Nicholl-Lee-Nicholl Line (NLN) Clipping

- In Cohen-Sutherland line clipping sometimes multiple calculation of intersection point of a line is done before actual window boundary intersection.
- These multiple intersection calculation is avoided in NLN line clipping procedure.
- By creating more regions around the clip window the NLN algorithm avoids multiple clipping of an individual line segment.
- NLN line clipping perform the fewer comparisons and divisions so it is more efficient.
- But NLN line clipping cannot be extended for three dimensions.

Cohen Sutherland line Clipping

Contd.

- For given line we find first point falls in which region out of nine region shown in figure.
- Only three region are considered which are.
- Window region
- Edge region
- Corner region

- If point falls in other region than we transfer that point in one of the three region by using transformations.
- We can also extend this procedure for all nine regions.

Dividing Region in NLN

- Based on position of first point out of three region highlighted we divide whole space in new regions.
- Regions are name in such a way that name in which region p2 falls is gives the window edge which intersects the line.
- p_{1} is in window region(P 1 is inside clipping boundary)

- p_{1} is in edge region

Contd.

- $\quad p_{1}$ is in Corner region (one of the two possible sets of region can be generated)

Finding Region of Given Line in NLN

- For finding that in which region line $\boldsymbol{p}_{\boldsymbol{1}} \boldsymbol{p}_{\mathbf{2}}$ falls we compare the slope of the line to the slope of the boundaries:
slope $\overline{p_{1} p_{B 1}}<$ slope $\overline{p_{1} p_{2}}<$ slope $\overline{p_{1} p_{B 2}}$
Where $\overline{\boldsymbol{p}_{\boldsymbol{1}} \boldsymbol{p}_{\boldsymbol{B} 1}}$ and $\overline{\boldsymbol{p}_{\mathbf{1}} \boldsymbol{p}_{\boldsymbol{B} \mathbf{2}}}$ are boundary lines.
- For example p 1 is in edge region and for checking whether p 2 is in region LT we use following equation.

$$
\begin{aligned}
& \text { slope } \overline{p_{1} p_{T R}}<\text { slope } \overline{p_{1} p_{2}}<\text { slope } \overline{p_{1} p_{T L}} \\
& \frac{y_{T}-y_{1}}{x_{R}-x_{1}}<\frac{y_{2}-y_{1}}{x_{2}-x_{1}}<\frac{y_{T}-y_{1}}{x_{L}-x_{1}}
\end{aligned}
$$

Contd.

- After checking slope condition we need to check weather it crossing zero, one or two edges.
- This can be done by comparing coordinates of p_{2} with coordinates of window boundary.
- For left and right boundary we compare x coordinates and for top and bottom boundary we compare y coordinates.
- If line is not fall in any defined region than clip entire line.
- Otherwise calculate intersection.

Intersection Calculation in NLN

- After finding region we calculate intersection point using parametric equation which are:

$$
\begin{aligned}
& x=x_{1}+\left(x_{2}-x_{1}\right) t \\
& y=y_{1}+\left(y_{2}-y_{1}\right) t
\end{aligned}
$$

- For left or right boundary $x=x_{l}$ or x_{r} respectively, with $\mathrm{t}=\left(x_{l / r}-x_{1}\right) /\left(x_{2}-x_{1}\right)$, so that y can be obtain from parametric equation as below:

$$
y=y_{1}+\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x_{L}-x_{1}\right)
$$

- Keep the portion which is inside and clip the rest.

Contd.

- Similarly for top or bottom boundary $y=y_{t}$ or y_{b} respectively, and $\mathfrak{t}=\left(y_{t / b}-y_{1}\right) /$ $\left(y_{2}-y_{1}\right)$, so that we can calculate x intercept as follow:
$x=x_{1}+\frac{x_{2}-x_{1}}{y_{2}-y_{1}}\left(y_{T}-y_{1}\right)$

polygon

- Types of Polygons

1. Convex: A polygon is called convex of line joining any two interior points of the polygon lies inside the polygon. All interior angles are less than 180°.
2. Concave: A non-convex polygon is said to be concave. A concave polygon has one interior angle greater than 180°.

Convex polygon

Concave polygon

Polygon Clipping

- For polygon clipping we need to modify the line clipping procedure.
- In line clipping we need to consider about only line segment.
- In polygon clipping we need to consider the area and the new boundary of the polygon after clipping.
- Various algorithm available for polygon clipping are:

1. Sutherland-Hodgeman Polygon Clipping
2. Weiler-Atherton Polygon Clipping etc.

Sutherland-Hodgeman Polygon Clipping

- For correctly clip a polygon we process the polygon boundary as a whole against each window edge.
- This is done by whole polygon vertices against each clip rectangle boundary one by one.

Processing Steps

- We process vertices in sequence as a closed polygon.
- Four possible cases are there.

1. If both vertices are inside the window we add only second vertex to output list.
2. If first vertex is inside the boundary and second vertex is outside the boundary only the edge intersection with the window boundary is added to the output vertex list.
3. If both vertices are outside the window boundary nothing is added to window boundary.
4. first vertex is outside and second vertex is inside the boundary, then adds both intersection point with window boundary, and second vertex to the output list.

Example

- As shown in figure we clip against left boundary.
- Vertices 1 and 2 are found to be on the outside of the boundary.
- Then we move to vertex 3 , which is inside, we calculate the intersection and add both intersection point and vertex 3 to output list.

Contd.

- Then we move to vertex 4 in which vertex 3 and 4 both are inside so we add vertex 4 to output list.
- Similarly from 4 to 5 we add 5 to output list.
- From 5 to 6 we move inside to outside so we add intersection pint to output list.
- Finally 6 to 1 both vertex are outside the window so we does not add anything.

Limitatin of Sutherlan-Hodgeman Algorithm

- It may not clip concave polygon properly.

- One possible solution is to divide polygon into numbers of small convex polygon and then process one by one.
- Another approach is to use Weiler-Atherton algorithm.

Weiler-Atherton Polygon Clipping

- It modifies Sutherland-Hodgeman vertex processing procedure for window boundary so that concave polygon also clip correctly.
- This can be applied for arbitrary polygon clipping regions as it is developed for visible surface identification.
- Procedure is similar to Sutherland-Hodgeman algorithm.
- Only change is sometimes need to follow the window boundaries Instead of always follow polygon boundaries.
- For clockwise processing of polygon vertices we use the following rules:

1. For an outside to inside pair of vertices, follow the polygon boundary.
2. For an inside to outside pair of vertices, follow the window boundary in a clockwise direction.

Example

- Start from v1 and move clockwise towards v2 and add intersection point and next point to output list by following polygon boundary,
- then from v2 to v3 we add v3 to output list.
- From v3 to v4 we calculate intersection point and add to output list and follow window boundary.

Contd.

- Similarly from v4 to v5 we add intersection point and next point and follow the polygon boundary,
- next we move v5 to v6 and add intersection point and follow the window boundary, and
- finally v6 to v1 is outside so no need to add anything.
- This way we get two separate polygon section after clipping.

