

MICROPROCESSOR 8085

Reference Book:

— Ramesh S. Goankar, “Microprocessor Architecture,
Programming and Applications with 8085, 5" Edition,
Prentice Hall

Week 1 — Basic Concept and Ideas about Microprocessor.
Week 2 - Architecture of 8085

Week 3 - Addressing Modes and Instruction set of 8085
Week 4 — Interrupts of 8085

Week 5 onwards — Peripherals.

Basic Concepts of Microprocessors

e Differences between:

— Microcomputer — a computer with a
microprocessor as its CPU. Includes memory, 1/0O
etc.

— Microprocessor — silicon chip which includes
ALU, register circuits & control circuits

— Microcontroller — silicon chip which includes
microprocessor, memory & |1/O in a single
package.

What Is a Microprocessor?

e The word comes from the combination micro and
Processor.

— Processor means a device that processes whatever. In
this context processor means a device that processes
numbers, specifically binary numbers, 0’s and 1’s.

» To process means to manipulate. It is a general term that
describes all manipulation. Again in this content, it means to
perform certain operations on the numbers that depend on the
microprocessor’s design.

What about micro?

 Micro IS a new addition.

— In the late 1960’s, processors were built using discrete
elements.

» These devices performed the required operation, but were too
large and too slow.

— In the early 1970’s the microchip was invented. All of
the components that made up the processor were now
placed on a single piece of silicon. The size became
several thousand times smaller and the speed became
several hundred times faster. The “Micro”’Processor
was born.

Was there ever a “mini’-

processor?
* No.

— It went directly from discrete elements to a
single chip. However, comparing today’s
microprocessors to the ones built in the early

1970’s you find an extreme increase in the
amount of integration.

e So, What Is a microprocessor?

Definition of the Microprocessor

The microprocessor Is a programmable device
that takes In numbers, performs on them
arithmetic or logical operations according to
the program stored in memory and then
produces other numbers as a result.

Definition (Contd.)

» Lets expand each of the underlined words:

— Programmable device: The microprocessor can perform
different sets of operations on the data it receives depending
on the sequence of instructions supplied in the given
program.

By changing the program, the microprocessor manipulates
the data in different ways.

— Instructions: Each microprocessor is designed to execute a
specific group of operations. This group of operations is
called an instruction set. This instruction set defines what the
microprocessor can and cannot do.

Definition (Contd.)

— Takes in: The data that the microprocessor
manipulates must come from somewhere.
e It comes from what is called “input devices”.

* These are devices that bring data into the system
from the outside world.

» These represent devices such as a keyboard, a
mouse, switches, and the like.

Definition (Contd.)

— Numbers: The microprocessor has a very narrow view on life. It
only understands binary numbers.

A binary digit is called a bit (which comes from binary digit).

The microprocessor recognizes and processes a group of bits
together. This group of bits is called a “word”.

The number of bits in a Microprocessor’s word, is a measure of its
“abilities”.

Definition (Contd.)

— Words, Bytes, etc.
» The earliest microprocessor (the Intel 8088 and Motorola’s
6800) recognized 8-bit words.

— They processed information 8-bits at a time. That’s why they are
called “8-bit processors”. They can handle large numbers, but in
order to process these numbers, they broke them into 8-bit pieces
and processed each group of 8-bits separately.

 Later microprocessors (8086 and 68000) were designed with
16-bit
— A group of 8-bits were referred to as a “half-word” or “byte”.
— A group of 4 bits is called a “nibble”.
— Also, 32 bit groups were given the name “long word”.

» Today, all processors manipulate at least 32 bits at a time and
there exists microprocessors that can process 64, 80, 128 bits

Definition (Contd.)

— Arithmetic and Logic Operations:
» Every microprocessor has arithmetic operations such as add
and subtract as part of its instruction set.
— Most microprocessors will have operations such as multiply and
divide.
— Some of the newer ones will have complex operations such as
square root.

 In addition, microprocessors have logic operations as well.
Such as AND, OR, XOR, shift left, shift right, etc.

» Again, the number and types of operations define the
microprocessor’s instruction set and depends on the specific

microprocessor.

Definition (Contd.)

— Stored in memory :

 First, what is memory?

— Memory is the location where information is kept while not in
current use.

— Memory is a collection of storage devices. Usually, each storage
device holds one bit. Also, in most kinds of memory, these
storage devices are grouped into groups of 8. These 8 storage
locations can only be accessed together. So, one can only read or
write in terms of bytes to and form memory.

— Memory is usually measured by the number of bytes it can hold.
It is measured in Kilos, Megas and lately Gigas. A Kilo in
computer language is 21°=1024. So, a KB (KiloByte) is 1024
bytes. Mega is 1024 Kilos and Giga is 1024 Mega.

Definition (Contd.)

— Stored In memory:

* \When a program is entered into a computer, it Is
stored in memory. Then as the microprocessor starts
to execute the instructions, it brings the instructions
from memory one at a time.

e Memory is also used to hold the data.

— The microprocessor reads (brings in) the data from
memory when it needs it and writes (stores) the results
Into memory when it is done.

Definition (Contd.)

— Produces: For the user to see the result of the
execution of the program, the results must be
presented in a human readable form.

* The results must be presented on an output device.

» This can be the monitor, a paper from the printer, a
simple LED or many other forms.

A Microprocessor-based system

From the above description, we can draw the
following block diagram to represent a
microprocessor-based system:

Input » Output

S
9
&
S
S
&
=Ny
@)
S

Memory

Inside The Microprocessor

 Internally, the microprocessor is made up of
3 main units.
— The Arithmetic/Logic Unit (ALU)
— The Control Unit.

— An array of registers for holding data while it is
being manipulated.

I/O
Input / Output
Register
Array t

< SystemBus

ROM RAM

Memory

Memory stores information such as instructions
and data in binary format (0 and 1). It provides
this information to the microprocessor whenever
It IS needed.

Usually, there is a memory “sub-system” in a
microprocessor-based system. This sub-system
Includes:

— The registers inside the microprocessor

— Read Only Memory (ROM)

 used to store information that does not change.

— Random Access Memory (RAM) (also known as

Read/Write Memory).

 used to store information supplied by the user. Such as
programs and data.

Memory Map and Addresses

 The memory map Is a picture representation
of the address range and shows where the
different memory chips are located within
the address range.

0000 0000

EPROM Address Range of EPROM Chip

3FFF
4400

RAM 1 I Address Range of 15t RAM Chip
L 5FFF
2 6000
&5 RAM 2 Address Range of 2" RAM Chip
7 8FFF
@ 9000 .
= RAM 3 Address Range of 3" RAM Chip
S A3FF
< A400
\ RAM 4 Address Range of 4" RAM Chip
F7FF

FFFF

Memory

e To execute a program:

— the user enters its instructions in binary format into the
memory.

— The microprocessor then reads these instructions and
whatever data is needed from memory, executes the
Instructions and places the results either in memory or
produces it on an output device.

The three cycle Instruction
execution model

* To execute a program, the microprocessor “reads”
each Instruction from memory, “interprets” it, then
“executes” It.

e To use the right names for the cycles:
— The microprocessor fetches each instruction,
— decodes It,
— Then executes it.

 This sequence iIs continued until all instructions
are performed.

Machine Language

 The number of bits that form the “word” of a

microprocessor Is fixed for that particular
processor.

— These bits define a maximum number of combinations.

» For example an 8-bit microprocessor can have at most 28 = 256
different combinations.

* However, in most microprocessors, not all of these
combinations are used.

— Certain patterns are chosen and assigned specific
meanings.

— Each of these patterns forms an instruction for the
microprocessor.

— The complete set of patterns makes up the
microprocessor’s machine language.

The 8085 Machine Language

e The 8085 (from Intel) is an 8-bit microprocessor.

— The 8085 uses a total of 246 bit patterns to form its
Instruction set.

— These 246 patterns represent only 74 instructions.

» The reason for the difference is that some (actually most)
Instructions have multiple different formats.

— Because it Is very difficult to enter the bit patterns
correctly, they are usually entered in hexadecimal
Instead of binary.

» For example, the combination 0011 1100 which translates into
“increment the number in the register called the accumulator”,
Is usually entered as 3C.

Assembly Language

 Entering the Instructions using hexadecimal is quite
easier than entering the binary combinations.

— However, it still is difficult to understand what a program
written in hexadecimal does.

— S0, each company defines a symbolic code for the
Instructions.

— These codes are called “mnemonics”.

— The mnemonic for each instruction is usually a group of
letters that suggest the operation performed.

Assembly Language

« Using the same example from before,
— 00111100 translates to 3C in hexadecimal (OPCODE)
— Its mnemonic is: “INR A”.

— INR stands for “increment register” and A is short for
accumulator.

e Another example is: 1000 0000,

— Which translates to 80 in hexadecimal.
— Its mnemonic is “ADD B”.

— “Add register B to the accumulator and keep the result in the
accumulator”.

Assembly Language

 [tis Important to remember that a machine
language and its associated assembly language are
completely machine dependent.

— In other words, they are not transferable from one
microprocessor to a different one.

* For example, Motorolla has an 8-bit
microprocessor called the 6800.

— The 8085 machine language is very different from that
of the 6800. So Is the assembly language.

— A program written for the 8085 cannot be executed on
the 6800 and vice versa.

“Assembling” The Program

e How does assembly language get translated into
machine language?

— There are two ways:

— 15tthere is “hand assembly”.

* The programmer translates each assembly language instruction
Into its equivalent hexadecimal code (machine language). Then
the hexadecimal code is entered into memory.
— The other possibility is a program called an

“assembler”, which does the translation automatically.

8085 Microprocessor
Architecture

8-bit general purpose Lp

Capable of addressing 64 k of memory
Has 40 pins

Requires +5 v power supply

Can operate with 3 MHz clock

8085 upward compatible

L A0y Voo

z 39 HOL D

3 3% HLDA

& A7 CLE (OUT)
5 1 HESET I
L 35 READY

7 g I POV

i a3 5,

e s

10 HO8S5A 31

i1 . Tn | E

12 29 S

I3] M.

&
]
=l
>
k.

5
b 3

H &

2 2
ity
b
i

EOES Pharroud

43V GND

Ll

Serul S S X X3 Voo Yss
v sop 4 n

Poits - — Ajs

High-Orde
Address Bus
TRAP
R5T 7.5
——

RST 6.5

0"

21

P R R]

R5T 5.5

—————{i
Externally INTR [
Initiated
Signals
EEADY 35
—
HOLD]EI_
RESET I 3
—i

Exiernal Signal = ——r
Acknowledgment .I.R.'IHL

HLDA 3K
e ———

Jl 3 l
RESET CLK
ouT ouT

e System Bus— wires connecting memory & /O to
MI Croprocessor

— Address Bus

 Unidirectional
* |dentifying peripheral or memory location

— DataBus
 Bidirectiona
» Transferring data
— Control Bus
» Synchronization signals
e Timing signals
« Control signal

RSTES
S e—=RST75

TRAP

—
mw— ST 55

f

Bl i

a_"

arrupt [Sanal 1D condrol

ﬁ B-bit ir‘ﬂarnnl data bueﬂ
£ %

.ﬂu:::unliﬂlu |numim Breg (B)|Creg (B)
(Arag) (B) (S m-nlﬁtﬂf{ﬂ} Dreg (B)|Ereg (B)

Hreg dB)|Lreg (B)
Imlmnllnn Stack pobriber 1e)
|CIIE-EE| unit L desodar arnd pﬂ:lﬂrﬂ'l'l counter {1 H':I

(aLUy (E| [machine cycle] e omentenidecrementar
encoding address latch {183

Timing and corbnol lL J-L T

LK Daip'addrass
GEN Contral Stat buffer (8]

Hagieﬁr array

:

RESET IN—= I

A= A AL = AL
address bus addraseidsta bus

H LDy =
Hasel ol s g

Intel 8085 Microprocessor

« Microprocessor consists of:
— Control unit: control microprocessor operations.
— ALU: performs data processing function.
— Registers: provide storage internal to CPU.
— Interrupts
— Internal data bus

TheALU

 |naddition to the arithmetic & logic circuits, the
ALU includes the accumulator, which is part of
every arithmetic & logic operation.

e Also, the ALU includes atemporary register used
for holding data temporarily during the execution
of the operation. This temporary register is not
accessible by the programmer.

* Registers
— General Purpose Registers
, 0, 5, & L (8 bit registers)
e Can be used singly
e Or can be used as 16 bit register pairs

— BC,DE, HL
 H & L can be used as a data pointer (holds memory
addre$) ccumulator Flags
— Specia Purpose Registers - 5 C
(8 bit register) H]
~ Store 8 bit data Cogen o

— Store the result of an operation
— Store 8 bit dataduring 1/O transfer Address 116 ‘ {8 ‘ Data

— 8 bit register — shows the status of the microprocessor before/after an
operation

— S(signflag), Z (zero flag), AC (auxillary carry flag), P (parity flag) &
CY (carry flag)

D7 D6 D5 D4 D3 D2 D1 DO

S Z X AC X P X CY

» Used for indicating the sign of the data in the accumulator
 Thesignflagisset if negative (1 — negative)
 Thesignflagisreset if positive (0 —positive)

— |Isset if result obtained after an operation isO
— |s set following an increment or decrement operation of that register

10110011
+ 01001101

1 00000000

— Issetif thereisacarry or borrow from arithmetic operation

1011 0101 1011 0101
+ 0110 1100 - 1100 1100

Carry 1 0010 0001 Borrow 1 1110 1001

— |Isset if thereisacarry out of bit 3

— Isset if parity Iseven
— Iscleared if parity isodd

The Internal Architecture

* We have aready discussed the general purpose
registers, the Accumulator, and the flags.

e The Program Counter (PC)

— Thisisaregister that is used to control the sequencing
of the execution of instructions.

— Thisregister always holds the address of the next
Instruction.

— Since it holds an address, it must be 16 bits wide.

The Internal Architecture

e The Stack pointer

— The stack pointer is also a 16-bit register that is
used to point into memory.

— The memory this register pointsto is a special
area called the stack.

— The stack Is an area of memory used to hold
datathat will be retreived soon.

— The stack isusually accessed inalLast In First
Out (LIFO) fashion.

Non Programmable Registers

— Instruction is stored in IR after fetched by processor
— Decoder decodesinstructionin IR

Internal Clock generator

— 3.125 MHz internally
— 6.25 MHz externally

The Address and Data Busses

 Theaddressbushas8signal linesA8—-A15
which are unidirectional.

e The other 8 address bits are multiplexed (time
shared) with the 8 data bits.

— S0, the bits ADO — AD7 are bi-directional and serve as
and at the same time.

» During the execution of the instruction, these lines carry the
address bits during the early part, then during the late parts of
the execution, they carry the 8 data bits.

— In order to separate the address from the data, we can
use alatch to save the value before the function of the
bits changes.

Demultiplexing AD7-ADO

— From the above description, it becomes obvious
that the AD7— ADO lines are serving a dual purpose
and that they need to be demultiplexed to get all the
Information.

— The high order bits of the address remain on the
bus for three clock periods. However, the |low order
bitsremain for only one clock period and they
would be lost if they are not saved externally. Also,
notice that the low order bits of the address
disappear when they are needed most.

— To make sure we have the entire address for the
full three clock cycles, we will use an external latch
to savethe value of AD7— ADO when it is carrying
the address bits. We use the ALE signal to enable
this latch.

Derultiplexing the Bus AD7 — ADo

The high order address is placed on the address bus and hold for 3 clk
periods,

The low order address islost after the first clk period, this address
needs to be hold however we need to use latch

The address AD7 — ADO is connected as inputs to the latch 74L S373.

The ALE signal is connected to the enable (G) pin of the latch and the
OC — Output control — of the latch is grounded

——— e iai o iiim mn '::'-Iﬁn

[T T ,:,E

m eme e — e mm— = [- .'.'.._q

. *_"’_E]
|
i mm e "||" —]
{'. SR
= | l J LETE ,."I' Ay
. g] l\'.-\.'.

e e i
| 2 | 1
=

T | | | . 1
| - | ! ':' % el .
L e ! Iy
| oy — L |._. o) | fy
: T = — i = ——
i | hr 1 Lt i
' : . L
. | T

r| | - T "
| !

4 "
l|I | == == s—
I .)
I - 18

| | i

n : B [p— R ———— |='|'1

=

S 0

. l|l'
——— = == aim= - -.-I-':'E.'

i

'.';-r'i_l"lr“

.:'lr-""-

i I'-l:

Lo Uy

RUGIERHGSE
:

=N
lfm- i

| Chip Selection
Circuit

WR RD IOM

| ntroduction to 8085 I nstructions

The 8085 Instructions

— Since the 8085 is an 8-bit deviceit can haveupto 28
(256) instructions.

* However, the 8085 only uses 246 combinations that represent a
total of 74 instructions.

— Most of the instructions have more than one format.

— These instructions can be grouped into five different
groups.
o Data Transfer Operations
Arithmetic Operations
L ogic Operations
Branch Operations
Machine Control Operations

| nstruction and Data Formats

e Each instruction has two parts.

— Thefirst part isthe task or operation to be
performed.

e Thispart iscalled the “opcode” (operation code).

— The second part is the data to be operated on
» Called the “operand”.

Data Transfer Operations

— These operations ssimply COPY the data from the
source to the destination.

— MOV, MVI, LDA, and STA

— They transfer:
» Data between registers.
« Data Byteto aregister or memory location.
» Data between a memory location and aregister.
» Data between an I\O Device and the accumulator.

— The datain the source is not changed.

The LXI instruction

e The 8085 provides an instruction to place
the 16-bit data into the register pair in one
step.

 LXI Rp, <16-bit address> (Load exXtended Immediate)

— Theinstruction L X1 B 4000H will place the
16-bit number 4000 into the register pair B, C.

* The upper two digits are placed in the 1% register of
the pair and the lower two digitsin the 2.

VR

LXI B 40 OOH B 40 00 C

The Memory “Register”

 Most of the instructions of the 8085 can use a

memory location in place of aregister.

— The memory location will become the “memory” register M.

- MOV MB
— copy the data from register B into amemory location.

— Which memory location?

 The memory location isidentified by the contents
of the HL register pair.

— The 16-bit contents of the HL reqister pair are treated
as a 16-bit address and used to identify the memory
location.

Using the Other Register Pairs

— Thereisalso an instruction for moving datafrom
memory to the accumulator without disturbing the
contents of the H and L register.

« LDAX Rp (LoaD Accumulator eXtended)

— Copy the 8-bit contents of the memory |ocation identified by the
Rp register pair into the Accumulator.

— Thisinstruction only uses the BC or DE pair.
— It does not accept the HL pair.

Indirect Addressing Mode

e Using datain memory directly (without loading
first into a Microprocessor’ sregister) is called
Indirect Addressing.

 |Indirect addressing usesthe datain aregister pair
as a 16-bit address to identify the memory location
belng accessed.
— The HL register pair is always used in conjunction with
the memory register “M”.
— The BC and DE register pairs can be used to load data
Into the Accumultor using indirect addressing.

Arithmetic Operations

— Addition (ADD, ADI):
— Any 8-bit number.
— The contents of aregister.
— The contents of a memory location.

» Can be added to the contents of the accumulator and the result
IS stored in the accumul ator.

— Subtraction (SUB, SUI):

— Any 8-bit number
— The contents of aregister
— The contents of amemory location

» Can be subtracted fr om the contents of the accumulator. The
result is stored in the accumul ator.

Arithmetic Operations Related to
Memory

e Theseinstructions perform an arithmetic operation
using the contents of a memory location while
they are still in memory.

— ADD M
* Add the contents of M to the Accumulator
— SUB M

» Sub the contents of M from the Accumulator

— INR M/DCRM

 |ncrement/decrement the contents of the memory location in
place.

— All of these use the contents of the HL register pair to
Identify the memory location being used.

Arithmetic Operations

— Increment (INR) and Decrement (DCR):

* The 8-bit contents of any memory location or any
register can be directly incremented or decremented
by 1.

* NO need to disturb the contents of the accumul ator.

Manipulating Addresses

 Now that we have a 16-bit address in a register
pair, how do we manipulate it?

— It is possible to manipulate a 16-bit address stored in a
register pair as one entity using some specia

Instructions.
« INXRp (Increment the 16-bit number in the register pair)
 DCXRp (Decrement the 16-bit number in the register pair)

— Theregister pair isincremented or decremented as one
entity. No need to worry about a carry from the lower
8-hits to the upper. It istaken care of automatically.

L ogic Operations

e These instructions perform logic operations on the

contents of the accumulator.

— ANA, ANI, ORA, ORI, XRA and XRI

 Source: Accumulator and
— An 8-bit number
— The contents of aregister
— The contents of a memory location

e Destination: Accumulator

ANA R/M

ANl #

ORA R/M

ORI

XRA R/M

XRI

#

#

AND Accumulator With Reg/Mem
AND Accumulator With an 8-bit number

OR Accumulator With Reg/Mem
OR Accumulator With an 8-bit number

XOR Accumulator With Reg/Mem
XOR Accumulator With an 8-bit number

L ogic Operations

— Complement:

» 1's complement of the contents of the accumulator.
CMA No operand

Additional Logic Operations

e Rotate

— Rotate the contents of the accumulator one
position to the left or right.

RLC

Rotate the accumul ator |eft.
Bit 7 goesto bit 0 AND the Carry flag.

Rotate the accumulator left through the carry.
Bit 7 goesto the carry and carry goesto bit O.

Rotate the accumulator right.
Bit 0 goesto bit 7 AND the Carry flag.

Rotate the accumulator right through the carry.
Bit O goesto the carry and carry goesto bit 7.

e RLC

RLC vs. RLA

Carry Flag

4 | 3| 2 10w

Accumulator

71615

Carry Flag

C4 3| 2 D

Accumulator

Logical Operations

 Compare
» Compare the contents of aregister or memory location with the

contents of the accumulator.

— CMP R/M Compare the contents of the register
or memory location to the contents of

the accumul ator.

— CPI # Compare the 8-bit number to the
contents of the accumulator.

* The compare instruction setsthe flags (Z, Cy, and S).

* The compare isdone using an internal subtraction that does not
change the contents of the accumulator.

A—(R/M/#

Branch Operations

e Two types:

— Unconditional branch.
e (GO to anew location no matter what.

— Conditiona branch.
e Gotoanew location if the condition is true.

Unconditional Branch

— JMP Address
» Jump to the address specified (Go to).

— CALL Address
« Jump to the address specified but treat it as a subroutine.

— RET
* Return from a subroutine.

— The addresses supplied to all branch operations must be
16-bits.

Conditional Branch

— Go to new location if a specified condition is met.
« JZ Address (Jump on Zero)

— Go to address specified if the Zero flag is set.
IJNZ Address (Jump on NOT Zero)

— Go to address specified if the Zero flag isnot set.
JC Address (Jump on Carry)

— Go to the address specified if the Carry flag is set.
JNC Address (Jump on No Carry)

— Go to the address specified if the Carry flag is not set.
JP Address (Jump on Plus)

— Go to the address specified if the Sign flag is not set
JM Address (Jump on Minus)

— Go to the address specified if the Sign flag is set.

Machine Control

—HLT
 Stop executing the program.

— NOP

* NO operation
» Exactly asit says, do nothing.

o Usually used for delay or to replace instructions
during debugging.

Operand Types

* There are different ways for specifying the
operand.:
— There may not be an operand (implied operand)
« CMA

— The operand may be an 8-bit number (immediate data)
« ADI 4FH

— The operand may be an internal register (register)
-« SUB B

— The operand may be a 16-bit address (memory address)
« LDA 4000H

|nstruction Size

* Depending on the operand type, the instruction
may have different sizes. It will occupy adifferent
number of memory bytes.

— Typically, all instructions occupy one byte only.

— The exception is any instruction that contains
Immediate data or a memory address.
* Instructionsthat include immediate data use two bytes.
— One for the opcode and the other for the 8-bit data.

* Instructionsthat include a memory address occupy three bytes.
— Onefor the opcode, and the other two for the 16-bit address.

| nstruction with |mmediate Date

e Operation: Load an 8-bit number into the
accumulator.

— MVI A, 32
e Operation: MVI A
* Operand: The number 32
* Binary Code:

00111110 3E 1% byte.
0011 0010 32 2 pyte.

Instruction with a Memory

Address
e Operation: go to address 2085.

— Instruction: IMP 2085
e Opcode: IMP
e Operand: 2085
 Binary code:
11000011 C3 1% pyte.
10000101 85 2ndpyte

00100000 20 3dbyte

Addressing Modes

e The microprocessor has different ways of

specifying the data for the instruction. These are
called “ addressing modes”.

* The 8085 has four addressing modes:

— Implied CMA

— Immediate MVI B, 45
— Direct LDA 4000
— Indirect LDAX B

 Load the accumulator with the contents of the memory location
whose address is stored in the register pair BC).

Data Formats

* |nan 8-bit microprocessor, data can be

represented in one of four formats:
o ASCII
« BCD
o Signed Integer
* Unsigned Integer.

— |t iIsimportant to recognize that the microprocessor
dealswithO'sand 1's.

* |t dealswith values as strings of bits.
 |tisthejob of the user to add a meaning to these strings.

Data Formats

« Assume the accumulator contains the following
value: 0100 0001.

— There are four ways of reading this value:

 |tisan unsigned integer expressed in binary, the equivalent
decimal number would be 65.

 |tisanumber expressed in BCD (Binary Coded Decimal)
format. That would makeit, 41.

o Itisan ASCII representation of aletter. That would make it the
letter A.

 Itisastring of 0'sand 1'swhere the 0" and the 6! bits are set
to 1 while all other bitsare set to 0.

ASCII stands for American Standard Code for Information | nterchange.

Counters & Time Delays

counters

* A loop counter isset up by loading aregister with
acertain value

e Then using the DCR (to decrement) and INR (to
Increment) the contents of the register are updated.

o A loopisset up with aconditional jJump
Instruction that loops back or not depending on
whether the count has reached the termination
count.

counters

* The operation of aloop counter can be
described using the following flowchart.

Initialize

\ 4
Body of loop

I

Update the count

Yes

Sample ALP for implementing aloop
Using DCR instruction

MVI C, 15H
LOOP DCR C
JNZ LOOP

Using a Register Pair as aLoop
Counter

e Using asingle register, one can repeat aloop for a
maximum count of 255 times.

e |t IS possible to increase this count by using a
register pair for the loop counter instead of the
single register.

— A minor problem arises in how to test for the final
count since DCX and INX do not modify the flags.

— However, if the loop is looking for when the count
becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as aLoop
Counter

 Thefollowing isan example of aloop set
up with aregister pair as the loop counter.

LXI B, 1000H
LOOP DCX B

MOV A, C

ORA B

JNZ LOOP

Delays

|t was shown in Chapter 2 that each instruction
passes through different combinations of Fetch,
Memory Read, and Memory Write cycles.

« Knowing the combinations of cycles, one can
calculate how long such an instruction would
require to complete.

e Thetablein Appendix F of the book contains a
column with the title B/M/T.
— B for Number of Bytes
— M for Number of Machine Cycles
— T for Number of T-State.

Delays

e Knowing how many T-States an instruction
requires, and keeping in mind that a T-State is one
clock cycle long, we can calculate the time using
the following formula:

Delay = No. of T-States/ Frequency

e For examplea“MVI” instruction uses 7 T-States.
Therefore, if the Microprocessor i1srunning at 2
MHz, the instruction would require 3.5 uSeconds

to complete.

Delay loops

* \WWe can use aloop to produce acertain
amount of time delay in a program.

 Thefollowing isan example of adelay

loop:
MVI C, FFH [T-States
LOOPDCR C 4 T-States
JNZ LOOP 10 T-States

o Thefirst instruction initializes the loop counter and is
executed only once requiring only 7 T-States.

e Thefollowing two instructions form aloop that
requires 14 T-States to execute and is repeated 255
times until C becomes 0.

Delay Loops (Contd.)

We need to keep in mind though that in the last
iteration of the loop, the INZ instruction will fail and
require only 7 T-States rather than the 10.

Therefore, we must deduct 3 T-States from the total
delay to get an accurate delay calculation.

To calculate the delay, we use the following formula:

Tgaay = To+ T,
— Tyaq = tota delay
— Ty = delay outside the loop
— T_ =delay of theloop

Ty isthe sum of al delays outside the loop.

Delay Loops (Contd.)

o Using these formulas, we can calculate the
time delay for the previous example;

e To=7T-States
— Delay of the MV 1 instruction

+ T, = (14X 255) - 3= 3567 T-States

— 14 T-States for the 2 instructions repeated 255 times
(FF,; = 255,,) reduced by the 3 T-States for the final
INZ.

Using a Register Pair as aLoop
Counter

e Using asingle register, one can repeat aloop for a
maximum count of 255 times.

e |t IS possible to increase this count by using a
register pair for the loop counter instead of the
single register.

— A minor problem arises in how to test for the final
count since DCX and INX do not modify the flags.

— However, if the loop is looking for when the count
becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as aLoop
Counter

 Thefollowing isan example of adelay loop
set up with aregister pair as the loop
counter.

LXI B, 1000H 10 T-States

LOOP DCX B 6 T-States
MOV A, C 4 T-States
ORA B 4 T-States

JNZ LOOP 10 T-States

Using a Register Pair asa Loop
Counter

e Using the same formula from before, we can
calculate:

— Thedelay for the LXI instruction

o T, =(24 X 4096) - 3=98301 T- States

— 24 T-Statesfor the 4 instructions in the loop repeated
4096 times (1000, = 4096,,) reduced by the 3 T-
States for the INZ in the last iteration.

NeSted LOO Sl Initializ=e loop 2

Bodly of loop 2
e Nested |OOpS can be | Initializ} loop 1 |
easily setup in Body of 1o0p 1
Assembly language by e
using two registers for
the two loop counters o @
and updating the right e
register in the right Dpdate the count2
loop.
— In the figure, the body of = @
loop2 can be before or

Yes

after loopl.

Nested Loops for Delay

 Instead (or in conjunction with) Register Pairs, a
nested |oop structure can be used to increase the
total delay produced.

MVI B, 10H [/ T-States
LOOP2 MVIC, FFH { T-States
LOOP1 DCRC 4 T-States
JNZ LOOP1 10 T-States
DCR B 4 T-States

JNZ LOOP2 10 T-States

Delay Calculation of Nested
L oops

* The calculation remains the same except
that It the formula must be applied
recursively to each loop.

— Start with the inner loop, then plug that delay in
the calculation of the outer |oop.

e Delay of inner loop
— Ty, = 7 T-States
« MVI C, FFH instruction
— T,,=(255 X 14) - 3= 3567 T-States

o 14 T-Statesfor the DCR C and JNZ instructions repeated 255
timeec(EE = 2BE6 YminiiceRfaor the final INI17

Delay Calculation of Nested
L oops

« Delay of outer loop
— To, =7 T-States
« MVI B, 10H instruction
— T,,=(16 X (14 + 3574)) - 3 = 57405 T-States

o 14 T-States for the DCR B and JNZ instructions and 3574
T-States for loopl repeated 16 times (10,4 = 16,,) minus 3 for the
final INZ.

— Tpaa = 7 + 57405 = 57412 T-States

o Total Delay
— Tpaa = 57412 X 0.5 uSec = 28.706 mSec

Increasing the delay

e The delay can be further increased by using

register pairs for each of the loop counters
In the nested |oops setup.

e It can also beincreased by adding dummy

Instructions (like NOP) in the body of the
loop.

Timing Diagram

Representation of Various Control signals generated during
Execution of an Instruction.

Following Buses and Control Signals must be shown in a
Timing Diagram:

*Higher Order AddressBus.
[ower Address/Data bus
*ALE

Timing Diagram

Instruction:
A 000N MQV A,B
Corresponding Coding:

A000N /8

Timing Diagram
| nstruction:

A0Q0Oh MOV A,B
Corresponding Coding:
A0Q0Oh /8

l B I

38085 M emory

Timing Diagram

| nstruction: n 12 T3 Ta

A0OOh MOV A,B — o —

Corresponding Coding: Coon > >
A0OOh 78

Op-code fetch Cycle

Timing Diagram
| nstruction:

A000h MVI A,45h
Corresponding Coding:
A000h 3E

A001h 45

Timing Diagram

| nstruction:

A000N MVI A,45h

Corresponding Coding:

A000N 3E « -
MEMR

A001h 45

8085 Memory

Timing Diagram

T1 i T2 i T3 i T4 I i T6 i T7

—
e

Instruction:

A000h MVI A,45h
Corresponding Coding:
A000h 3E
A001h 45

- 10/M

Op-Code Fetch Cycle "~ Memory Read Cycle

Timing Diagram

Instruction:

A000h L X1 A,FO45h
Corresponding Coding:
A000h 21

A001h 45

A002h FO

Timing Diagram

Instruction:

A000ONn L X1 A,FO45h

Corresponding Coding: orC
A000h 21 MEMR
A001h 45 MR

A002h FO 8085

Memory

Timing Diagram

n
>

<
<

n
>

A

Op-Code Fetch Cycle

. T2

. T3

v
A

Abh

DA-DAG (L ower ord:

gher Order Addressbus)

2]

Llh

er addresydata Bus):

Memory Read Cycle

. T6

. T7

AOh

Memory Read Cycle

. T9

. T10

AOh

F(

Timing Diagram

Instruction:
A000N MOV AM
Corresponding Coding:

A0Q0Oh /E

Timing Diagram

| nstruction:
A000Nh MOV A M

OFC
Corresponding Coding: R

A0O0Oh E
3085 Memory

Timing Diagram

fT6 fT7

Cointent Of Reg H >
Content OfM_>>

Instruction:

AO00Oh MOV A M
Corresponding Coding: :
A000h 7E __

|O/M

Op-Code Fetch Cycle ~ Memory Read Cycle

Timing Diagram

Instruction:
A000N MOV M,A
Corresponding Coding:

A000N 7

Timing Diagram

| nstruction:
A0O0Oh MOV M A

OFC
Corresponding Coding: SRV

A0O0Oh 7/
3085 Memory

Timing Diagram

' T6 Py

Cointent Of Reg H >

| nstruction:

A000h MOV M,A
Corresponding Coding:
A000h 77 _

1O/M

Op-Code Fetch Cycle ~ Memory WriteCycle -

Chapter 9
Stack and Subroutines

The Stack

e The stack is an area of memory identified by the
programmer for temporary storage of information.

e The stack iIsaLIFO structure.
— Last In First Out.

e The stack normally grows backwards into | """
memory.

— In other words, the programmer
defines the bottom of the stack The Stack
and the stack grows up into grows

backwards T

FGdUCI ng addl"eSS range into memory

Bottom
<« of the
Stack

The Stack

* Given that the stack grows backwards into
memory, It Is customary to place the bottom of the
stack at the end of memory to keep it as far away
from user programs as possible.

* |Inthe 8085, the stack is defined by setting the SP
(Stack Pointer) register.

LXI SP, FFFFH

e This setsthe Stack Pointer to location FFFFH (end
of memory for the 8085).

Saving Information on the Stack

o |Information is saved on the stack by PUSHINg it
on.
— It isretrieved from the stack by POPing it off.

* The 8085 providestwo instructions. PUSH and
POP for storing information on the stack and
retrieving it back.

— Both PUSH and POP work with register pairs ONLY .

The PUSH Instruction

« PUSH B

— Decrement SP

— Copy the contents of register B to the memory
location pointed to by SP

— Decrement SP
— Copy the%Tma%%of register C to the memory

FFFB

location pointed.to by 5Pz

» FFFE 12
FFFF SP

The POP Instruction

« POPD

— Copy the contents of the memory location
pointed to by the SP to register E

— Increment SP

— Copy the cgntents of the memory location
pointed t¢-, L= 3P to register D

FFFB

— Increment 3P S <p

FFFE[12 |
FFFF —

Operation of the Stack

« During pushing, the stack operatesin a
“decrement then store” style.

— The stack pointer is decremented first, then the
Information is placed on the stack.

 During poping, the stack operatesin a“use then
Increment” style.

— The information is retrieved from the top of the the
stack and then the pointer is incremented.

e The SP pointer always pointsto “the top of the
stack”.

LIFO

e The order of PUSHs and POPs must be opposite
of each other in order to retrieve information back
Into its original location.

PUSH B
PUSH D

POP D
POP B

The PSW Register Pair

* The 8085 recognizes one additional register pair
called the PSW (Program Status Word).

— Thisregister pair is made up of the Accumulator and
the Flags registers.

 |tispossibleto push the PSW onto the stack, do
whatever operations are needed, then POP it off of
the stack.
— Theresult is that the contents of the Accumulator and

the status of the Flags are returned to what they were
before the operations were executed.

Subroutines

e A subroutine is agroup of instructions that will be
used repeatedly in different locations of the
program.

— Rather than repeat the same instructions several times,
they can be grouped into a subroutine that is called
from the different locations.

 In Assembly language, a subroutine can exist
anywhere in the code.

— However, it Is customary to place subroutines
separately from the main program.

Subroutines

e The 8085 has two instructions for dealing
with subroutines.

— The CALL instruction is used to redirect
program execution to the subroutine.

— The RTE insutruction is used to return the
execution to the calling routine.

The CALL Instruction

 CALL 4000H

2000
2003

Push the address of the instruction
Immediately following the CALL onto the

S¥2 8 1
L oad the program ea—=#33~4h the 16-hit
address supplied with the CALL frstrugtion.
>irel 20|

FFFF SP

The RTE Instruction

« RTE

— Retrieve the return address from the top of
the stack

— Load the program counter with the return
address. Pc[_2003]

FFFB
4014 e ‘ FEEG

4015 RTE FFFD|__ 03 SP

FFFE| 20 |
FFFF «—

Cautions

 The CALL instruction places the return address at
the two memory locations immediately before
where the Stack Pointer is pointing.

— You must set the SP correctly BEFORE using the
CALL instruction.

e The RTE instruction takes the contents of the two
memory locations at the top of the stack and uses
these as the return address.

— Do not modify the stack pointer in a subroutine. Y ou
will loose the return address.

Passing Datato a Subroutine

* |In Assembly Language datais passed to a
subroutine through registers.

— The datais stored in one of the registers by the calling
program and the subroutine uses the value from the

register.

e The other possibility isto use agreed upon
memory locations.

— The calling program stores the data in the memory
location and the subroutine retrieves the data from the

location and uses It.

Call by Reference and Call by
Vaue

* |f the subroutine performs operations on the
contents of the registers, then these modifications
will be transferred back to the calling program

upon returning from a subroutine.
— Call by reference

e |f thisisnot desired, the subroutine should PUSH
all the registers it needs on the stack on entry and
POP them on return.

— The original values are restored before execution
returnsto the calling program.

Cautions with PUSH and POP
« PUSH and POP should be used in opposite order.

* There hasto be as many POP sasthere are
PUSH’s.

— If not, the RET statement will pick up the wrong
Information from the top of the stack and the program
will fail.

 |tisnot advisableto place PUSH or POP inside a
loop.

Conditional CALL and RTE

| nstructions

e The 8085 supports conditional CALL and
conditional RTE instructions.

— The same conditions used with conditional JUMP
Instructions can be used.

— CC, call subroutineif Carry flag is set.

— CNC, call subroutineif Carry flag is not set

— RC, return from subroutine if Carry flag is set

— RNC, return from subroutine if Carry flag is not set
— Etc.

A Proper Subroutine

« According to Software Engineering practices, a
proper subroutine:

— Isonly entered with a CALL and exited with an RTE

— Hasasingle entry point

* Do not use a CALL statement to jump into different points of
the same subroutine.

— Has asingle exit point
» There should be one return statement from any subroutine.

* Following these rules, there should not be any
confusion with PUSH and POP usage.

V)
- —
D
g
>
af)
D
)
(q0]
)
)
g
_I

The Basic Memory Element

> - This latch has an Input where the data comes In.
) It has an enable input and an output on which
data comes out.

~ A Memory “Register’

ol £ ol £ ol £ ol &

A group of memory registers

v b 4

m O m O
=z =z
O O

2 Expanding on this
scheme to add more
memory registers we get
the diagram to the right.

m O m O
=z =z
O O

m O m O m O m @)
z z z z
QO O O O

m lw) m lw) m lw) m lw)
z z z z
O O O O

m lw) m lw) m O m O
z z z z
O O O O

10

A group of Memory Registers

2 |f we represent each memory location (Register) as
a block we get the following

Input Buffers

Memory Reg. 0
Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

Output Buffers

11

The Design of a Memory Chip

'Y = Using the RD and WR controls we can determine the
9 direction of flow either into or out of memory. Then
using the appropriate Enable input we enable an
individual memory register.

2 \What we have just designed is a memory with 4
locations and each location has 4 elements (bits). This
memory would be called 4 X 4 [Number of location X
number of bits per location].

12

The Enable Inputs

" = How do we produce these enable line?

7 SInce we can never have more than one of these
enables active at the same time, we can have them
encoded to reduce the number of lines coming into
the chip.

7 These encoded lines are the address lines for
memory.

13

The Design of a Memory Chip

7 S0, the previous diagram would now look like the
following:

Input Buffers
[[]
Memory Reg. O

Memory Reg. 1
Memory Reg. 2

Memory Reg. 3

[[
Output Buffers

The Design of a Memory Chip

» 2 SIince we have tri-state buffers on both the inputs
: and outputs of the flip flops, we can actually use

T

I —
Input Buffers
I :
Memory Reg. O ke th IS

Memory Reg. 1
Memory Reg. 2

Memory Reg. 3

S
[]
Output Buffers

15

The steps of writing into Memory

Y 2 What happens when the programmer issues the
STA Instruction?

2 The microprocessor would turn ~ the WR control
(WR=0)and turn the RD control (RD =1).

2 The address is applied to the address decoder which
generates a Enable signal to turn on
of the memory registers.

2 The data Is then applied on the data lines and it Is
stored into the enabled register.

16

Dimensions of Memory

2 Memory Is usually measured by two numbers: its length
and its width (Length X Width).

o The length is the total number of locations.
e The width is the number of bits in each location.

2 The length (total number of locations) is a function of the
number of address lines.

17

The 8085 and Memory

18

Chip Select

- Usually, each memory chip hasa CS (hip elect)
input. The chip will only work if an active signal is
applied on that input.

2 T0 allow the use of multiple chips in the make up of
memory, we need to use a number of the address lines
for the purpose of “chip selection”.

2 These address lines are decoded to generate the 2"
necessary CS inputs for the memaory chips to be used.

19

1 Chip Selection Example

2 Assume that we need to build a memory system
made up of 4 of the 4 X 4 memaory chips we
designed earlier.

N Chip Selection Example

RD

WR

\0)
Al

A2
A3

22

abuey ssalippy

Memory Map and Addresses

' 2 The address range of a particular chip is the list of all
E addresses that are mapped to the chip.

23

24

25

The 8085 and Address Ranges

Ao AgA A A A, AL A, AL A,

26

2 The memory chip in this example would require the following circuit on its
chip select input:

27

28

N
(Q\]

Igh-Order vs. Low-Order Address Lines

) = The address lines from a microprocessor can be
classified into two types:
7. High-Order
e Used for memory chip selection
7. Low-Order
e Used for location selection within a memaory chip.

2 This classification is highly dependent on the
memory system design.

30

(p)
D
=
—
O
)
[qv)
)

31

Data Lines

(O

\0)

A9

Iy
dl dl

D3
D4

D7

32

|nterrupts

|nterrupts

 Interrupt isaprocess where an external device can
get the attention of the microprocessor.
— The process starts from the |/O device
— The process Is asynchronous.

 |nterrupts can be classified into two types:

« Maskable (can be delayed)
* Non-Maskable (can not be delayed)

 Interrupts can also be classified into:

» Vectored (the address of the service routine is hard-wired)

* Non-vectored (the address of the service routine needsto be
supplied externally)

|nterrupts

* Aninterrupt is considered to be an emergency
signal.

— The Microprocessor should respond to it as soon as
possible.

* When the Microprocessor receives an interrupt
signal, it suspends the currently executing
program and jumps to an Interrupt Service
Routine (ISR) to respond to the incoming
Interrupt.

— Each interrupt will most probably have its own |SR.

Responding to Interrupts

e Responding to an interrupt may be immediate or
delayed depending on whether the interrupt is
maskable or non-maskable and whether interrupts
are being masked or not.

* There aretwo ways of redirecting the execution to
the ISR depending on whether the interrupt is
vectored or non-vectored.

— The vector is aready known to the Microprocessor

— The device will have to supply the vector to the
Microprocessor

The 8085 Interrupts

* The maskable interrupt processin the 8085 is
controlled by asingle flip flop inside the
microprocessor. This Interrupt Enable flip flop is
controlled using the two instructions “EI” and
“DI”.

e The 8085 has a single Non-Maskabl e interrupt.

— The non-maskable interrupt is not affected by the value
of the Interrupt Enable flip flop.

The 8085 Interrupts

 The 8085 has 5 interrupt inputs.

— The INTR input.

 TheINTR input isthe only non-vectored interrupt.
* INTR ismaskable using the EI/DI instruction pair.

— RST 5.5, RST 6.5, RST 7.5 are al automatically
vectored.

e RST 5.5, RST 6.5, and RST 7.5 are al maskable.

— TRAP isthe only non-maskable interrupt in the 8085
« TRAP isaso automatically vectored

The 8085 Interrupts

Interrupt name | Maskable | Vectored
INTR Yes No
RST 5.5 Yes Yes
RST 6.5 Yes Yes
RST 7.5 Yes Yes
TRAP NoO Yes

Interrupt Vectors and the Vector
Table

e Aninterrupt vector isapointer to wherethe ISR is
stored in memory.

 All interrupts (vectored or otherwise) are mapped
onto amemory area called the Interrupt Vector
Table (IVT).

— TheIVT isusually located in memory page 00 (0OO00H
- OOFFH).

— The purpose of the IVT isto hold the vectors that
redirect the microprocessor to the right place when an
Interrupt arrives.

— TheIVT isdivided into several blocks. Each block is
used by one of the interrupts to hold its “vector”

The 8085 Non-V ectored Interrupt

Process

1. Theinterrupt process should be enabled using the
El instruction.

2. The 8085 checks for an interrupt during the
execution of every instruction.

3. If thereisan interrupt, the microprocessor will
complete the executing instruction, and start a
RESTART sequence.

4. The RESTART seguence resets the interrupt flip
flop and activates the interrupt acknowledge signal
(INTA).

5. Uponrecelving the INTA signal, the interrupting
device is expected to return the op-code of one of
the 8 RST instructions.

The 8085 Non-V ectored Interrupt
Process

6. When the microprocessor executes the RST
Instruction recelved from the device, it saves the
address of the next instruction on the stack and
jumps to the appropriate entry inthe IVT.

/. ThelVT entry must redirect the microprocessor to
the actual service routine.

8. The service routine must include the instruction El
to re-enable the interrupt process.

9. Attheend of the service routine, the RET
Instruction returns the execution to where the
program was interrupted.

The 8085 Non-V ectored

e The 8085 recognizes 8 RESTART
Instructions; RSTO - RST7.

— each of these would send the
execution to a predetermined
hard-wired memory location:

nterrupt Process

Restart Equivalent
| nstruction to
RSTO CALL

OOOOH
RST1 CALL
O008H
RST2 CALL
OO010H
RST3 CALL
0018H
RST4 CALL
0020H
RST5 CALL
0028H
RST6 CALL
OO030H
RST7 CALL

0038H

Restart Sequence

* The restart sequence is made up of three machine
cycles

— Inthe 1st machine cycle:
* The microprocessor sendsthe INTA signal.
 While INTA isactive the microprocessor reads the datalines
expecting to receive, from the interrupting device, the opcode
for the specific RST instruction.
— Inthe 2nd and 3rd machine cycles.
 the 16-bit address of the next instruction is saved on the stack.

» Then the microprocessor jumps to the address associated with
the specified RST instruction.

Restart Sequence

 Thelocation inthelVT associated with the
RST instruction can not hold the complete
service routine.

— The routine 1s written somewhere else in
memory.

— Only aJUMP instruction to the ISR’ s location
Iskept inthe IVT block.

Hardware Generation of RST
Opcode

 How does the external device produce the
opcode for the appropriate RST instruction?

— The opcode is simply a collection of bits.

— S0, the device needs to set the bits of the data

bus to the appropriate value in response to an
INTA signal.

Hardware Generation of RST
The following is an OpCOde

example of generating Tri-state Buffer

RST 5: z
_ [L.
RST 5’s opcode is EF =
= |
b _ D -
76543210
11101111 -
o
= |
DO
L — IMTA

Hardware Generation of RST
Opcode

 During the interrupt acknowledge machine cycle,
(the 1st machine cycle of the RST operation):
— The Microprocessor activatesthe INTA signal.

— Thissignal will enable the Tri-state buffers, which will
place the value EFH on the data bus.

— Therefore, sending the Microprocessor the RST 5
Instruction.

 The RST 5 instruction is exactly equivalent to
CALL 0028H

Issues in Implementing INTR
|nterrupts

 How long must INTR remain high?

— The microprocessor checksthe INTR line one clock
cycle before the last T-state of each instruction.

— The interrupt process is Asynchronous.

— The INTR must remain active long enough to allow for
the longest instruction.

— Thelongest instruction for the 8085 is the conditional
CALL instruction which requires 18 T-states.

Therefore, the INTR must remain activefor 17.5
T-states.

Issues in Implementing INTR
|nterrupts

 How long can the INTR remain high?

— The INTR line must be deactivated before the El is
executed. Otherwise, the microprocessor will be
Interrupted again.

— The worst case situation iswhen El isthe first
Instruction in the ISR.

— Once the microprocessor starts to respond to an INTR
Interrupt, INTA becomes active (=0).

Therefore, INTR should be turned off as soon as the
INTA signal isreceived.

Issues in Implementing INTR
|nterrupts

« Can the microprocessor be interrupted again
before the completion of the ISR?

— Assoon asthe 1st interrupt arrives, all maskable
Interrupts are disabled.

— They will only be enabled after the execution of the El
Instruction.

Therefore, the answer 1s: “only if you allow it to”.

If the El instruction is placed early in the ISR, other
Interrupt may occur before the ISR is done.

Multiple Interrupts & Priorities

 How do we allow multiple devicesto
Interrupt using the INTR line?

— The microprocessor can only respond to one
signal on INTR at atime.

— Therefore, we must allow the signal from only
one of the devices to reach the microprocessor.

— We must assign some priority to the different
devices and allow their signalsto reach the
microprocessor according to the priority.

The Priority Encoder

 Thesolutionisto use acircuit called the priority
encoder (74366).

— This circuit has 8 inputs and 3 outputs.

— The inputs are assigned increasing priorities according
to the increasing index of the input.
 Input 7 has highest priority and input O has the lowest.

— The 3 outputs carry the index of the highest priority
active input.

— Figure 12.4 in the book shoes how this circuit can be
used with a Tri-state buffer to implement an interrupt
priority scheme.

» Thefigurein the textbook does not show the method for
distributing the INTA signal back to the individual devices.

Multiple Interrupts & Priorities

* Note that the opcodes for the different RST

Instructions follow a set pattern.

» Bit D5, D4 and D3 of the opcodes change in a binary
sequence from RST 7 down to RST O.

* The other bits are always 1.

» Thisallowsthe code generated by the 74366 to be used
directly to choose the appropriate RST instruction.

* The onedraw back to this scheme s that the only
way to change the priority of the devices
connected to the 74366 is to reconnect the
hardware.

Multiple Interrupts and Priority

—— [INTR Circuit

<_
| . .
Dev. 7 go, <— |INTA Circuit
| q0, 7 o
4_‘ dJo, y — RST Circuit
Dev. 6 — O,
do, 1
. q60, 3 5
Dev. 5 qo, 3 T
g0, |
Dev.4 | §
11 INTA
) » INTR
Dev.3 | E;
— :7 7 ¥ » AD7
) >, +(ap6 ()
Dev. 2 > |5 4 D> » AD5
> :4 3 D> »| AD4 8
Dev.1 | : |3 > ADs 5
| > |2 6 > AD2
—>| 3 . » AD1
< I 6 Tri— ~
Dev. 0 | State "| AP0
Buffer

Priority
Encoder

The 8085 Maskable/V ectored

|nterrupts

e The 8085 has 4 Masked/V ectored interrupt inputs.

— RST 5.5, RST 6.5, RST 7.5
* They are all maskable.

* They are automatically vectored according to the following
table:

I nterrupt Vector
RST 5.5 002CH
RST 6.5 0034H
RST 7.5 003CH

— The vectors for these interrupt fall in between the vectors for the
RST instructions. That’s why they have nameslike RST 5.5
(RST 5 and a half).

Masking RST 5.5, RST 6.5 and
RST 7.5

* Thesethree interrupts are masked at two
levels:
— Through the Interrupt Enable flip flop and the

El/DI instructions.

* The Interrupt Enable flip flop controls the whole
maskable interrupt process.

— Through individual mask flip flops that control
the availability of the individual interrupts.

e Theseflip flops control the interrupts individually.

Maskable Interrupts

RST7.5 Memory
RST 7.5
9
I D
M7.5
RST 6.5 3)
I
M 6.5
RST 5.5])
I
M 5.5
INTR 37
Interrupt
Enable
Flip Flop

T

E

T

The 8085 M askable/V ectored
Interrupt Process

ne Interrupt process should be enabled using the
Instruction.

ne 8085 checks for an interrupt during the

execution of every instruction.

. f

thereis an interrupt, and If the interrupt Is

enabled using the interrupt mask, the
microprocessor will complete the executing
Instruction, and reset the interrupt flip flop.

. The microprocessor then executes a call instruction
that sends the execution to the appropriate location
In the interrupt vector table.

The 8085 M askable/V ectored
Interrupt Process

. When the microprocessor executes the call
INstruction, 1t saves the address of the next
InNstruction on the stack.

. The microprocessor jumps to the specific service
routine.

. The service routine must include the instruction El

to re-enable the interrupt process.

. At the end of the service routine, the RET
Instruction returns the execution to where the
program was interrupted.

Manipulating the Masks

* The Interrupt Enable flip flop is manipulated using
the EI/DI instructions.

e Theindividua masksfor RST 5.5, RST 6.5 and
RST 7.5 are manipulated using the SIM
Instruction.

— Thisinstruction takes the bit pattern in the Accumulator
and applies it to the interrupt mask enabling and
disabling the specific interrupts.

How SIM Interprets the
Accumul ator

7 6 54 3 2 10

Serial Data Out <

<

0 - Available

———» RST6.5 Mask 1 - Masked

RST5.5 Mask }
— > RST7.5 Mask

A

Enable Serial Data < » Mask Set Enable
O - Ignore bit 7

O - Ignore bits 0-2
1 - Send bit 7 to SOD pin 1 - Set the masks according

to bits 0-2

Not Used < » Force RST7.5 Flip Flop to reset

SIM and the Interrupt Mask

e BitOisthemask for RST 5.5, bit 1 isthe mask for
RST 6.5 and hit 2 iIsthe mask for RST 7.5.

o |f themask bitisO, theinterrupt isavailable.
 |f themask bitis 1, the interrupt is masked.

e Bit 3 (Mask Set Enable- MSE) isan enable for

setting the mask.

o |fitissetto0the mask isignored and the old settings remain.

o |fitissettol, the new setting are applied.

* The SIM instruction is used for multiple purposes and not only
for setting interrupt masks.

— Itisalso used to control functionality such as Serial Data
Transmission.

— Therefore, bit 3isnecessary to tell the microprocessor
whether or not theinterrupt masks should be modified

SIM and the Interrupt Mask

« TheRST 7.5 interrupt isthe only 8085 interrupt that has
memory.

— If asignal on RST7.5 arriveswhile it ismasked, aflip flop will
remember the signal.

— When RST7.5 is unmasked, the microprocessor will be interrupted
even if the device has removed the interrupt signal.

— Thisflip flop will be automatically reset when the microprocessor
responds to an RST 7.5 interrupt.

e Bit 4 of the accumulator inthe SIM instruction allows
explicitly resetting the RST 7.5 memory even if the
microprocessor did not respond to it.

SIM and the Interrupt Mask

The SIM instruction can also be used to perform
serial datatransmission out of the 8085’ s SOD

pin.
— One hit at atime can be sent out serially over the SOD
pin.

Bit 6 Is used to tell the microprocessor whether or

not to perform serial data transmission

 |f O, then do not perform serial datatransmission
 |f 1, then do.

The value to be sent out on SOD has to be placed
In bit 7 of the accumulator.

Bit 5is not used by the SIM instruction

Using the SIM Instruction to Modify the

Interrupt Masks
 Example: Set the interrupt masks so that
RST5.5 Isenabled, RST6.5 is masked, and
RST7.5 s enabled.

— First, determine the contents of the accumulator

_Enable 5.5 bit0=0 QUXP2H LS

- Disable 6.5 bit1=1 nunxe=zzz=z2

- Enable 7.5 bit2=0

- Allow setting the masks bit3=1

- Don't reset the flip flop bit4=0

- Bit 5 is not used bit5=0 Contents of accumulator are: OAH
- Don't use serial data bit6 =0

- Serial data is ignored bit7=0

El ; Enable interrupts including INTR

MVI A, OA ; Prepare the mask to enable RST 7.5, and 5.5, disable 6.5
SIM ; Apply the settings RST masks

Triggering Levels

 RST 7.51spositive edge sensitive.
* When a positive edge appearson the RST7.5ling, alogic 1 is
stored in the flip-flop asa“pending” interrupt.

» Sincethe value has been stored in the flip flop, the line does
not have to be high when the microprocessor checks for the
Interrupt to be recognized.

* Theline must go to zero and back to one before a new interrupt
IS recognized.

e RST 6.5and RST 5.5 areleva sensitive.

* Theinterrupting signal must remain present until the
microprocessor checks for interrupts.

Determining the Current Mask

Settings
 RIM Instruction: Read Interrupt Mask

— Load the accumulator with an 8-bit pattern
showing the status of each interrupt pin and
mask.

RST7.5 Memory
I

RST75 —

M7.5

RST6.5 —»

M 6.5

RST 5.5 —l

M 5.5

Interrupt Enable
Flip Flop

How RIM sets the Accumulator’s
different bits

7 6 54 3 2 10

T | RSTS.5 Mask 0 - Available

Seri ;

erial Data In RST6.5 Mask } 1 - Masked
RST7.5 Mask

RSTS5.5 Interrupt Pending ——

RST6.5 Interrupt Pending

RST7.5 Interrupt Pending Interrupt Enable
Value of the Interrupt Enable

Flip Flop

The RIM Instruction and the
Masks

* Bits0-2 show the current setting of the mask for
each of RST 7.5, RST 6.5 and RST 5.5

* They return the contents of the three mask flip flops.

* They can be used by a program to read the mask settingsin
order to modify only the right mask.

e Bit 3 shows whether the maskable interrupt

process is enabled or not.

* |t returns the contents of the Interrupt Enable Flip Flop.

* |t can be used by a program to determine whether or not
Interrupts are enabled.

The RIM Instruction and the
Masks

e Bits4-6 show whether or not there are pending

Interrupts on RST 7.5, RST 6.5, and RST 5.5

* Bits4 and 5 return the current value of the RST5.5 and RST6.5
pins.
* Bit 6 returnsthe current value of the RST7.5 memory flip flop.

e Bit 7isusedfor Serial Data Input.

* The RIM instruction reads the value of the SID pin on the
microprocessor and returnsit in this bit.

Pending Interrupts

» Sincethe 8085 hasfive interrupt lines, interrupts
may occur during an | SR and remain pending.
— Using the RIM instruction, the programmer can read

the status of the interrupt lines and find if there are any
pending interrupts.

— The advantage is being able to find about interrupts on
RST 7.5, RST 6.5, and RST 5.5 without having to
enable low level interrupts like INTR.

Using RIM and SIM to set

Individual Masks

o Example: Set the mask to enable RST6.5 without
modifying the masks for RST5.5 and RST7.5.

— In order to do this correctly, we need to use the RIM
Instruction to find the current settings of the RST5.5
and RST7.5 masks.

— Then we can use the SIM instruction to set the masks
using this information.

— Given that both RIM and SIM use the Accumulator, we
can use some logical operations to masks the un-needed

values returned by RIM and turn them into the values
needed by SIM.

Using RIM and SIM to set
Individual Masks

— Assume the RST5.5 and RST7.5 are enabled and the interrupt process

IS disabled. Accumulator
TR To R To) 0 1o
5 \ N~ O 10D
ORESLwsS S

RIM ; Read the current settings.

ORI 08H 00001000 0O 0001010
. Set bit 4 for MSE.

ANI ODH 00001101 00001000
: Turn off Serial Data, Don't reset
; RST7.5flip flop, and set the mask
: for RST6.5 off. Don't cares are
; assumed to be 0.

SIM ; Apply the settings.

M6.5
M5.5

w X wuw W w
8D><I\U)l\
O nXrx=s

TRAP

TRAP isthe only non-maskable interrupt.

— |t does not need to be enabled because it cannot be
disabled.

It amongst interrupts.
It is edge and level sensitive.

— |t needs to be high and stay high to be recognized.

— Onceit isrecognized, it won't be recognized again until
It goes low, then high again.

TRAP isusually used for power fallure and
emergency shutoff.

Internal Interrupt Priority

e Internally, the 8085 implements an interrupt
priority scheme.

— The interrupts are ordered as follows:
« TRAP
« RST 75
« RST 6.5
« RST5.5
« INTR

— However, TRAP haslower priority than the HLD signal
used for DMA.

The 8085 Interrupts

| nterrupt Masking Triggerin
Name Maskable Method Vectored | Memory g Method
Level
INTR Yes DI/ El No No Sengitive
RST 5.5/ DI / El Level
RST 6.5 ves SIM ves No Sensitive
DI / El Edge
RST 7.5 Yes SIM Yes Yes Sengitive
Level &
TRAP No None Yes No Edge

Sengitive

Additional Concepts and
Processes

* Programmable Interrupt Controller 8259 A
— A programmabl e interrupt managing device
* |t manages 8 interrupt requests.

e |t can vector an interrupt anywhere in memory
without additional H/W.

e It can support 8 levels of interrupt priorities.

e The priority scheme can be extended to 64 levels
using a hierarchy Of 8259 device.

The Need for the 8259A

 The 8085 INTR interrupt scheme presented earlier
has afew limitations:

— The RST instructions are all vectored to memory page
OOH, which isusually used for ROM.

— |t requires additional hardware to produce the RST
Instruction opcodes.

— Priorities are set by hardware.

* Therefore, we need adevice like the 8259A to
expand the priority scheme and allow mapping to
pages other than OOH.

Interfacing the 8259A to the 8085

Dev. 7
Dev. 6
INTA
Dev. 5 — l;
b g INTR 3
Dev. 4 —‘_;IS 2 AD7 O
I, AD6
| 5 AD5
Dev.3 |— | 9 AD4 S
12 AD3 5
i, A AD2
Dev.2 |——M ly 28%
Dev. 1
Dev. O

Operating of the 8259A

The 8259A reguires the microprocessor to
provide 2 control words to set up its operation.
After that, the following sequence occurs:

1. One or more interrupts comeiin.

2. The 8259A resolvesthe interrupt priorities based on
Its internal settings

3. The8259A sendsan INTR signal to the
MI Croprocessor.

4. The microprocessor responds with an INTA signal
and turns off the interrupt enable flip flop.

5. The 8259A responds by placing the op-code for the
CALL instruction (CDH) on the data bus.

Operating of the 8259A

6. When the microprocessor receives the op-code for
CALL instead of RST, it recognizes that the device
will be sending 16 more bits for the address.

/. The microprocessor sends a second INTA signal.

8. The 8259A sends the high order byte of the ISR’s
address.

9. The microprocessor sends athird INTA signal.

10. The 8259A sends the |low order byte of the ISR’s
address.

11. The microprocessor executes the CALL instruction
and jumpsto the ISR.

Direct Memory Access

e Thisisaprocess where datais transferred between
two peripherals directly without the involvement
of the microprocessor.

— This process employs the HOLD pin on the
MI Croprocessor

» The external DMA controller sends asignal on the HOLD pin
to the microprocessor.

* The microprocessor compl etes the current operation and sends
asignal on HLDA and stops using the buses.

e Oncethe DMA controller isdone, it turns off the HOLD signal
and the microprocessor takes back control of the buses.

Seria 1/0O and Data
Communication

Basic Conceptsin Serial 1/0

 Interfacing requirements:

— ldentify the device through a port number.
* Memory-mapped.
 Peripheral-mapped.
— Enable the device using the Read and Write control
signals.
» Read for an input device.
» Write for an output device.

— Only one dataline is used to transfer the information
Instead of the entire data bus.

Basic Conceptsin Serial 1/0

e Controlling the transfer of data:
— Microprocessor control.
« Unconditional, polling, status check, etc.

— Device control.
* |nterrupt.

Synchronous Data Transmission

e Thetransmitter and recelver are synchronized.

— A sequence of synchronization signalsis sent before the
communication begins.

o Usually used for high speed transmission.
* Morethan 20 K bits/sec.

* Message based.
— Synchronization occurs at the beginning of along
message.

Asynchronous Data Transmission

e Transmission occurs at any time.

o Character based.
— Each character Is sent separately.

o Generally used for low speed transmission.
— Lessthe 20 K bits/sec.

Asynchronous Data Transmission

* Follows agreed upon standards:

— Thelineisnormally at logic one (mark).
e Logic O isknown as space.

— The transmission begins with a start bit (low).
— Then the seven or eight bits representing the

character are transmitted.

— The transmission is concluded with one or two

stop hits.

Do| Dy| D,

D

D,

Ds

Ds

1 Start

One Character

S’éop

Time

Simplex and Duplex
Transmission

o Simplex.
— One-way transmission.

— Only one wire is needed to connect the two devices
— Like communication from computer to a printer.

o Half-Duplex.

— Two-way transmission but one way at atime.
— Onewireis sufficient.

* Full-Duplex.
— Dataflows both ways at the same time.
— Two wires are needed.
— Like transmission between two computers.

Rate of Transmission

o For paralle transmission, all of the bits are sent at
once.
e [or saria transmission, the bits are sent one at a

time.

— Therefore, there needs to be agreement on how “long”
each bit stays on the line.

e Therate of transmission is usually measured in
bits/second or baud.

Length of Each Bit

e Glven acertain baud rate, how long should
each bit last?
— Baud = hits/ second.
— Seconds/ bits = 1 /baud.
— At 1200 baud, abit lasts 1/1200 = 0.83 m Sec.

Transmitting a Character

e To send the character A over aserid
communication line at a baud rate of 56.6 K:

— ASCII for A 1s41H = 01000001.

— Must add a start bit and two stop bits:
« 11 01000001 0

— Each bit should last 1/56.6K = 17.66 n Sec.
* Known as bit time.
— Set up adelay loop for 17.66 n Sec and set the

transmission line to the different bits for the duration of
the loop.

Error Checking

» Varioustypes of errors may occur during
transmission.

— To allow checking for these errors, additional
Information is transmitted with the data.

 Error checking techniques:
— Parity Checking.
— Checksum.

e Thesetechniques are for error checking not
correction.
— They only indicate that an error has occurred.

— They do not indicate where or what the correct
Information is.

Parity Checking

e Makethe number of 1'sin the data Odd or Even.

— Given that ASCII isa 7-bit code, bit D-, is used to carry
the parity information.

— Even Parity

* The transmitter counts the number of onesin the data. If there
IS an odd number of 1's, bit D, is set to 1 to make the total
number of 1's even.

* Therecelver calculatesthe parity of the received message, it
should match bit D-.

— If it doesn’t match, there was an error in the transmission.

Checksum

« Used when larger blocks of data are being
transmitted.

e Thetransmitter adds all of the bytesin the
message without carries. It then calculatesthe 2's
complement of the result and send that asthe last
byte.

e Therecever adds all of the bytesin the message
Including the last byte. The result should be O.

— If 1tisn't an error has occurred.

RS 232

e A communication standard for connecting
computers to printers, modems, €tc.
— The most common communication standard.
— Defined inthe 1950's.
— |t uses voltages between +15 and -15 V.
— Restricted to speeds less than 20 K baud.
— Restricted to distances of less than 50 feet (15 m).

e Theoriginal standard uses 25 wires to connect the
two devices.

— However, in reality only three of these wires are
needed.

Software-Controlled Serial
Transmission

 The main stepsinvolved in serially transmitting a
character are:
— Transmission lineisat logic 1 by default.
— Transmit a start bit for one complete bit length.

— Transmit the character as a stream of bits with
appropriate delay.

— Calculate parity and transmit it if needed.
— Transmit the appropriate number of stop bits.
— Transmission linereturnsto logic 1.

Seria Transmission

Accumulator

O|Oo|O0O|O|O|F |O

=

Shift

O 0 0 0 O

Output Port

Start

Time

Flowchart of Serial Transmission

Set up Bit Counter
Set bit DO of A to O (Start Bit)

Y

Wait Bit Time

Y

Get character into A

Y

Wait Bit Time

A 4

Y

Rotate A Left
Decrement Bit Counter

No

Last Bit?

Yes

Add Parity
Send Stop Bit(s)

Software-Controlled Serial
Reception

 The main stepsinvolved in serial reception are:
— Walit for alow to appear on the transmission line.
o Start bit

— Read the value of the line over the next 8 bit lengths.
* The 8 bits of the character.

— Calculate parity and compare it to bit 8 of the character.
* Only if parity checking is being used.
— Verify the reception of the appropriate number of stop
bits.

Serial Reception

—i

-
»

Jore|nwnady

b=
<
p)

D,

Hod indu

uels

Time

Of1{0 0 0 O O0]1

Flowchart of Serial Reception

\ 4

Read Input Port

Y

Start Bit?

l Yes

Wait Bit Time
Read Input Port

Wait for Half Bit Time

Decrement Counter

No Bit Still

Low?

l Yes

No

l Yes

Start Bit Counter

Check Parity
Wait for Stop Bits

The 8085 Serial 1/0 Lines

e The 8085 Microprocessor has two seria 1/O
pINs:
— SOD — Serial Output Data
— SID — Seria Input Data

o Serial input and output is controlled using
the RIM and SIM instructions respectively.

SIM and Serial Output

* Aswasdiscussed in Chapter 12, the SIM
Instruction has dual use.

— It isused for controlling the maskable interrupt
OroCcess

— For the seria output process.

* Thefigure below shows how SIM uses the
accumulator for Serial Output.

7 6 54 3 2 0
o|w O LWL L0 L0
QQ§[\U)I\ Tp)
nln|Xx|x|=|= =

isable SOD

1
Lo
©
=
0
1 nable SOD

Serial Output Data

m o

RIM and Serial Input

* Again, the RIM instruction has dual use

— Reading the current settings of the Interrupt
MaSkS 7654 3 210

— Serial Data Input _

Serial Input Data T

e The figure below shows how the RIM

Instruction uses the Accumulator for Serial
| nput

Ports?

e Using the SOD and SID pins, the user
would not need to bother with setting up
Input and output ports.

— The two pins themselves can be considered as
the ports.

— Theinstructions SIM and RIM are similar to
the OUT and IN instructions except that they
only deal with the 1-bit SOD and SID ports.

Example

e Transmit an ASCII character stored in
register B using the SOD line.

SODDATA

NXTBIT

MVI
XRA
MVI
RAR
SIM
CALL
STC
MOV
RAR

MOV
DCR
JNZ

C,0BH ; Set up counter for 11 bits
A ; Clear the Carry flag
A,80H ;SetD7=1
; Bring Carry intoD7 and set D6to 1
; Output D7 (Start bit)
BITTIME
; Set Carrytol
A, B ; Place character in A
; Shift DO of the character tothecarry
Shift 1 into bit D7

B, A Savetheinterim result
C . decrement bit counter
NXTBIT

> 1 01 N

PORT A

CU

PORT C

CL

PORT B

WR

Q

CONTROL
REGISTER

Al
AO]

INTE
RNAL

DEC
ODIN

11

10¢
—01 B

000 A

PORT
A

Wi N

R

WRL b
PORT

10, C

9 EN

RD

WRL b
PORT
B

01L N

CONTROL WORD

D7, D6 D5 D4 D3

0/1

l

BSR MODE

BIT SET/RESET
FOR PORT C

NO EFFECT ON 1/0
MODE

D2 D1 DO

l

1/0 MODE

MODE 0 l

SIMPLE 1/0 FOR
PORTS

A, BAND C

MODE 1

HANDSHAKE
1/0 FOR
PORTS A
AND/OR B

PORT C BITS
ARE USED
FOR
HANDSHAKE

MODE 2

BIDIRECTI
ONAL
DATA BUS
FOR PORT
A

PORT B
EITHER IN
MODE 0 OR
1

PORT C
BITS ARE
USED FOR
HANDSHAK
E

8255A

» +5V
POWER
SUPPLIES > GND
+
BIDIRECTION
AL DATA BUS DATA
BUS
o0 —— BUFFER
RD >y READ/
WR »d WRITE
Al »CONTROL
A0 " LOGIC
RESET “1
1

I/O

<:> PA7-PAO

P
<

[\

1/0

4l>PC7-PC4

A

1/0

>PC3-
PCO

A

1/0
_> PB7-

PBO

A

v
GROUP
GROUP Ciiji A
| A PORT
CON- A
TROL (8)
GROUPA
""PORT C
K UPPER
> (4)
GROUPB
8-BIT
PORT C
INTERNAL
DATA BUS <:> LOWER
(4)
GROUP GROUP
J B 5
CON- K(—) PORT
TROL 5
(8)
*

CS

Control Word Format for
I/0 Mode

~

D1

DO

J

1= 1/0 Mode
0= BSR Mode

Group B

PORT CL (PC3-PCO)
1= INPUT;0= OUTPUT

PORT B
1= INPUT;0= OUTPUT

MODE SELECTION
0=MODEO; 1=MODE 1

Group A

PORT Cu (PC7-PC4)
1= INPUT; 0=OUTPUT

PORT A
1= INPUT; 0=OUTPUT

MODE SELECTION
00= MODE 0;01= MODE 1;1X= MODE 2

)

D)

PA7

PAO
PC7
PC4
8255A
— PC3
CS T
Al
AO PCO
ﬁB' PB7
WR T
PBO

RESET

Mode 0 (Simple Input or

Output)

PROBLEM 1)

Interface 8255a to a 8085 microprocessor using 1/0-mapped -
I/O technique so that Port a have address 80H in the system.

Determine addresses of Ports B,C and control register.

Write an ALP to configure port A and port C. as output ports
and port B and port Cuas input ports in mode O.

Connect DIP switches connected to the to input ports and
LEDs to the output ports .

Read switch positions connected to port A and turn on the
respective LEDs of port b. Read switch positions of port C. and
display the reading at port Cu

BSR (Bit Set/Reset) Mode

+
BSR control word

D7 D6 D5 D4 D3 D2 D1 DO
o | x X " BIT SELECT S/R

\ / | |

000 = Bit 0
BSR Mode 001 = Bit 1 1= Set

v 010 = Bit 2 0 = Reset
011 =Bit 3

100 = Bit 4
Generally reset to 0 101 = Bit 5

Not used,

110 =Bit 6
111 =Bit 7

Problem 2)

|
= Write an ALP to set bits PC7 and PC 3
and reset them after 10 ms in BSR
mode.

\

DS QortAlnput PA7-PAQ
Scale STBa
PC5 > |BFA
\1} PC3 > INTRa
INTEs -
pcz< STBB
PC1 » |IBFs
PCO > INTRB
— < Port B Input| PB7-PBO,
PC 6,7 . 1/0

Mode 1: Input or Output with
Handshake

Port A with
Handshake

Signal

Port b with
Handshake
Signal

Port A & Port B as
Input in Mode 1

Control word — mode 1 input

+
D7 D6 D5 D4 D3 D2 D1 DO
1 0 1 1 1/0 1 1 X
%’_J
1/0 > Port B
Mode Input
Port A > Port B
Mode‘l Mode 1
Port A ; PCe.7
Input
P 1=Input;

0=Output

Status Word — Mode 1 input

D7

D6

D5 D4 D3 D2

D1

DO

1/0

1/0

IBFa INTEA | INTRa INTEs

IBFs

INTRs

STB

IBF / \m

INTR S
A\

Input from
peripheral 1< R

INTEA

\

Port A Outp} PA7-PAQ

PC7

PC6

[
>

OBFa

ACKa

PC3

WR

=z
— _C
=
los]

PC2

> INTRa
»OBFs

PC1

ACKs

A

PCO

_INTRe

Port B Ou@s PB7-PBO,

PC 45

[
>

1/0

Port A with
Handshake

Signal

Port b with
Handshake
Signal

Port A & B as Output
In Mode 1

Control word — mode 1 Output

D5 D4 D3 D2 DO
0 1 0 1/0 1 X
%’_J
1/0 > Port B
Mode Output
Port A > Port B
Mode‘l Mode 1
Port Ae S PCas
Output
P 1=Input;

0=Output

Status Word — Mode 1 Output

D7

D6

D5

D4

D3

D2

D1

DO

OBFa

INTEa

1/0

1/0

INTRA

INTEs

OBFs

INTRs

4 N

{ W

output L

(Status)

Initialize Ports

\ 4

Y

Read port
C for status

NO

Is
Peripheral
Ready?

yes

. 1
Continue

NO

(Interrupt)

Initialize Ports

A 4

Enable INTE

Yes

Continue

Problem 3)

= Initialize 8255A in mode 1 to configure Port
A as an input port and Port B as an output
port.

= Assuming that an A-to-d converter Is
connected with port A as an interrupt 1/0

and a printer is connected with port B as a
status check 1/0

8086 M| CROPROCESSOR

L]
&N
® 5 |

TR
i |, II|II

AL
|

—
=
=
—
-
=
S
-
e
—

-
&
L]

-

i

i

i

I§=| I_il ‘' ".:
L ._LF‘ . : ‘ . WE
oS = R

-~ R - _'.'|
-« - -

= .L"-__J.|

Pinouts

Common Signals

Mama Function Typa
AD15-AD0 | AddressiData Bus | Bldlrectional,
3-Slate
TF&'FEFB. Address/Slatus g"g‘t'::';:;
Bus High Enabilef Cultput,
BHE/57 Status 3-State
P rrm o Ma s rma m
MN/RAR Mode Control nput
AD FAead Control E"'E‘F;_':'I'L
TEST Wait On Test Cantrol Input
AEADY Wait State Contral Input
RESET Sysatam RAesal Input
Hon-Maskabie
riMI interrupt Roguast Input
INTR intarrupt Aaquast Input
CLKE Syailam Clock input
Voo +5V input
GMND Ground

Minimum Mode Signals (MN/MX = Vee)

Name Functlon Type
HQLD Haold Requasi Inpul
HLD A Hald Acknowledge Cutpul
Cutpul,
Wh Write Controal S51ate
MITG Memoty/10 Control Cathut,
= Data Tranamit} Qutpul,
=iy Arcaive I-Slale
Oulput,
DEN Data Enable S Staln
Addrass Latch
ALE Enable Qutput
INTA Intarrypl Acknowladge Oulpul

Maximum Mode Signals (MN/MX = GND)

Nama Function Typa
AT 0 | e a® | Bidirectiona
g Busa Prionly Lock Outpul,
Lok C:untrgl A-Btate
- T | Bua Cyecle Status g""_qfﬂ;;'k
os51, QS0 Instruction Quaue Output

Status

ano 11 \..._,..-j_-mj Voo
avia Cle anl] anis
apa] anf] aiasaa
AD1Z [: P a7 arrssa
AT E v 18l] Aasss
apw [|s i3] avesse
ape]+] BHE =y
apa [a3] mme @R
any [J» 2] AB
aps e ?:“:3 31] nowp
aps CIn w1 HLDA
aps [z e] Wh
aoay [Jra m] meB
apz] 2r [o1
ani [=[] B¥H
ape [el Ao
sl [T - 2a [WTE
TR [l za] VESY
ek []e 7 : REAOY
ano [2y] meseT

masaTa
AGETH
ILOCR)
o

151

(%6}

1a50)
(S}

MAXIMUM MOOFE PIN FUNCTIONS 8. LOTE)
(] u-rﬂun. o

ARESHD'WH IH PATE

|-46

8086 Pins

The 8086 comes in a 40 pin package which means that some pins have
more than one use or are_ multiplexed. The packaging technology of time
limited the number of pin that could be used.

In particular, the address lines 0 - 15 are multiplexed with data lines 0-15,
address lines 16-19 are multiplexed with status lines. These pins are

ADO - AD15, A16/S3 - A19/S6

The 8086 has one other pin that is multiplexed and this is BHE'/S7.
BHE stands for Byte High Enable. This is an active low signal that is
asserted when there is data on the upper half of the data bus.

The 8086 has two modes of operation that changes the function of some pins.
The SDK-86 uses the 8086 in the minimum mode with the MN/MX’ pin tied to
5volts. This is a simple single processor mode. The IBM PC uses an 8088
in the maximum mode with the MN/MX” pin tied to ground. This is the mode
required for a coprocessor like the 8087.

1-47

8086 Pins

In the minimum _mode the following pins are available.

HOLD

HLDA

WR’

M/IO’
DT/R’
DEN’

ALE

INTA'’

When this pin is high, another master is requesting control of the
local bus, e.g., a DMA controller.

HOLD Acknowledge: the 8086 signals that it is going to float
the local bus.

Write: the processor is performing a write memory or 1/O operation.
Memory or I/O operation.

Data Transmit or Receive.

Data Enable: data is on the multiplexed address/data pins.

Address Latch Enable: the address is on the address/data pins.
This signal is used to capture the address in latches to establish the

address bus.

Interrupt acknowledge: acknowledges external interrupt requests.

1-48

8086 PIns

The following are pins are available in both minimum and maximum modes.

VCC

GND

RD’

READY

RESET

TEST’

NMI

INTR

CLK

+ 5 volt power supply pin.
Ground
READ: the processor is performing a read memory or I/O operation.

Acknowledgement from wait-state logic that the data transfer will
be completed.

Stops processor and restarts execution from FFFF:0. Must be high
for 4 clocks. CS = OFFFFH, IP =DS =SS =ES = Flags = 0000H, no
other registers are affected.

The WAIT instruction waits for this pin to go low. Used with 8087.

Non Maskable Interrupt: transition from low to high causes an
interrupt. Used for emergencies such as power failure.

Interrupt request: masked by the IF bit in FLAG register.

Clock: 33% duty cycle, i.e., high 1/3 the time.
1-49

8086 Features

« 16-bit Arithmetic Logic Unit

» 16-bit data bus (8088 has 8-bit data bus)

» 20-bit address bus - 220 =1,048,576 = 1 meg

The address refers to a byte in memory. In the 8088, these bytes come in on
the 8-bit data bus. In the 8086, bytes at even addresses come in on the low
half of the data bus (bits 0-7) and bytes at odd addresses come in on the upper

half of the data bus (bits 8-15).

The 8086 can read a 16-bit word at an even address in one operation and at an
odd address in two operations. The 8088 needs two operations in either case.

The least significant byte of a word on an 8086 family microprocessor is at the
lower address.

8086 Architecture

 The 8086 has two parts, the Bus Interface Unit (BIU) and the
Execution Unit (EU).

 The BIU fetches instructions, reads and writes data, and computes the
20-bit address.

 The EU decodes and executes the instructions using the 16-bit ALU.
 The BIU contains the following registers:

IP - the Instruction Pointer

CS - the Code Segment Register
DS - the Data Segment Register

SS - the Stack Segment Register
ES - the Extra Segment Register

The BIU fetches instructions using the CS and IP, written CS:IP, to contruct
the 20-bit address. Datais fetched using a segment register (usually the DS)
and an effective address (EA) computed by the EU depending on the
addressing mode.

(——) 8086 Block Diagram

INTERFACE

e | U U —— _ .
| B CBUS |
I |

5
| E 5 INSTRUCTION
| STREAM
| _ 4 BYTE
: 3 QUEUE
L ous S— :

1
| = J
| s T e O o . e
| 5§ I
I D5 .
I IP I

— CONTROL
I J| SYSTEM
I._. s e s il e e e e s i i i e e s]
|
l Fa I|E“!..-I"":--
| EU ! A-BUS
1 T
|
|
|
| AH AL
: BH BL
| CH L ARITHMETIC
, DH DL LOGIC UNIT
| SP T
| e L \
5
| z i v
: OPERANDS
F

| LAGS [

8086 Architecture

The EU contains the following 16-bit registers:

AX - the Accumulator
BX - the Base Register
CX -the Count Register
DX - the Data Register

SP - the Stack Pointer \ gefaylts to stack segment
BP - the Base Pointer /

Sl - the Source Index Register
DI - the Destination Register

These are referred to as general-purpose registers, although, as seen by
their names, they often have a special-purpose use for some instructions.

The AX, BX, CX, and DX registers can be considers as two 8-bit registers, a
High byte and a Low byte. This allows byte operations and compatibility with
the previous generation of 8-bit processors, the 8080 and 8085. 8085 source
code could be translated in 8086 code and assembled. The 8-bit registers are:

AX --> AH,AL
BX-->BH,BL
CX -->CH,CL
DX --> DH,DL

I-11

Flag Register

[Flag register contains information reflecting the current status of a
microprocessor. It also contains information which controls the
operation of the microprocessor.

15 0

— |NT| IOPL |OF |DF |IF |TF|SF|ZF| —| AF| — | PF| —| CF

» Control Flags » Status Flags

IF: Interrupt enable flag CF: Carry flag

DF: Direction flag PF: Parity flag

TF: Trap flag AF: Auxiliary carry flag
ZF: Zevo flag
SF: Sign flag
OF: Overflow flag
NT: Nested task flag

|OPL: I nput/output privilege level

Flags Commonly Tested During the Execution of

| nstructions

O There are five flag bitsthat are commonly tested during the execution

of instructions

— Sign Flag (Bit 7), SF:

— Zero Flag (Bit 6), ZF:

O for positive number and 1 for negative number

If the ALU output is O, this bit is set (1); otherwise,
itisO

— Carry Flag (Bit 0), CF: It contains the carry generated during the execution

— Auxiliary Carry, AF:
(Bit 4)

— Parity Flag (bit2), PF:

Depending on the width of ALU inputs, this flag
bit contains the carry generated at bit 3 (or, 7, 15)
of the SO88 ALU

Itisset (1) if the output of the ALU has even number
of ones; otherwise it is zero

Direction Flag

O Direction Flag (DF) isused to control the way Sl and DI are adjusted during the
execution of astring instruction

— DF=0, Sl and DI will auto-increment during the execution; otherwise, Sl and DI
auto-decrement

— Instruction to set DF: STD: Instruction to clear DF: CLD

— Example:
CLD DS : S
MOV CX, 5 0510:0000 53 S +— Yl x5
REP MOV SB 0510:0001 48 H<— Sl 4

0510:0002| 4F | O «— g

0510:0003| 20 | p «— g ..,

0510:0004 | 50 P +— Sl xa
0510:0005 | 45 E «— g

0510:0006 52 R

CX=3

At the beginning of execution,
DS=0510H and SI=0000H

CX=0

Source String

8086 Programmer’s M odel

BIU registers
(20 bit adder)

AX
BX

CX
DX

EU registers
16 bit arithmetic

Extra Segment
Code Segment

Stack Segment
Data Segment
Instruction Pointer

Accumulator

Base Register

Count Register
Data Register

Stack Pointer
Base Pointer

Source Index Register
Destination Index Register

[-13

Memory Address Calculation

L Segment addresses must be stored
In segment registers

Segment address 0000

+ Offset

O Offset iIsderived from the combination

of pointer registers, the Instruction Memory address

Pointer (1P), and immediate values

0 Examples

cs |3|4|8|A|O0 SS 510000
IP + 412114 SP + FIFIE|O
Instruction address| 3 |8 |A |B| 4 Stack address |5 |F|F|E|O

DS (1(2|3|4|0
DI + 0O|0|2]2
Dataaddress (1|2 (3|6 |2

EEE/CSE 226

Address
Segment Starting address is segment OH
register value shifted 4 places to the left.
« CS:0
Segment
Registers
Segments are < or = 64K,
can overlap, start at an address
that ends in OH. OFFFEFEH

MEMORY

|-14

8086 Memory Terminology

Memory Segments

Segment
Registers

OH

01000H

DS: 10FFFH
B2000H

cs. 0B2000
OC1FFFH
ES! OCFOO0O0H
ODEFFFH
CS: OFFO00H
OFFFFFH

Segments are < or = 64K and can overlap.

Note that the Code segment is < 64K since OFFFFFH is the highest address.
I-15

The Code Segment

Segment Register - l

Offset + -
- OFFFFFH

The offset is the distance in bytes from the start of the segment.
The offset is given by the IP for the Code Segment.
Instructions are always fetched with using the CS register.

IP CS:IP = 400:56

Logical Address

Physical or
Absolute Address

The physical address is also called the absolute address.

1-16

The Stack Segment

OAOOOH

<p - OA100|;|

SS:SP

Segment Register -

Offset + -
Physical Address -

The offset is given by the SP register.

The stack is always referenced with respect to the stack segment register.
The stack grows toward decreasing memory locations.

The SP points to the last or top item on the stack.

OFFFFFH

PUSH - pre-decrement the SP
POP - post-increment the SP

I-17

The Data Segment

OH
05CO0H
os: [H108C0T] |
05C50H
EA - g DS:EA
Segment Register -
Offset T -
OFFFFFH

Physical Address -

Data is usually fetched with respect to the DS register.
The effective address (EA) is the offset.
The EA depends on the addressing mode.

1-18

8086 memory Organization

LUPPER BANK-
QDD ADDRESSED

LOWER BANK-

EVEN ADDRESSED

BOBEA BYTES EYTES
FFFFFH FFFFEH
e —r, e)
A8 Ale ~=
ki Al
A AD 0000 DOO04
BHE BHE ;
ALE — 1 a8 i
CS |D16 | D8 Cs |p7 |DO
D18
D8
D7
Do
t=)
BATA | 8US DATA
ADDRESS | 1o pe | BH A% leveLes LINES USED
000D BYTE 1 0 ONE Do-D7
0000 WORD | O 0 ONE DD-D15
ool [BYTE | o 1| ONE L8075
0001 WORD 0 1 FIRST oo-0% {-—}
1 0 |SECOND DR-D15 aid

Even addresses are on the low half
of the data bus (DO-D7).

Odd addresses are on the upper
half of the data bus (D8-D15).

AO = 0 when data i1s on the low
half of the data bus.

BHE’ = 0 when data is on the upper
half of the data bus.

MAX and MIN Modes

e |n minmode, the 9 signals correspond to
control signalsthat are needed to operate
memory and |/O devices connected to the

8088.

e |n maxmode, the 9 signals change their
functions,; the 8088 now requires the use of
the 8288 bus controller to generate
memory and |/O read/write signals.

Why MIN and MAX modes?

 Minmode signals can be directly decoded
by memory and |/O circuits, resulting in a
system with minimal hardware
reguirements.

e Maxmode systems are more complicated,
but obtain the new signals that allow for bus
grants (e.g. DMA), and the use of an 8087
COProcessor.

The 9 pins (min)

** ALE: address latch enable (ADO - AD7)
**DEN: data enable (connect/disc. buffer)
**WR: write (writing indication)

*HOLD

*HDLA: hold acknowledge

*INTA: interrupt acknowledge

|O/M: memory access or |/O access

DT/R: datatransmit / receive (direction)
SSO: status

The 9 pins (max)

S0, S1, S2: status
*RQ/GTO, RQ/GT1: request/grant
*LOCK: locking the control of the sys. bus

*QS1, QS0: queue status (tracking of
Internal Instruction queue).

HIGH

Instruction Types

Q Datatransfer instructions

 String instructions

 Arithmetic instructions

1 Bit manipulation instructions

1 Loop and jump instructions
 Subroutineand interrupt instructions

J Processor control instructions

Addressing Modes

Addressing Modes Examples
O Immediate addressing MOV AL, 12H
0 Register addressing MOV AL, BL
U Direct addressing MOV [500H], AL
0 Register Indirect addressing MOV DL, [9]
U Based addressing MOV AX, [BX+4]
O Indexed addressing MOV [DI-8], BL
) Based indexed addressing MOV [BP+Sl], AH
0 Based indexed with displacement addressing MOV CL, [BX+DI+2]
Exceptions

U String addressing
U Port addressing (e.g. INAL, 79H)

a

Data Transfer |nstructions

MOV Destination, Source

— Move data from source to destination; e.g. MOV [DI+100H], AH
— It does not modify flags

» For 80x86 family, directly moving data from one memory location to
another memory location is not allowed

MOV [SI], [5000H] X
» When the size of datais not clear, assembler directives are used

Mov (s, 0 B

= BYTEPTR MOV BYTEPTR [Sl], 12H
= WORD PTR MOV WORD PTR[SI], 12H
= DWORD PTR MOV DWORD PTR[SI], 12H

» You can not move an immediate data to segment register by MOV
MOV DS, 1234H X

Instructions for Stack Operations

O WhatisaStack ?

— A stack is acollection of memory locations. It always follows the rule of
|ast-in-firs-out
— Generally, SS and SP are used to trace where is the latest date written into stack

O PUSH Source

— Push data (wor d) onto stack
— It does not modify flags
— For Example: PUSH AX (assume ax=1234H, SS=1000H, SP=2000H

before PUSH AX)
1000:1FFD 7 1000:1FFD 7
1000: 1FFE 7 SS:SP—» 1000:1FFE 34
1000: 1FFF 7 1000: 1FFF 12
SS:SP—» 1000:2000 7 1000:2000 7 12 | 34
Before PUSH AX, SP= 2000H After PUSH AX, SP = 1FFEH AX

» Decrementing the stack pointer during a push is a standard way of implementing stacks in hardware

Instructions for Stack Operations

O PUSHF

— Push the values of the flag register onto stack

— |t does not modify flags

O POP Destination

— Pop word off stack
— It does not modify flags

— For example: POP AX

1000:1FFD 7?
SP— 1000:1FFE 34

1000:1FFF 12

1000:2000 EC

Before POP, SP = 1FFEH

QO POPF

1000:1FFD 7?

1000:1FFE 34

1000:1FFF 12
SP— 1000:2000 EC

After POPAX, SP=2000H

— Pop word from the stack to the flag register

— It modifies all flags

12

34

Data Transfer |nstructions

SAHF

— Store datain AH to the low 8 bits of the flag register
— It modifiesflags: AF, CF, PF, SF, ZF

LAHF

— Copies bits 0-7 of the flags register into AH
— It does not modify flags

LDS Destination Source

— Load 4-byte data (pointer) in memory to two 16-bit registers

— Source operand gives the memory location

— Thefirst two bytes are copied to the register specified in the destination operand;
the second two bytes are copied to register DS

— It does not modify flags

LES Destination Source

— Itisidentical to LDS except that the second two bytes are copied to ES
— It does not modify flags

Data Transfer |nstructions

d LEA Destination Source

— Transfersthe offset address of source (must be a memory location) to the
destination register
— It does not modify flags

O XCHG Destination Source

— It exchanges the content of destination and source

— One operand must be a microprocessor register, the other one can be aregister
or amemory location

— It does not modify flags

O XLAT

— Replacethe datain AL with adatain a user defined look-up table

— BX stores the beginning address of the table

— At the beginning of the execution, the number in AL is used asthe
index of the look-up table

— It does not modify flags

String Instructions

O String isacollection of bytes, words, or long-words that can be up to 64KB
in length

O String instructions can have at most two operands. One is referred to as source
string and the other one is called destination string
— Source string must locate in Data Segment and Sl register points to the current
element of the source string

— Destination string must locate in Extra Segment and DI register points to the current
element of the destination string

DS =S ES : DI

0510:0000 | 53 | S 02A82000 53 | S
0510:0001 | 48 H 02A8:2001| 48 H
0510:0002| 4F | o 02A8:2002| 4F | o
0510:0003| 90 | p 02A8:2003| 90 | p
0510:0004| 50 | P 02A8:2004| 50 | P
0510:0005| 45 | E 02A8:2005| 49 | |
0510:0006 | 52 R 02A8:2006| 4E | N

Source String Destination String

Repeat Prefix Instructions

O REP Sring Instruction

— The prefix instruction makes the microprocessor repeatedly execute the string instruction
until CX decrements to O (During the execution, CX is decreased by one when the string
instruction is executed one time).

— For Example:

MOV CX, 5
REPMOVSB

By the above two instructions, the microprocessor will execute MOV SB 5 times.

— Execution flow of REP MOV SB::

While (CX!=0) Check CX: If CX!=0 Then
{ CX=CX-1;
CX=CX-1,; OR MOVSB;
MOVSB; goto Check CX;

} end if

O MOVSB (MOVSW)

String Instructions

— Move byte (word) at memory location DS:SI to memory location ES:DI and
update SI and DI according to DF and the width of the data being transferred
— It does not modify flags

—Example:

MOV AX, 0510H
MOV DS, AX
MOV SI, 0

MOV AX, 0300H
MOV ES, AX
MOV DI, 100H
CLD

MOV CX, 5

REP MOV SB

DS : S
0510:0000
0510:0001
0510:0002

0510:0003

0510:0004
0510:0005

0510:0006

Source String

53

48

4F

50

50

45

52

T mMm Ut O T W

ES : DI
0300:0100

Destination String

String Instructions

CMPSB (CMPSW)

— Compare bytes (words) at memory locations DS:SI and ES.DI;
update Sl and DI according to DF and the width of the data being compared
— It modifies flags

—Example:
s SoTp 051 .
DS = 0510H 0510:0000 | 58 | S 02A82000 53 |S
S| = 0000H 0510:0001 48 H 02A8:2001 48 H
MOV CX_ 9 0510:0003 28 IF:’) 02A8:2003 50 E
’ 0510:0004 . 50
REFZ CMPSB 0510:0005 | 45 E 02A\8:2004 29 l
' 02A8:2005
What's the values of CX after

The execution? Source String Destination String

String Instructions

SCASB (SCASW)

— Move byte (word) in AL (AX) and at memory location ES:DI;
update DI according to DF and the width of the data being compared
— It modifies flags

LODSB (LODSW)

— Load byte (word) at memory location DS:SI to AL (AX);
update Sl according to DF and the width of the data being transferred
— It does not modify flags

STOSB (STOSW)

— Store byte (word) at in AL (AX) to memory location ES:DI;
update DI according to DF and the width of the data being transferred
— It does not modify flags

Repeat Prefix Instructions

REPZ Sring Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

REPNZ Sring Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is set

REPE Sring Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

REPNE Sring Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is set

Loops and Conditional Jumps

All loops and conditional jumps are SHORT jumps, i.e., the target must
be in the range of an 8-bit signed displacement (-128 to +127).

The displacement is the number that, when added to the IP, changes the
IP to point at the jump target. Remember the IP is pointing at the next
instruction when this occurs.

The loop instructions perform several operations at one time but do not
change any flags.

LOOP decrements CX and jumps if CX is not zero.

LOOPNZ or LOOPNE -- loop while not zero or not equal: decrements CX
and jumps if CX is not zero or the zero flag ZF = 0.

LOOPZ or LOOPE -- loop while zero or equal: decrements CX and jumps
if CXis zero or the zero flag ZF = 1.

The conditional jump instructions often follow a compare CMP or TEST
instruction. These two instructions only affect the FLAG register and not
the destination. CMP does a SUBtract (dest - src) and TEST does an AND.

For example, if a CMP is followed by a JG (jump greater than), then the
jump is taken if the destination is greater than the source.
Test is used to see if a bit or bits are set in a word or byte such as when

determining the status of a peripheral device.
-39

Conditional Jumps

Name/Alt Meaning Flag setting
JE/JZ Jump equal/zero ZF=1
JNE/IJNZ Jump not equal/zero ZF =0

JL/INGE Jump less than/not greater than or = (SF xor OF) =1
JNL/JGE Jump not less than/greater than or = (SF xor OF) =0
JG/INLE Jump greater than/not less than or = ((SF xor OF) or ZF) =
JNG/JLE Jump not greater than/less than or = ((SF xor OF) or ZF) =

JB/IJNAE Jump below/not above or equal CF=1
JNB/JAE Jump not below/above or equal CF=0
JA/JNBE Jump above/not below or equal (CFor ZF) =
JNA/JBE Jump not above/ below or equal (CFor ZF) =
JS Jump on sign (jump negative) SF=1

JNS Jump on not sign (jJump positive) SF=0

JO Jump on overflow OF=1

JNO Jump on no overflow OF=0
JP/JPE Jump parity/parity even PF=1
JNP/JPO Jump no parity/parity odd PF=0
JCXZ JumponCX=0

1-40

8254 Internal Architecture

Data
D7-D0 Bus |
Buffer
RD > Read/
WR Write
A0 » Logic
Al > -
CsS |
Controll‘
Word
Register

Counter
=0

+

Counter
=1

+

Counter
=2

T

CLK O
GATEQO
OuT 0

CLK 1
GATE 1
OuUT 1

CLK 2
GATE 2
OUT 2

THE CONTROL WORD REGISTER AND COUNTERS
ARE SELECTED
ACCORDING TO THE SIGNALSON LINE
AOand A1IASSHOWN BELOW

Al AO Sdection

O O CounteO
O 1 Countel
1 O Counter 2
1 1Control Register

8254 Control Word Format

SC1 ||| SCO ||| RW1 ||| RWO (|| M2 ||| M1 ||| MO ||| BCD
RW1j|| RWO0
SC1 (|| SCO
0 0 Counter Latch Command
0 0 Select counter 0
0 1 Read/Writeleast significant byte only
0 1 Select counter 1
1 0 Read/Write most significant byte only
1 0 Select Counter 2
1 1 T Back r 1 1 Read/Write least significant bytefirst,
Read-Back comman Then the most significant byte.

BCD:

O | Binary Counter 16-bits

1 | Binary Coded Decimal (BCD) Counter

M2 M1 MO

0 0 0 ModeO
0 0 1 Mode 1
X 1 0 Mode 2
X 1 1 Mode 3
1 0 0 Mode 4
1 0 1 Mode5

MODE O: Interrupt on terminal count

Clk ___

WR 3 2 1 0

Output
| nterrupt

MODE 1: HARDWARE-RETRIGGERABLE
ONE-SHOT

Clk ___ ‘

WR 3 2 1 0

Output

MODE 2: RATE GENERATOR CLOCK

OUTPUT

MODE 3: Square Wave Generator

Clk

OUTPUT(n=4) 4 5 4 2 4 2

OUTPUT(n=5) 5 4 2 5 2 5

MODE 4: SOFTWARE TRIGGERED STROBE

In thismode OUT isinitially high; it goeslow for one
clock period at the end of the count. The count must be
RELOADED -(UNLIKE MODE 2)

for subsequent outputs.

MODE 5: HARWARE TRIGGERED STROBE

 Thismodeissimilar to MODE 4 except that
It Istriggered by the rising pulse at the gate.
Initially, the OUT islow and when the
GATE pulseistriggered from low to high,,
the count begins. At the end of the count the
OUT goes low for one clock period.

READ BACK COMMAND FORMAT:

e THISFEATURE AVAILABLE ONLY IN
8254 and not in 8253.

1 COU ||[STAT ||[CNT2||CNT1||ICNTO
NT US

Data Transfer
Schemes

Why do we need data transfer

schemes ?

« Avallability of wide variety of 1/O devices
because of variations in manufacturing

technologies e.g. electromechanical, electrical,
mechanical, electronic etc.

e Enormous variation in the range of speed.

e \Wide variation in the format of data.

Classification of Data Transfer
Schemes

[Datatransfer schemes]
Programmed DMA
Data transfer Data transfer

| | | |
Synchronous Asynchronous | nterrupt Block Cycle stealing
mode mode Driven mode DMA mode DMA mode

Programmed Data Transfer
Scheme

The data transfer takes place under the control
of a program residing in the main memory.

hese programs are executed by the CPU
when an 1/O device is ready to transfer data.

To transfer one byte of data, it needsto
execute several instructions.

This scheme is very slow and thus suitable
when small amount of data 1sto be transferred.

Synchronous Mode of Data
Transfer

 |tsused for |/O devices whose timing
characteristics are fast enough to be
compatible in speed with the communicating
MPU.

e |nthis case the status of the |/O device s not
checked before data transfer.

e The datatransfer is executed using IN and
OUT Instructions.

 Memory compatible with MPU are available.
Hence this method is invariably used with
compatible memory devices.

e Thel/O devices compatible in speed with
MPU are usually not avallable. Hence this
technique israrely used in practice

Asynchronous Data Transfer

 This method of datatransfer Is aso called
Handshaking mode.

e Thisscheme is used when speed of |/O device
does not match with that of MPU and the
timing characteristics are not predictable.

 The MPU fist sends areguest to the device and
then keeps on checking its status.

e The datatransfer instructions are executed
only when the |/O device Is ready to accept or
supply data.

e Each datatransfer is preceded by arequesting
signal sent by MPU and READY signal from
the device.

Disadvantages

e A lot of MPU time is wasted during looping to
check the device status which may be
prohibitive in many situations.

o Some simple devices may not have status
signals. In such acase MPU goes on checking
whether data is available on the port or not.

Interrupt Driven Data Transfer

 |nthisschemethe MPU initiates an |/O device
to get ready and then it executes its main
program instead of remaining in the loop to
check the status of the device.

* \When the device gets ready, it sends a signal
to the MPU through a special input line called
an interrupt line.

 The MPU answers the interrupt signal after
executing the current instruction.

The MPU saves the contents of the PC on the
stack first and then takes up a subroutine called
|SS (Interrupt Service Subroutine).

After returning from 1SS the MPU again loads
the PC with the address that isjust loaded In
the stack and thus returns to the main program.

It Is efficient because precious time of MPU Is
not wasted while the |/O device gets ready.

In this scheme the data transfer may also be
Initiated by the 1/O device.

Multiple Interrupts

 The MPU has one interrupt level and severdl
1/O devices to be connected to It which are

attended in the order of priority.

« The MPU has several interrupt levels and one
1/O device Is to be connected to each interrupt

levdl.

e The MPU has several interrupt levels and
more than one |/O devices are to be
connected to each interrupt level.

 The MPU executes multiple interrupts by
using a device polling technique to know
which device connected to which
Interrupt level has interrupted

Interrupts of 8085

On the basis of priority the interrupt signals are
as follows

. TRAP
e RST 7.5
. RST6.5
e RST5.5
. INTR

These interrupts are implemented by the
hardware

Interrupt Instructions

e El (Enable Interrupt) Thisinstruction setsthe
Interrupt enable Flip Flop to activate the interrupts.

e DI (Disable Interrupt) Thisinstruction resetsthe
Interrupt enable Flip Flop and deactivates all the
Interrupts except the non-maskable interrupt i.e.
TRAP

« RESET Thisalso resetsthe interrupt enable Flip
FHop.

e SIM (Set Interrupt Mask) This enables\disables
Interrupts according to the bit pattern in
accumulator obtained through masking.

e RIM (Read Interrupt Mask) This
Instruction helps the programmer to know the
current status of pending interrupt.

Call Locations and Hex — codes
for RST n

RST n Hex - code Call location
RSTO C7 0000
RST 1 CF 0008
RST 2 D7 0010
RST 3 DF 0018
RST 4 E7 0020
RSTS5 EF 0028
RST 6 =7 0030
RST 7 FF 0038

These instructions are implemented by the software

DMA Data Transfer scheme

o Datatransfer from I/O device to memory or
vice-versais controlled by a DMA controller.

e Thisscheme is employed when large amount
of dataisto be transferred.

 The DMA reguests the control of buses
through the HOL D signal and the MPU
acknowledges the request through HLDA

signal and releases the control of busesto
DMA.

o |t'safaster scheme and hence used for high
speed printers.

Block mode of data transfer

In this scheme the I/O device withdraws
the DMA request only after all the data
bytes have been transferred.

Cycle stealing technique

In this scheme the bytes are divided into
several parts and after transferring every part
the control of busesis given back to MPU and

later stolen back when M PU does not need It.

	1. Intro
	Slide Number 1
	MICROPROCESSOR 8085
	Basic Concepts of Microprocessors
	What is a Microprocessor?
	What about micro?
	Was there ever a “mini”-processor?
	Definition of the Microprocessor
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	A Microprocessor-based system
	Inside The Microprocessor
	Organization of a microprocessor-based system
	Memory
	Memory Map and Addresses
	Memory
	The three cycle instruction execution model
	Machine Language
	The 8085 Machine Language
	Assembly Language
	Assembly Language
	Assembly Language
	“Assembling” The Program

	2a. architecture
	8085 Microprocessor�Architecture
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Architecture of Intel 8085 Microprocessor
	Intel 8085 Microprocessor
	The ALU
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The Internal Architecture
	The Internal Architecture
	Non Programmable Registers
	The Address and Data Busses
	Demultiplexing AD7-AD0
	Demultiplexing AD7-AD0
	Demultiplexing the Bus AD7 – AD0
	Slide Number 19
	The Overall Picture

	3.Instruction
	Introduction to 8085 Instructions
	The 8085 Instructions
	Instruction and Data Formats
	Data Transfer Operations
	The LXI instruction
	The Memory “Register”
	Using the Other Register Pairs
	Indirect Addressing Mode
	Arithmetic Operations
	Arithmetic Operations Related to Memory
	Arithmetic Operations
	Manipulating Addresses
	Logic Operations
	Logic Operations
	Additional Logic Operations
	RLC vs. RLA
	Logical Operations
	Branch Operations
	Unconditional Branch
	Conditional Branch
	Machine Control
	Operand Types
	Instruction Size
	Instruction with Immediate Date
	Instruction with a Memory Address
	Addressing Modes
	Data Formats
	Data Formats
	Slide Number 29

	4.Counter And delay
	Counters & Time Delays
	Counters
	Counters
	Slide Number 4
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Delays
	Delays
	Delay loops
	Delay Loops (Contd.)
	Delay Loops (Contd.)
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Nested Loops
	Nested Loops for Delay
	Delay Calculation of Nested Loops
	Delay Calculation of Nested Loops
	Increasing the delay
	Slide Number 20

	5.Timing Diagram
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Timing Diagram
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

	6.stack and subroutines
	Chapter 9�Stack and Subroutines
	The Stack
	The Stack
	Saving Information on the Stack
	The PUSH Instruction
	The POP Instruction
	Operation of the Stack
	LIFO
	The PSW Register Pair
	Subroutines
	Subroutines
	The CALL Instruction
	The RTE Instruction
	Cautions
	Passing Data to a Subroutine
	Call by Reference and Call by Value
	Cautions with PUSH and POP
	Conditional CALL and RTE Instructions
	A Proper Subroutine
	Slide Number 20

	7. memory interfacing
	The Design and Operation of Memory
	Accessing Information in Memory
	Tri-State Buffers
	The Tri-State Buffer
	The Basic Memory Element
	The Basic Memory Element
	The Basic Memory Element
	A Memory “Register”
	A group of memory registers
	Externally Initiated Operations
	A group of Memory Registers
	The Design of a Memory Chip
	The Enable Inputs
	The Design of a Memory Chip
	The Design of a Memory Chip
	The steps of writing into Memory
	Dimensions of Memory
	The 8085 and Memory
	Chip Select
	Chip Selection Example
	Chip Selection Example
	Memory Map and Addresses
	Address Range of a Memory Chip
	Address Range of a Memory Chip
	The 8085 and Address Ranges
	The 8085 and Address Ranges
	Chip Select Example
	Chip Select Example
	Chip Select Example
	High-Order vs. Low-Order Address Lines
	Data Lines
	Data Lines

	8.Interrupts
	� Interrupts
	Interrupts
	Interrupts
	Responding to Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	Interrupt Vectors and the Vector Table
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	Restart Sequence
	Restart Sequence
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Multiple Interrupts & Priorities
	The Priority Encoder
	Multiple Interrupts & Priorities
	Multiple Interrupts and Priority
	The 8085 Maskable/Vectored Interrupts
	Masking RST 5.5, RST 6.5 and RST 7.5
	Maskable Interrupts
	The 8085 Maskable/Vectored Interrupt Process
	The 8085 Maskable/Vectored Interrupt Process
	Manipulating the Masks
	How SIM Interprets the Accumulator
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	Using the SIM Instruction to Modify the Interrupt Masks
	Triggering Levels
	Determining the Current Mask Settings
	How RIM sets the Accumulator’s different bits
	The RIM Instruction and the Masks
	The RIM Instruction and the Masks
	Pending Interrupts
	Using RIM and SIM to set Individual Masks
	Using RIM and SIM to set Individual Masks
	TRAP
	Internal Interrupt Priority
	The 8085 Interrupts
	Additional Concepts and Processes
	The Need for the 8259A
	Interfacing the 8259A to the 8085
	Operating of the 8259A
	Operating of the 8259A
	Direct Memory Access

	9.Serial Tx
	�Serial I/O and Data Communication
	Basic Concepts in Serial I/O
	Basic Concepts in Serial I/O
	Synchronous Data Transmission
	Asynchronous Data Transmission
	Asynchronous Data Transmission
	Simplex and Duplex Transmission
	Rate of Transmission
	Length of Each Bit
	Transmitting a Character
	Error Checking
	Parity Checking
	Checksum
	RS 232
	Software-Controlled Serial Transmission
	Serial Transmission
	Flowchart of Serial Transmission
	Software-Controlled Serial Reception
	Serial Reception
	Flowchart of Serial Reception
	The 8085 Serial I/O Lines
	SIM and Serial Output
	RIM and Serial Input
	Ports?
	Example

	10.8255
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Control Word Format for I/O Mode
	Slide Number 5
	�Mode 0 (Simple Input or Output)��PROBLEM 1)
	BSR (Bit Set/Reset) Mode
	Problem 2)
	Mode 1: Input or Output with Handshake
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Problem 3)�

	8086
	Slide Number 1
	Pinouts
	8086 Pins��
	8086 Pins
	8086 Pins
	8086 Features
	8086 Architecture
	8086 Block Diagram
	8086 Architecture
	Slide Number 10
	Slide Number 11
	Slide Number 12
	8086 Programmer’s Model
	Slide Number 14
	Slide Number 15
	8086 Memory Terminology
	The Code Segment
	The Stack Segment
	The Data Segment
	Slide Number 20
	Even addresses are on the low half �of the data bus (D0-D7).��Odd addresses are on the upper�half of the data bus (D8-D15).��A0 = 0 when data is on the low�half of the data bus.��BHE’ = 0 when data is on the upper�half of the data bus.�
	MAX and MIN Modes
	Why MIN and MAX modes?
	The 9 pins (min)
	The 9 pins (max)
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Loops and Conditional Jumps
	Conditional Jumps

	8253_8254
	8254 Internal Architecture
	Slide Number 2
	8254 Control Word Format
	Slide Number 4
	Slide Number 5
	Slide Number 6
	MODE 1 : HARDWARE-RETRIGGERABLE �ONE-SHOT
	MODE 2 : RATE GENERATOR CLOCK
	MODE 3 : Square Wave Generator
	MODE 4 : SOFTWARE TRIGGERED STROBE
	MODE 5 : HARWARE TRIGGERED STROBE
	READ BACK COMMAND FORMAT:

	Data Transfer schemes
	Data Transfer �Schemes�
	Why do we need data transfer schemes ?
	Classification of Data Transfer Schemes
	Programmed Data Transfer Scheme
	Synchronous Mode of Data Transfer
	Slide Number 6
	Asynchronous Data Transfer
	Slide Number 8
	Disadvantages
	Interrupt Driven Data Transfer
	Slide Number 11
	Multiple Interrupts
	Slide Number 13
	Interrupts of 8085
	Interrupt Instructions
	Slide Number 16
	Call Locations and Hex – codes for RST n
	DMA Data Transfer scheme
	Slide Number 19

