
1

Topics to be covered
▪ Principles of I/O Hardware: I/O devices

▪ Device controllers

▪ Direct memory access

▪ Principles of I/O Software: Goals of Interrupt handlers

▪ Device drivers

▪ Device independent I/O software

▪ Secondary-Storage Structure: Disk structure

▪ Disk scheduling algorithm



2

Components of I/O devices 
▪ I/O devices have two components

1. Mechanical component

2. Electronic component

▪ The mechanical component is device itself.

▪ Electronic component of devices is called the Device Controller.



3

Device Controller 
▪ Electronic component which controls the device.

▪ It may handle multiple devices.

▪ There may be more than one controller per mechanical
component (example: hard drive).

▪ Controller's tasks are:

• It converts serial bit stream to block of bytes

• Perform error correction if necessary

• Block of bytes is first assembled bit by bit in buffer inside the
controller

• After verification, the block has been declared to be error free,
and then it can be copied to main memory



4

Memory-Mapped I/O
▪ Each device controller has a few registers that are used for

communicating with the CPU.

▪ By writing into these registers, the OS can command the device to
deliver data, accept data, switch itself on or off, or perform some
action.

▪ By reading from these registers OS can learn what the device’s
status is, whether it is prepared to accept a new command and so
on.

▪ There are two ways to communicate with control registers and the
device buffers:

1. I/O Port

2. Memory mapped I/O



5

I/O Port

• Uses different address spaces
for memory and I/O devices

• Uses a special class of CPU
instructions to access I/O
devices

Memory mapped I/O

• Uses same address space to
address memory and I/O
devices

• Access to the I/O devices
using regular instructions

I/O Port Vs Memory Mapped I/O 



6

Direct Memory Access
▪ Feature of computer systems that allows certain hardware

subsystems to access main memory (RAM), independent of the
central processing unit (CPU).

▪ Without DMA, when the CPU is using programmed input/output,
it is typically fully occupied for the entire duration of the read or
write operation, and is thus unavailable to perform other work.



7

Direct Memory Access
▪ With DMA, the CPU first initiates the transfer, then it does other

operations while the transfer is in progress, and it finally receives
an interrupt from the DMA controller when the operation is done.

▪ This feature is useful when the CPU needs to perform useful
work while waiting for a relatively slow I/O data transfer.

▪ Many hardware systems such as disk drive controllers, graphics
cards, network cards and sound cards use DMA.



8

• The disk controller reads the block
from the drive serially, bit by bit,
until the entire block is in the
controller’s buffer.

• Next, it computes the checksum
to verify that no read errors have
occurred.

Disk read-write without a DMA

CPU
Disk

Controller
Main

Memory

Bus

Buffer

Drive



9

• Then the controller causes an
interrupt, so that OS can read the
block from controller’s buffer (a
byte or a word at a time) by
executing a loop.

• After reading every single part of
the block from controller device
register, the operating system will
store them into the main memory.

Disk read-write without a DMA

CPU
Disk

Controller
Main

Memory

Bus

Buffer

Drive



10

Disk read-write using DMA

Address

Count

Control

CPU
DMA

Controller
Disk

Controller
Main

Memory

Bus

Buffer

Drive
1. CPU 
programs 
DMA 
controller

Step 1: First the CPU programs the DMA controller by setting its registers so it
knows what to transfer where.
It also issues a command to the disk controller telling it to read data from the disk
into its internal buffer and verify the checksum.
When valid data are in the disk controller’s buffer, DMA can begin.



11

Disk read-write using DMA

Address

Count

Control

CPU
DMA

Controller
Disk

Controller
Main

Memory

Bus

Buffer

Drive
1. CPU 
programs 
DMA 
controller

2. DMA 
requests 
transfer to 
memory

Step 2: The DMA controller initiates the transfer by issuing a read request over the
bus to the disk controller.
This read request looks like any other read request, and the disk controller does
not know (or care) whether it came from the CPU or from a DMA controller.



12

Disk read-write using DMA

Address

Count

Control

CPU
DMA

Controller
Disk

Controller
Main

Memory

Bus

Buffer

Drive
1. CPU 
programs 
DMA 
controller

2. DMA 
requests 
transfer to 
memory

3. Data 
transferred

Typically, the memory address to write to is on the bus’ address lines, so when the
disk controller fetches the next word from its internal buffer, it knows where to
write it.
Step 3: The write to memory is another standard bus cycle.



13

Disk read-write using DMA

Address

Count

Control

CPU
DMA

Controller
Disk

Controller
Main

Memory

Bus

Buffer

Drive
1. CPU 
programs 
DMA 
controller

2. DMA 
requests 
transfer to 
memory

3. Data 
transferred

4. ACK

Step 4: When the write is complete, the disk controller sends an acknowledgement
signal to the DMA controller, also over the bus.
The DMA controller then increments the memory address to use and decrements
the byte count.
If the byte count is still greater than 0, steps 2 to 4 are repeated until it reaches 0.



14

Disk read-write using DMA

Address

Count

Control

CPU
DMA

Controller
Disk

Controller
Main

Memory

Bus

Buffer

Drive
1. CPU 
programs 
DMA 
controller

2. DMA 
requests 
transfer to 
memory

3. Data 
transferred

4. ACK

At that time, the DMA controller interrupts the CPU to let it know that the transfer
is now complete.
When the OS starts up, it does not have to copy the disk block to memory; it is
already there.



15

Modes of bus operation
▪ The buses can be operated in two modes

1. Word-at-a-time mode: Here the DMA requests for the transfer
of one word and gets it.

• If CPU wants the bus at same time then it has to wait.

• This mechanism is known as Cycle.

2. Block mode: Here the DMA controller tells the device to acquire
the bus, issues a series of transfer and then releases the bus.

• This form of the operation is called Burst mode.

• It is more efficient then cycle stealing.



16

Goals of I/O Software
1. Device independence

• It should be possible to write programs that can access any I/O
devices without having to specify device in advance.

• For example, a program that reads a file as input should be able to
read a file on a floppy disk, on a hard disk, or on a CD-ROM,
without having to modify the program for each different device.

2. Uniform naming

• Name of file or device should be some specific string or number. It
must not depend upon device in any way.

• All files and devices are addressed the same way: by a path name.



17

Goals of I/O Software
3. Error handling

• Error should be handled as close to hardware as possible.

• If any controller generates error then it tries to solve that error
itself. If controller can’t solve that error then device driver should
handle that error, perhaps by reading all blocks again.

• Many times when error occurs, error is solved in lower layer. If
lower layer is not able to handle error then problem should be
told to upper layer.

• In many cases error recovery can be done at a lower layer without
the upper layers even knowing about error.



18

Goals of I/O Software
4. Synchronous vs. asynchronous transfers

• Most of devices are asynchronous device. CPU starts transfer and
goes off to do something else until interrupt occurs.

• I/O Software needs to support both the types of devices.

5. Buffering

• Data comes in main memory cannot be stored directly.

• For example data packets come from the network cannot be
directly stored in physical memory.

• Packets have to be put into output buffer for examining them.

• Some devices have several real-time constraints, so data must be
put into output buffer in advance to decouple the rate at which
buffer is filled and the rate at which it is emptied, in order to avoid
buffer under runs.



19

Device driver 
▪ I/O devices which are plugged with computer have some specific

code for controlling them. This code is called the device driver.

▪ Each device driver normally handles one device type, or at most
one class of closely related devices.

▪ Generally device driver is delivered along with the device by
device manufacturer.

▪ Device drivers are normally positioned below the rest of Operating
System.



20

Logical positioning of device drivers

User
Programs

Rest of 
Operating System

Printer
Driver

CD-Rom
Driver

Printer
Controller

CD-Rom
Controller

User 
Space

Kernel 
Space

Hardware

Device



21

Functions of device drivers
1. Device driver accept abstract read and write requests from

device independent software.

2. Device driver must initialize the device if needed.

3. It also controls power requirement and log event.

4. It also checks statues of devices. If it is currently in use then
queue the request for latter processing. If device is in idle state
then request can be handled now.

5. Pluggable device can be added or removed while the computer is
running. At that time the device driver inform CPU that the user
has suddenly removed the device from system.



22

Device Independent I/O Software
▪ Exact boundary between the drivers and the device independent

I/O software is system dependent.

▪ Function of device independent I/O Software

1. Uniform interfacing for device drivers.

2. Buffering.

3. Error Reporting.

4. Allocating and releasing dedicated devices.

5. Providing a device-independent block size.



23

Uniform interfacing for device drivers
▪ A major issue of an OS is how to make all I/O devices and drivers

look more or less the same.

▪ One aspect of this issue is the interface between the device
drivers and the rest of the OS.



24

• Figure shows situation in
which each device driver has
a different interface to OS, it
means that interfacing each
new driver requires a lot of
new programming effort.

Uniform interfacing for device drivers



25

• Figure shows a different
design in which all drivers
have the same interface.

• Now it becomes much easier
to plug in a new driver.

Uniform interfacing for device drivers



26

Buffering
▪ Buffering is also issue, both for block and character devices.

▪ In case of a process, which reads the data from the modem,
without buffering the user process has to be started up for every
incoming character.

▪ We have four different options:

1. Unbuffered input

2. Buffering in user space

3. Buffering in kernel followed by user space

4. Double buffering in kernel space



27

• No buffer available in user space or
kernel space.

• Allowing a process to run many
times for short runs is inefficient, so
this design is not a good one.

Unbuffered input

User
Programs

Modem

User 
Space

Kernel 
Space



28

• Buffer in users pace: here user
process provides an n-character
buffer in user space and does a read
of n-characters.

Buffering in user space

Modem

User 
Space

Kernel 
Space



29

• Buffer inside kernel: to create the
buffer inside the kernel and
interrupt handler is responsible to
put the character there.

Buffering in kernel space followed by user space

Modem

User 
Space

Kernel 
Space



30

• Two buffers in kernel: the first buffer
is used to store characters. When it
is full, it is being copied to user
space. During that time the second
buffer is used.

• In this way, two buffers take turns.

• This is called double buffering
scheme.

Double buffering in kernel space

Modem

User 
Space

Kernel 
Space



31

Error Reporting
▪ Errors are far more common in the context of I/O than in other

context. When they occur, the OS must handle them as best it can.

▪ One class of I/O errors is programming errors. These occur when a
process asks for something impossible, such as writing to an input
device or reading from an output device.

▪ The action taken for these errors is, to report an error code back
to the caller.

▪ Another class of error is the class of actual I/O errors, for example
trying to write a disk block that has been damaged.

▪ In this case, driver determines what to do and if it does not know
the solution then the problem may be passed to the device
independent software.



32

Allocating and releasing dedicated devices

▪ Some devices such as CD-ROM recorders can be used only by a
single process at any given moment.

▪ A mechanism for requesting and releasing dedicated devices is
required.

▪ An attempt to acquire a device that is not available blocks the
caller instead of failing.

▪ Blocked processes are put on a queue, sooner or later the
requested device becomes available and the first process on the
queue is allowed to acquire it and continue execution.



33

Providing a device-independent block size

▪ Different disks may have different sector sizes.

▪ It is up to the device independent I/O software to hide this fact
and provide a uniform block size to higher layers.



34

Definitions
▪ Seek time: The time to move the arm to the proper cylinder.

▪ Rotational delay: The time for the proper sector to rotate under
the head.



35

Disk Arm Scheduling Algorithm
▪ Various types of disk arm scheduling algorithms are available to

decrease mean seek time.

1. FCFS (First come first serve)

2. SSTF (Shorted seek time first)

3. SCAN

4. C-SCAN

5. LOOK (Elevator)

6. C-LOOK



36

Example for Disk Arm Scheduling Algorithm

▪ Consider an imaginary disk with 51 cylinders. A request comes in
to read a block on cylinder 11. While the seek to cylinder 11 is in
progress, new requests come in for cylinders 1, 36, 16, 34, 9, and
12, in that order.

▪ Starting from the current head position, what is the total distance
(in cylinders) that the disk arm moves to satisfy all the pending
requests, for each of the following disk scheduling Algorithms?



37

FCFS (First come first serve)
▪ Here requests are served in the order of their arrival.

▪ Disk movement will be 11, 1, 36, 16, 34, 9 and 12.

▪ Total cylinder movement: (11-1) + (36-1) + (36-16) + (34-16) + (34-
9) + (12-9) = 111

0 1 9 12 16 34 36 50

11

1

34

36

9

12

16

1, 
36, 
16, 
34, 
9, 
12



38

SSTF (Shortest seek time first)
▪ We can minimize the disk movement by serving the request

closest to the current position of the head.

▪ Disk movement will be 11, 12, 9, 16, 1, 34, 36.
▪ Total cylinder movement: (12-11) + (12-9) + (16-9) + (16-1) + (34-1)

+ (36-34) = 61

0 1 9 12 16 34 36 50

11

1
34

36

9

12

16

1, 
36, 
16, 
34, 
9, 
12



39

LOOK (Elevator)
▪ Keep moving in the same direction until there are no more

outstanding requests pending in that direction, then algorithm
switches the direction.

▪ After switching the direction the arm will move to handle any
request on the way. Here first go it moves in up direction then
goes in down direction.

▪ This is also called as elevator algorithm.

▪ In the elevator algorithm, the software maintains 1 bit: the
current direction bit, which takes the value either UP or DOWN.



40

LOOK (Elevator)

▪ Disk movement will be 11, 12, 16, 34, 36, 9, 1.

▪ Total cylinder movement: (12-11) + (16-12) + (34-16) + (36-34) +
(36-9) + (9-1)=60

0 1 9 12 16 34 36 50

11

1

34

36
9

12

16

1, 
36, 
16, 
34, 
9, 
12



41

C-LOOK
▪ Keep moving in the same direction until there are no more

outstanding requests pending in that direction, then algorithm
switches direction.

▪ When switching occurs the arm goes to the lowest numbered
cylinder with pending requests and from there it continues
moving in upward direction again.



42

C-LOOK

▪ Disk movement will be 11, 12, 16, 34, 36, 1, 9.

▪ Total cylinder movement: (12-11) + (16-12) + (34-16) + (36-34)
+(36-1)+(9-1)=68

0 1 9 12 16 34 36 50

11

1

34

36

9

12

16

1, 
36, 
16, 
34, 
9, 
12



43

SCAN
▪ From the current position disk arm starts in up direction and

moves towards the end, serving all the pending requests until
end.

▪ At that end arm direction is reversed (down) and moves towards
the other end serving the pending requests on the way.



44

SCAN

▪ Disk movement will be 11, 12, 16, 34, 36, 50, 9, 1.

▪ Total cylinder movement: (12-11) + (16-12) + (34-16) +(36-34)
+(50-36) + (50-9) + (9-1) = 88

0 1 9 12 16 34 36 50

11

1

34

36

9

12

16

50

1, 
36, 
16, 
34, 
9, 
12



45

CSCAN
▪ From the current position disk arm starts in up direction and

moves towards the end, serving request until end.

▪ At the end the arm direction is reversed (down), and arm directly
goes to other end and again continues moving in upward
direction.



46

CSCAN

▪ Disk movement will be 11, 12, 16, 34, 36, 50, 0, 1,9.

▪ Total cylinder movement: (12-11) + (16-12) + (34-16) +(36-34)
+(50-36) + (50-0) + (1-0)+ (9-1) = 98

0 1 9 12 16 34 36 50

11

1

34

36

9

12

16

500

1, 
36, 
16, 
34, 
9, 
12



47

Examples for Disk Arm Scheduling Algorithm

▪ Consider an imaginary disk with 45 cylinders. A request comes in
to read a block on cylinder 20. While the seek to cylinder 20 is in
progress, new requests come in for cylinders 10, 22, 20, 2, 40, 6,
and 38 in that order.

▪ Starting from the current head position, what is the total distance
(in cylinders) that the disk arm moves to satisfy all the pending
requests and how much seek time is needed for, for each of the
disk scheduling algorithms if a seek takes 6 msec per cylinder
moved?


