume

(𝑋𝑝𝑟𝑝, 𝑌𝑝𝑟𝑝, 𝑍𝑝𝑟𝑝)

Center of 

Window

𝑍𝑣



Contd.
▪ We can obtain the general perspective-projection transformation

with the following two operations,

1. Shear the view volume so that the center line of the frustum is

perpendicular to the view plane.

2. Scale the view volume with a scaling factor that depends on 1/𝑧.
Frustum 

Centerline

View Plane (𝑧 = 𝑧𝑣𝑝)

(X’, Y’, Z’)

(𝑋’’, 𝑌’’, 𝑍’’)

(Xprp, Yprp, Zprp)

Center of 

Window



Contd.
▪ With the projection reference point at a general position

(𝑋𝑝𝑟𝑝, 𝑌𝑝𝑟𝑝, 𝑍𝑝𝑟𝑝) the transformation involves a combination of 𝑧 −

𝑎𝑥𝑖𝑠 shear and a translation,

𝑀𝑠ℎ𝑒𝑎𝑟 =

1 0 𝑎 −𝑎𝑧𝑝𝑟𝑝

0 1 𝑏 −𝑏𝑧𝑝𝑟𝑝

0 0 1 0
0 0 0 1

Where the shear parameters are,

𝑎 = −
𝑥𝑝𝑟𝑝 −

𝑥𝑤𝑚𝑖𝑛 + 𝑥𝑤𝑚𝑎𝑥
2

𝑧𝑝𝑟𝑝
, & 𝑏 = −

𝑦𝑝𝑟𝑝 −
𝑦𝑤𝑚𝑖𝑛 + 𝑦𝑤𝑚𝑎𝑥

2
𝑧𝑝𝑟𝑝



Contd.
▪ Points within the view volume are transformed by this operation

as,

𝑥′ = 𝑥 + 𝑎(𝑧 − 𝑧𝑝𝑟𝑝)

𝑦′ = 𝑦 + 𝑏(𝑧 − 𝑧𝑝𝑟𝑝)

𝑧′ = 𝑧

▪ After shear we apply scaling operation. Equation for that are,

𝑥′′ = 𝑥′
𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑧𝑝𝑟𝑝 − 𝑧
+ 𝑥𝑝𝑟𝑝

𝑧𝑣𝑝 − 𝑧

𝑧𝑝𝑟𝑝 − 𝑧

𝑦′′ = 𝑦′
𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑧𝑝𝑟𝑝 − 𝑧
+ 𝑦𝑝𝑟𝑝

𝑧𝑣𝑝 − 𝑧

𝑧𝑝𝑟𝑝 − 𝑧



Contd.
▪ Homogeneous matrix for this transformation is,

𝑀𝑠𝑐𝑎𝑙𝑒 =

1 0
−𝑥𝑝𝑟𝑝

𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑥𝑝𝑟𝑝𝑧𝑣𝑝

𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

0 1
−𝑦𝑝𝑟𝑝

𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑦𝑝𝑟𝑝𝑧𝑣𝑝

𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

0 0 1 0

0 0
−1

𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

𝑧𝑝𝑟𝑝

𝑧𝑝𝑟𝑝 − 𝑧𝑣𝑝

▪ Therefore the general perspective-projection transformation is

obtained by equation,

𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑀𝑠𝑐𝑎𝑙𝑒 ∙ 𝑀𝑠ℎ𝑒𝑎𝑟




