
Viewing Pipeline &
Clipping

Khushbu Maurya

The Viewing Pipeline
▪ In many case window and viewport are rectangle, also other shape

may be used as window and viewport.

▪ In general finding device coordinates of viewport from word

coordinates of window is called as viewing transformation.

▪ Sometimes we consider this viewing transformation as window-to-

viewport transformation but in general it involves more steps.

▪ Let’s see steps involved in viewing pipeline.

Khushbu Maurya

Clipping

▪ Any procedure that identifies those portions of a picture that are

either inside or outside of a specified region of space is referred to

as a clipping algorithm, or simply clipping.

▪ The region against which an object is to clip is called a clip

window.

▪ Clip window can be general polygon or it can be curved boundary.

Khushbu Maurya

Application of Clipping
▪ It can be used for displaying particular part of the picture on display screen.

▪ Identifying visible surface in 3D views.

▪ Antialiasing.

▪ Creating objects using solid-modeling procedures.

▪ Displaying multiple windows on same screen.

▪ Drawing and painting.

Khushbu Maurya

Point Clipping
▪ In point clipping we eliminate outside points and draw points which are

inside the clipping window.

▪ Here we consider clipping window is rectangular boundary with edge

(𝑥𝑤𝑚𝑖𝑛, 𝑥𝑤𝑚𝑎𝑥, 𝑦𝑤𝑚𝑖𝑛, 𝑦𝑤𝑚𝑎𝑥).

▪ So for finding weather given point is inside or outside the clipping

window we use following inequality:

𝒙𝒘𝒎𝒊𝒏 ≤ 𝒙 ≤ 𝒙𝒘𝒎𝒂𝒙, 𝒚𝒘𝒎𝒊𝒏 ≤ 𝒚 ≤ 𝒚𝒘𝒎𝒂𝒙

▪ If above both inequality is satisfied then the point is inside otherwise the

point is outside the clipping window.

Full Screen

Clipping Window

xwmaxxwmin

ywmin

ywmax

Khushbu Maurya

Line Clipping
▪ Line clipping involves several possible cases.

1. Completely inside the clipping window.

2. Completely outside the clipping window.

3. Partially inside and partially outside the clipping window.

Full Screen

Clipping Window

Khushbu Maurya

Line Clipping
▪ For line clipping several scientists tried different methods to solve this clipping procedure.

▪ Some of them we will discuss. Which are:

1. Cohen-Sutherland Line Clipping

2. Liang-Barsky Line Clipping

3. Nicholl-Lee-Nicholl Line Clipping

Khushbu Maurya

Region Code in Cohen-Sutherland Line Clipping

▪ This is one of the oldest and most

popular line-clipping procedures.

▪ In this we divide whole space into

nine region and give 4 bit region

code.(A B R L)

▪ Code is deriving by:

• Set bit 1: For left side of clipping

window.

• Set bit 2: For right side of clipping

window.

• Set bit 3: For below clipping

window.

• Set bit 4: For above clipping

window.

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

Put all other bits zero (Reset remaining bit)

Khushbu Maurya

Steps Cohen-Sutherland Line Clipping

Step-1:Assign region code to both endpoint of a line depending

on the position where the line endpoint is located.

Step-2: If both endpoint have code ‘0000’

Then line is completely inside.

Otherwise

Perform logical ending between this two codes.

If result of logical ending is non-zero

Line is completely outside the clipping

window.(line is not visible)

Otherwise

(line is partially visible or not visible)

Calculate the intersection point with the

boundary one by one.

Divide the line into two parts from intersection

point.

Repeat from Step-1 for both line segments.

Step-3:Draw line segment which are completely inside and

eliminate other line segment which found completely outside.

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

Intersection points- Cohen-Sutherland Algorithm

▪ For intersection calculation we use line

equation “𝑦 = 𝑚𝑥 + 𝑏”.

▪ “ 𝑥 ” is constant for left and right

boundary which is:

• for left “𝑥 = 𝑥𝑤𝑚𝑖𝑛”

• for right “𝑥 = 𝑥𝑤𝑚𝑎𝑥”

▪ So we calculate 𝑦 coordinate of

intersection for this boundary by

putting values of 𝑥 depending on

boundary is left or right in below

equation.

𝒚 = 𝒚𝟏 +𝒎(𝒙 − 𝒙𝟏)

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

(xwmin, ywmin)

(xwmax, ywmax)(xwmin, ywmax)

(xwmax, ywmin)

Khushbu Maurya

Contd.
▪ “𝑦 ” coordinate is constant for top and

bottom boundary which is:

• for top “𝑦 = 𝑦𝑤𝑚𝑎𝑥”

• for bottom “𝑦 = 𝑦𝑤𝑚𝑖𝑛”

▪ So we calculate 𝑥 coordinate of intersection

for this boundary by putting values of 𝑦

depending on boundary is top or bottom in

below equation.

𝒙 = 𝒙𝟏 +
𝒚 − 𝒚𝟏
𝒎

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

(xwmin, ywmin)

(xwmax, ywmax)(xwmin, ywmax)

(xwmax, ywmin)

Khushbu Maurya

Cohen-Sutherland

• Line is completely visible iff both

code values of endpoints are 0,

i.e.

• If line segments are completely

outside the window, then

Pics/Math courtesy of Dave Mount @ UMD-CP
Khushbu Maurya

Cohen-Sutherland

• Clearly:

• Using similar triangles

• Solving for yc gives

Pics/Math courtesy of Dave Mount @ UMD-CP
Khushbu Maurya

Cohen-Sutherland

• Replace
(x0 ,y0) with (xc ,yc)

• Re-compute codes

• Continue until all bit flips (clip
lines) are processed, i.e. all
points are inside the clip
window

Pics/Math courtesy of Dave Mount @ UMD-CP
Khushbu Maurya

Cohen Sutherland

0101

1010

Khushbu Maurya

Cohen Sutherland

0101

0010

Khushbu Maurya

Cohen Sutherland

0001

0010

Khushbu Maurya

Cohen Sutherland

0001

0000

Khushbu Maurya

Cohen Sutherland

0000

0000

Khushbu Maurya

Example

Khushbu Maurya

(200, 160)

(600, 400)(200,400)

(600, 160)

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

Example (cont.)

• P1

• P1= (200,210) P2= (500, 450)

• P1 code → 0000

• P2 code → (1000)

• No trivial accept, No trivial reject

Khushbu Maurya

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

Example (Cont.)

• P2

• P1= (200,210) P2= (437.5, 400)

• P1 code → 0000

• P2 code → 0000
• Trivial accept

Khushbu Maurya

Clipping Window

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 0 0 1 0 1 0

Liang-Barsky Line Clipping
▪ Line clipping approach is given by the Liang and Barsky is faster then cohen-sutherland

line clipping.

▪ Which is based on analysis of the parametric equation of the line which are,

𝑥 = 𝑥1 + 𝑡∆𝑥

𝑦 = 𝑦1 + 𝑡∆𝑦

▪ Where 0 ≤ 𝑡 ≤ 1 ,∆𝑥 = 𝑥2 − 𝑥1 and ∆𝑦 = 𝑦2 − 𝑦1.

Khushbu Maurya

Liang-Barsky Line Clipping Algorithm
1. Read two end points of line 𝑃1(𝑥1, 𝑦1) and 𝑃2(𝑥2, 𝑦2).

2. Read two corner vertices, left top and right bottom of window: (𝑥𝑤𝑚𝑖𝑛, 𝑦𝑤𝑚𝑎𝑥) and

(𝑥𝑤𝑚𝑎𝑥 , 𝑦𝑤𝑚𝑖𝑛).

3. Calculate values of parameters 𝑝𝑘 and 𝑞𝑘 for 𝑘 = 1, 2, 3, 4 such that,

𝑝1 = −∆𝑥, 𝑞1 = 𝑥1 − 𝑥𝑤𝑚𝑖𝑛

𝑝2 = ∆𝑥, 𝑞2 = 𝑥𝑤𝑚𝑎𝑥 − 𝑥1
𝑝3 = −∆𝑦, 𝑞3 = 𝑦1 − 𝑦𝑤𝑚𝑖𝑛

𝑝4 = ∆𝑦, 𝑞4 = 𝑦𝑤𝑚𝑎𝑥 − 𝑦1

Khushbu Maurya

Contd.

4. If 𝑝𝑘 = 0 for any value of 𝑘 = 1, 2, 3, 4 then,

Line is parallel to 𝑘𝑡ℎ boundary.

If corresponding 𝑞𝑘 < 0 then,

Line is completely outside the boundary.

Therefore, discard line segment and Go to Step 8.

Otherwise

Check line is horizontal or vertical and accordingly check

line end points with corresponding boundaries.

If line endpoints lie within the bounded area

Then use them to draw line.

Otherwise

Use boundary coordinates to draw line.

And go to Step 8.

Contd.

5. For 𝑘 = 1,2,3,4 calculate 𝑟𝑘 for nonzero values of 𝑝𝑘 and 𝑞𝑘 as follows:

𝑟𝑘 =
𝑞𝑘

𝑝𝑘
, 𝑓𝑜𝑟 𝑘 = 1,2,3,4

6. Find 𝑡1 𝑎𝑛𝑑 𝑡2 as given below:

𝑡1 = max{0, 𝑟𝑘|𝑤ℎ𝑒𝑟𝑒 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑝𝑘 < 0}

𝑡2 = min{1, 𝑟𝑘|𝑤ℎ𝑒𝑟𝑒 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑝𝑘 > 0}

7. If 𝑢1 ≤ 𝑢2 then

Calculate endpoints of clipped line:

𝑥1
′ = 𝑥1 + 𝑡1∆𝑥

𝑦1
′ = 𝑦1 + 𝑡1∆𝑦

𝑥2
′ = 𝑥1 + 𝑡2∆𝑥

𝑦2
′ = 𝑦1 + 𝑡2∆𝑦

Draw line (𝑥1
′, 𝑦1

′ , 𝑥2
′, 𝑦2

′);

8. Stop.

Nicholl-Lee-Nicholl Line (NLN) Clipping
▪ By creating more regions around the clip window the NLN algorithm avoids multiple

clipping of an individual line segment.

▪ In Cohen-Sutherlan line clipping sometimes multiple calculation of intersection point of a

line is done before actual window boundary intersection.

▪ These multiple intersection calculation is avoided in NLN line clipping procedure.

▪ NLN line clipping perform the fewer comparisons and divisions so it is more efficient.

▪ But NLN line clipping cannot be extended for three dimensions.

Khushbu Maurya

Contd.
▪ For given line we find first point falls in which region out of nine region shown in figure.

▪ Only three region are considered which are.

• Window region

• Edge region

• Corner region

▪ If point falls in other region than we transfer that point in one of the three region by using

transformations.

▪ We can also extend this procedure for all nine regions.

Khushbu Maurya

▪ Based on position of first point out of three region highlighted we divide whole space in

new regions.

▪ Regions are name in such a way that name in which region p2 falls is gives the window

edge which intersects the line.

▪ 𝑝1is in window region

▪ 𝑝1is in edge region

Dividing Region in NLN

𝑝1
L R

T

B

𝑝1
L LR

LT

LB

L

L

Khushbu Maurya

Contd.
▪ 𝑝1is in Corner region (one of the two possible sets of region can be generated)

𝑝1

T

LR

TR

LB

L
L

𝑝1

T

LB

TR

TB

T
L

Khushbu Maurya

Finding Region of Given Line in NLN
▪ For finding that in which region line 𝒑𝟏𝒑𝟐 falls we compare the slope of the line to the

slope of the boundaries:

𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝑩𝟏 < 𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝟐 < 𝑠𝑙𝑜𝑝𝑒 𝒑𝟏𝒑𝑩𝟐

Where 𝒑𝟏𝒑𝑩𝟏 and 𝒑𝟏𝒑𝑩𝟐 are boundary lines.

▪ For example p1 is in edge region and for checking whether p2 is in region LT we use

following equation.

𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝑻𝑹 < 𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝟐 < 𝑠𝑙𝑜𝑝𝑒 𝒑𝟏𝒑𝑻𝑳
𝒚𝑻 − 𝒚𝟏
𝒙𝑹 − 𝒙𝟏

<
𝒚𝟐 − 𝒚𝟏
𝒙𝟐 − 𝒙𝟏

<
𝒚𝑻 − 𝒚𝟏
𝒙𝑳 − 𝒙𝟏

𝑝1
L LR

LT

LB

L

L

Khushbu Maurya

Contd.
▪ After checking slope condition we need to check weather it crossing zero, one or two

edges.

▪ This can be done by comparing coordinates of 𝑝2 with coordinates of window boundary.

▪ For left and right boundary we compare 𝑥 coordinates and for top and bottom boundary we

compare 𝑦 coordinates.

▪ If line is not fall in any defined region than clip entire line.

▪ Otherwise calculate intersection.

𝑝1
L LR

LT

LB

L

L

Khushbu Maurya

Intersection Calculation in NLN
▪ After finding region we calculate intersection point using parametric equation which are:

𝒙 = 𝒙𝟏 + 𝒙𝟐 − 𝒙𝟏 𝒖

𝒚 = 𝒚𝟏 + 𝒚𝟐 − 𝒚𝟏 𝒖

▪ For left or right boundary 𝑥 = 𝑥𝑙 𝑜𝑟 𝑥𝑟 respectively, with 𝑢 = (𝑥𝑙/𝑟 – 𝑥1)/ (𝑥2– 𝑥1), so

that 𝑦 can be obtain from parametric equation as below:

𝒚 = 𝒚𝟏 +
𝒚𝟐 − 𝒚𝟏
𝒙𝟐 − 𝒙𝟏

𝒙𝑳 − 𝒙𝟏

▪ Keep the portion which is inside and clip the rest.

Khushbu Maurya

Contd.
▪ Similarly for top or bottom boundary 𝑦 = 𝑦𝑡 𝑜𝑟 𝑦𝑏 respectively, and 𝑢 = (𝑦𝑡/𝑏 – 𝑦1)/

(𝑦2 – 𝑦1) , so that we can calculate 𝑥 intercept as follow:

𝒙 = 𝒙𝟏 +
𝒙𝟐 − 𝒙𝟏
𝒚𝟐 − 𝒚𝟏

(𝒚𝑻 − 𝒚𝟏)

Khushbu Maurya

Polygon Clipping
▪ For polygon clipping we need to modify the line clipping procedure.

▪ In line clipping we need to consider about only line segment.

▪ In polygon clipping we need to consider the area and the new boundary of the polygon

after clipping.

▪ Various algorithm available for polygon clipping are:

1. Sutherland-Hodgeman Polygon Clipping

2. Weiler-Atherton Polygon Clipping etc.

Khushbu Maurya

Sutherland-Hodgeman Polygon Clipping
▪ For correctly clip a polygon we process the polygon boundary as a whole against each

window edge.

▪ This is done by whole polygon vertices against each clip rectangle boundary one by one.

in out
Left

Clipper

Right

Clipper

Bottom

Clipper

Top

Clipper

Khushbu Maurya

Processing Steps
▪ We process vertices in sequence as a closed

polygon.

▪ Four possible cases are there.

Inside Outside

1. If both vertices are inside the window we add only second
vertices to output list.

2. If first vertices is inside the boundary and second vertices is

outside the boundary only the edge intersection with the window
boundary is added to the output vertex list.

3. If both vertices are outside the window boundary nothing is
added to window boundary.

4. first vertex is outside and second vertex is inside the boundary,
then adds both intersection point with window boundary, and
second vertex to the output list.

A

B C

D

Khushbu Maurya

Example

▪ As shown in figure we clip against left boundary.

▪ Vertices 1 and 2 are found to be on the outside of the boundary.

▪ Then we move to vertex 3, which is inside, we calculate the intersection and add both

intersection point and vertex 3 to output list.

1

2

3

4

5
6

1’
2’

Khushbu Maurya

Contd.

▪ Then we move to vertex 4 in which vertex 3 and 4 both are inside so we add vertex 4 to

output list.

▪ Similarly from 4 to 5 we add 5 to output list.

▪ From 5 to 6 we move inside to outside so we add intersection pint to output list.

▪ Finally 6 to 1 both vertex are outside the window so we does not add anything.

1

2

3

4

5
6

1’
2’

3’

4’
5’

Khushbu Maurya

Limitatin of Sutherlan-Hodgeman Algorithm

▪ It may not clip concave polygon properly.

▪ One possible solution is to divide polygon into numbers of small convex polygon and then

process one by one.

▪ Another approach is to use Weiler-Atherton algorithm.

V4

V6

V1

V5

V2

V3

Khushbu Maurya

Weiler-Atherton Polygon Clipping
▪ It modifies Sutherland-Hodgeman vertex processing procedure for window boundary so

that concave polygon also clip correctly.

▪ This can be applied for arbitrary polygon clipping regions as it is developed for visible

surface identification.

▪ Procedure is similar to Sutherland-Hodgeman algorithm.

▪ Only change is sometimes need to follow the window boundaries Instead of always follow

polygon boundaries.

▪ For clockwise processing of polygon vertices we use the following rules:

1. For an outside to inside pair of vertices, follow the polygon boundary.

2. For an inside to outside pair of vertices, follow the window boundary in a clockwise direction.

Khushbu Maurya

Example

▪ Start from v1 and move clockwise towards v2 and add intersection

point and next point to output list by following polygon boundary,

▪ then from v2 to v3 we add v3 to output list.

▪ From v3 to v4 we calculate intersection point and add to output list

and follow window boundary.

V4

V6

V1

V5

V2

V3

V1’
V2’

V3’V4’

Khushbu Maurya

Contd.

▪ Similarly from v4 to v5 we add intersection point and next point

and follow the polygon boundary,

▪ next we move v5 to v6 and add intersection point and follow the

window boundary, and

▪ finally v6 to v1 is outside so no need to add anything.

▪ This way we get two separate polygon section after clipping.

V4

V6

V1

V5

V2

V3

V1’
V2’

V3’V4’

V5’

V6’
V7’

Khushbu Maurya

Contd.

MC

Construct World-
Coordinate Scene
Using Modeling-

Coordinate
Transformations

Convert
World-

Coordinate to
Viewing

Coordinates

Map Viewing
Coordinate to

Normalized Viewing
Coordinates using
Window-Viewport

Specifications

Map
Normalized
Viewport to

Device
Coordinates

WC

DCNVC

VC

Khushbu Maurya

Viewing Coordinate Reference Frame
▪ We can obtain reference frame in any

direction and at any position.

▪ For handling such condition

• first of all we translate reference frame origin

to standard reference frame origin.

• Then we rotate it to align it to standard axis.

▪ In this way we can adjust window in any reference frame.

▪ It is illustrate by following transformation matrix: 𝑀𝑤𝑐,𝑣𝑐 = 𝑅𝑇

▪ Where T is translation matrix and R is rotation matrix.

Khushbu Maurya

Window-To-Viewport Coordinate Transformation

▪ Mapping of window coordinate to viewport is called window to

viewport transformation.

▪ We do this using transformation that maintains relative position of

window coordinate into viewport.

▪ That means center coordinates in window must be remains at

center position in viewport.

Window

Viewport

XWmin XWmax

YWmin

YWmax

YVmax

YVmin

XVmin XVmax

YV

XV

YW

XW

Khushbu Maurya

Contd.

▪ We find relative position by equation as follow:

𝑥𝑣 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛
=

𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

▪ Similarly
𝑦𝑣 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛
=

𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

Window

Viewport

XWmin XWmax

YWmin

YWmax

YVmax

YVmin

XVmin XVmax

YV

XV

YW

XW

Khushbu Maurya

Contd.
▪ Solving for 𝑥 direction by making viewport position as subject we obtain:

𝑥𝑣 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛
=

𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑣 = 𝑥𝑣𝑚𝑖𝑛 + 𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑣 = 𝑥𝑣𝑚𝑖𝑛 + (𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛)𝑠𝑥

▪ Where

𝑠𝑥 =
𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

Khushbu Maurya

Contd.
▪ Similarly Solving for 𝑦 direction by making viewport position as subject we obtain:

𝑦𝑣 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛
=

𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑣 = 𝑦𝑣𝑚𝑖𝑛 + 𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑣 = 𝑦𝑣𝑚𝑖𝑛 + 𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛 𝑠𝑦

▪ Where

𝑠𝑦 =
𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

Khushbu Maurya

Contd.

▪ We can also map window to viewport with the set of transformation:

• Perform a scaling transformation using a fixed-point position of (𝑥𝑤𝑚𝑖𝑛, 𝑦𝑤𝑚𝑖𝑛) that scales the window

area to the size of the viewport.

• Translate the scaled window area to the position of the viewport.

▪ For maintaining relative proportions we take (𝑠𝑥 = 𝑠𝑦).

▪ If both are not equal then we get stretched or contracted in either the 𝑥 or 𝑦 direction when

displayed on the output device.

▪ Characters are handle in two different way

• One way is simply maintain relative position like other primitive.

• Other is to maintain standard character size even though viewport size is enlarged or reduce.

Khushbu Maurya

