
1

Topics to be covered
▪ Basic Memory Management: Definition

▪ Logical and Physical address map

▪ Memory allocation

▪ Paging

▪ Virtual Memory: Basics of Virtual Memory

▪ Hardware and control structures – Locality of reference

▪ Page fault

▪ Working Set

▪ Dirty page/Dirty bit – Demand paging (Concepts only)

▪ Page Replacement Algorithms

2

What is Memory?
▪ Computer memory is any physical device capable of storing

information temporarily or permanently.

▪ Types of memory

1. Random Access Memory (RAM), is a volatile memory that loses
its contents when the computer or hardware device loses power.

2. Read Only Memory (ROM), is a non-volatile memory,
sometimes abbreviated as NVRAM, is a memory that keeps its
contents even if the power is lost.

▪ Computer uses special ROM called BIOS (Basic Input Output
System) which permanently stores the software needed to access
computer hardware such as hard disk and then load an operating
system into RAM and start to execute it.

3

What is Memory? (cont…)
3. Programmable Read-Only Memory (PROM), is a memory chip

on which you can store a program. But once the PROM has been
used, you cannot wipe it clean and use it to store something
else. Like ROMs, PROMs are non-volatile. E.g CD-R

4. Erasable Programmable Read-Only Memory (EPROM), is a
special type of PROM that can be erased by exposing it to
ultraviolet light. E.g CD-RW

5. Electrically Erasable Programmable Read-Only Memory
(EEPROM), is a special type of PROM that can be erased by
exposing it to an electrical charge. E.g Pendrive

4

What is Memory Hierarchy?
▪ The hierarchical arrangement of storage in current computer

architectures is called the memory hierarchy.

Register

L1 Cache

L2 Cache

Main Memory

Local secondary storage

Remote secondary storage

• Faster
• Expensive
• Less Capacity

• Slower
• Cheaper
• More Capacity

5

Memory abstraction
▪ The hardware and OS memory manager makes you see the

memory as a single contiguous entity.

▪ How do they do that?

• Abstraction

▪ Is abstraction necessary?

6

No memory abstraction
▪ In this model the memory presented to the programmer was

simply a single block of physical memory

• having a set of addresses from 0 to some maximum

• with each address corresponding to a cell containing some
number of bits, commonly eight.

User
Program

OS in RAM 0

0xFFF…

User
Program

OS in RAM 0

0xFFF…

User
Program

OS in ROM

0

0xFFF… Driver in ROM

Even with no abstraction, we can have several setups!

7

No memory abstraction
▪ When program execute instruction like

• MOV REGISTER1, 1000

▪ If at the same time another program execute same instruction
then value of first program will be overwrite.

▪ So only one process at a time can be running.

User
Program

OS in RAM 0

0xFFF…

User
Program

OS in RAM 0

0xFFF…

User
Program

OS in ROM

0

0xFFF… Driver in ROM

Even with no abstraction, we can have several setups!

8

No memory abstraction
▪ What if we want to run multiple programs?

• OS saves entire memory on disk

• OS brings next program

• OS runs next program

▪ We can use swapping to run multiple programs concurrently.

User
Program

OS in RAM 0

0xFFF…

Hard Disk

• The process of bringing in each process in its entirely in to
memory, running it for a while and then putting it back on the
disk is called swapping.

Swapped in

Swapped out

9

Ways to implement swapping system
▪ Two different ways to implement swapping system

1. Multiprogramming with fixed partitions

2. Multiprogramming with dynamic partitions

10

Continuous Internal Evaluation (CIE) Distribution -Operating System

Theory: CIE-TH(60 Marks)

Class Test [40 Marks]

Assignment [10 Marks]- [15 MARKS]

presentation/Case Study [05 Marks]- moved to CIE-PR

Attendance bonus for all students having attendance > 80% [05

Marks]

Practical: CIE-PR(60 Marks)

Practical performance [20 Marks] MCQ based internal exam [20 Marks]

Internal Exam + Viva /Minor Project [20

Marks]

Minor Project [20 Marks]

Regularity in Lab+ Practical Manual+ Viva

[20 marks]

Project Presentation+ subject Viva[20 marks]

11

• Here memory is divided into fixed sized partitions.

• Size can be equal or unequal for different partitions.

• Generally unequal partitions are used for better
utilizations.

• Each partition can accommodate exactly one process,
means only single process can be placed in one
partition.

• The partition boundaries are not movable.

Multiprogramming with Fixed partitions

OS

Partition 1

Partition 2

Partition 3

Partition 4

12

• Whenever any program needs to be loaded in
memory, a free partition big enough to hold the
program is found. This partition will be allocated to
that program or process.

• If there is no free partition available of required size,
then the process needs to wait. Such process will be
put in a queue.

Multiprogramming with Fixed partitions

OS

Partition 1

Partition 2

Partition 3

Partition 4

13

Multiprogramming with Fixed partitions
▪ There are two ways to maintain queue

1. Using Multiple Input Queues.

2. Using Single Input Queue.

Partition - 4

Partition - 3

Partition - 2

Partition - 1

Operating

System

Multiple

Input

Queues

Partition - 4

Partition - 3

Partition - 2

Partition - 1

Operating

System

Single

Input

Queue

14

• Here, memory is shared among operating system and
various simultaneously running processes.

• Initially, the entire available memory is treated as a
single free partition.

• Process is allocated exactly as much memory as it
requires.

• Whenever any process enters in a system, a chunk of
free memory big enough to fit the process is found
and allocated. The remaining unoccupied space is
treated as another free partition.

Multiprogramming with Dynamic partitions

OS

User
Program

15

• If enough free memory is not available to fit the
process, process needs to wait until required memory
becomes available.

• Whenever any process gets terminate, it releases the
space occupied. If the released free space is
contiguous to another free partition, both the free
partitions are merged together in to single free
partition.

• Better utilization of memory than fixed sized size
partition.

Multiprogramming with Dynamic partitions

OS

User
Program

16

Multiprogramming with Dynamic partitions

17

Memory compaction
▪ When swapping creates multiple holes in memory, it is possible

to combine them all in one big hole by moving all the processes
downward as far as possible. This techniques is known as memory
compaction.

▪ It requires lot of CPU time.

Process B

Process A

Operating
System

Process B

Process A

Operating
System

18

Multiprogramming without memory abstraction

ADD
MOV

JMP 24

0
.
.

28
24
20
16
8
4
0

16380

CMP

JMP 28

0
.
.

28
24
20
16
8
4
0

16380

ADD
MOV

JMP 24

0
.
.

28
24
20
16
8
4
0

16380

CMP

JMP 28

0
.
.

16412
16408
16404
16400
16392
16388
16384

32764

Program 1 Program 2

Using absolute
address is wrong

here

We can use static
relocation at program

load time

P
ro

gr
am

 2
P

ro
gr

am
 1

19

Static relocation

ADD
MOV

JMP 24

0
.
.

28
24
20
16
8
4
0

16380

CMP

JMP 28

0
.
.

28
24
20
16
8
4
0

16380

ADD
MOV

JMP 24

0
.
.

28
24
20
16
8
4
0

16380

CMP

JMP 16412

0
.
.

16412
16408
16404
16400
16392
16388
16384

32764

Program 1 Program 2

When program was loaded at address 16384,
the constant 16384 was added to every
program address during the load process.
• Slow
• Required extra information from program

20

• An address space is set of addresses that a
process can use to address memory.

• An address space is a range of valid
addresses in memory that are available for a
program or process.

• Two registers: Base and Limit

1. Base register: Start address of a program
in physical memory.

2. Limit register: Length of the program.

▪ For every memory access

▪ Base is added to the address

▪ Result compared to Limit

▪ Only OS can modify Base and Limit register.

Base and Limit register

ADD
MOV

JMP 24

0
.
.

28
24
20
16
8
4
0

16380

CMP

JMP 16412

0
.
.

16412
16408
16404
16400
16392
16388
16384

32764

21

Dynamic relocation
▪ Steps in dynamic relocation

1. Hardware adds relocation register (base) to virtual address to
get a physical address

2. Hardware compares address with limit register; address must be
less than or equal limit

3. If test fails, the processor takes an address trap and ignores the
physical address.

CPU
Logical

Address
+

Base
Register

Physical
Address

<=

Limit
Register

MEMORY
Yes

No

Trap: Address error

22

Managing free memory
▪ Two ways to keep track of memory usage (free memory)

1. Memory management with Bitmaps

2. Memory management with Linked List

23

Memory management with Bitmaps

1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0

: :

0 8 16 24 32

A B C D E …….

• With bitmap, memory is divided into allocation
units.

• Corresponding to each allocation unit there is a
bit in a bitmap.

• Bit is 0 if the unit is free and 1 if unit is occupied.
• The size of allocation unit is an important design

issue, the smaller the size, the larger the bitmap.

24

Memory management with Bitmaps

1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0

: :

0 8 16 24 32

A B C D E …….

• The main problem is that when it has been
decided to bring a k unit process, the memory
manager must search the bitmap to find a run of
k consecutive 0 bits in the map.

• Searching a bitmap for a run of a given length is a
slow operation.

25

Memory management with Linked List

P 0 5 H 5 3 P 8 6 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 X

Hole Starts
at 18

Length
2

Process

• Another way to keep track of memory is to maintain a linked list
of allocated and free memory segments, where segment either
contains a process or is an empty hole between two processes.

• Each entry in the list specifies a hole (H) or process (P), the
address at which it starts the length and a pointer to the next
entry.

• The segment list is kept sorted by address.

26

Memory management with Linked List

P 0 5 H 5 3 P 8 6 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 X

Hole Starts
at 18

Length
2

Process

• Sorting this way has the advantage that when a process
terminates or is swapped out, updating the list is straightforward.

• A terminating process normally has two neighbors (except when
it is at the very top or bottom of memory).

27

Memory management with Linked List

P 0 5 H 5 3 P 8 6 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 X

Neighbors

A B

A

B

A P B

A P

P B

P

Before P terminate After P terminate

P is replaced by H

P is replaced by H
and two H are merged

P is replaced by H
and two H are merged

P is replaced by H
and three H are merged

28

Memory allocation algorithms
▪ Four memory allocation algorithms are as follow

1. First fit

2. Next fit

3. Best fit

4. Worst fit

29

500k

First fit
▪ Search starts from the starting location of the memory.

▪ First available hole that is large enough to hold the process is
selected for allocation.

▪ The hole is then broken up into two pieces, one for process and
another for unused memory.

▪ Example: Processes of 212K, 417K, 112K and 426K arrives in order.

100k 500k 200k 300k 600k

100k 200k 300k 600k

• Here process of size 426k will not get any partition for allocation.

30

First fit
▪ Fastest algorithm because it searches as little as possible.

▪ Memory loss is higher, as very large hole may be selected for
small process.

▪ Here process of size 426k will not get any partition for allocation.

100k 500k 200k 300k 600k

100k 200k 300k

31

Next fit
▪ It works in the same way as first fit, except that it keeps the track

of where it is whenever it finds a suitable hole.

▪ The next time when it is called to find a hole, it starts searching
the list from the place where it left off last time.

▪ Processes of 212K, 417K, 112K and 426K arrives in order.

100k 500k 200k 300k 600k

100k 288k 200k 300k 71k

212k 417k 112k

• Here process of size 426k will not get any partition for allocation.

32

Next fit
▪ Search time is smaller.

▪ Memory manager must have to keep track of last allotted hole to
process.

▪ It gives slightly worse performance than first fit.

▪ Here process of size 426k will not get any partition for allocation.

100k 500k 200k 300k 600k

100k 288k 200k 300k 71k

212k 417k 112k

33

Best fit
▪ Entire memory is searched here.

▪ The smallest hole, which is large enough to hold the process, is
selected for allocation.

▪ Processes of 212K, 417K, 112K and 426K arrives in order.

100k 500k 200k 300k 600k

100k 83k 88k 88k 174k

212k417k 112k 426k

34

Best fit
▪ Search time is high, as it searches entire memory every time.

▪ Memory loss is less.

100k 500k 200k 300k 600k

100k 83k 88k 88k 174k

212k417k 112k 426k

35

Worst fit
▪ Entire memory is searched here also. The largest hole, which is

largest enough to hold the process, is selected for allocation.

▪ Processes of 212K, 417K, 112K and 426K arrives in order.

100k 500k 200k 300k 600k

100k 83k 200k 300k 276k

212k417k 112k

• Here process of size 426k will not get any partition for allocation.

36

Worst fit
▪ Search time is high, as it searches entire memory every time.

▪ This algorithm can be used only with dynamic partitioning.

▪ Here process of size 426k will not get any partition for allocation.

100k 500k 200k 300k 600k

100k 83k 200k 300k 276k

212k417k 112k

37

Virtual Memory
▪ Memory is hardware that your computer uses to load the

operating system and run programs.

▪ Computer consists of one or more RAM chips that each have
several memory modules.

▪ The amount of real memory in a computer is limited to the
amount of RAM installed. Common memory sizes are 1GB, 2GB,
and 4GB.

38

Virtual Memory
▪ Because your computer has a finite amount of RAM, it is possible

to run out of memory when too many programs are running at
one time.

▪ This is where virtual memory comes in.

▪ Virtual memory increases the available memory of your
computer by enlarging the "address space," or places in memory
where data can be stored.

▪ It does this by using hard disk space for additional memory
allocation.

▪ However, since the hard drive is much slower than the RAM, data
stored in virtual memory must be mapped back to real memory
in order to be used.

39

• Each program has its own address space,
which is broken up into pages.

• Each page is a contiguous range of
addresses.

• These pages are mapped onto the
physical memory but, to run the
program, all pages are not required to
be present in the physical memory.

• The operating system keeps those parts
of the program currently in use in main
memory, and the rest on the disk.

RAM

RAM

HDD

RAM

HDD

Virtual Memory

Another
Process’s
Memory

RAM

HDD

Virtual
Address space

40

• In a system using virtual memory, the
physical memory is divided into page
frames and the virtual address space is
divided in into equally-sized partitions
called pages.

• Virtual memory works fine in a
multiprogramming system, with bits and
pieces of many programs in memory at
once.

Virtual Memory

RAM

RAM

HDD

RAM

HDD

Another
Process’s
Memory

RAM

HDD

Virtual
Address space

41

Paging
▪ Paging is a storage mechanism used to retrieve processes from

the secondary storage (Hard disk) into the main memory (RAM)
in the form of pages.

▪ The main idea behind the paging is to divide each process in the
form of pages. The memory will also be divided in the form of
frames.

▪ One page of the process is to be stored in one of the frames of the
memory.

▪ The pages can be stored at the different locations of the memory
but the priority is always to find the contiguous frames or holes.

42

Paging
▪ Pages of the process are brought into the main memory only

when they are required otherwise they reside in the secondary
storage.

▪ The sizes of each frame must be equal. Considering the fact that
the pages are mapped to the frames in Paging, page size needs to
be as same as frame size.

▪ Different operating system defines different frame sizes.

43

Paging

Page 11

Page 10

Page 9

Page 8

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Frame 6

Frame 5

Frame 4

Frame 3

Frame 2

Frame 1

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

44

Paging

Frame 12

Frame 11

Frame 10

Frame 9

Frame 8

Frame 7

Frame 6

Frame 5

Frame 4

Frame 3

Frame 2

Frame 1

Page 3

Page 2

Page 1

Process 3

Page 3

Page 2

Page 1

Process 2

Page 3

Page 2

Page 1

Process 4

Page 3

Page 2

Page 1

Process 1

Process 1 and process 4 are
moved out from memory and
process 5 enters into memory.

45

Paging

Frame 12

Frame 11

Frame 10

Frame 9

Frame 8

Frame 7

Frame 6

Frame 5

Frame 4

Frame 3

Frame 2

Frame 1

Page 3

Page 2

Page 1

Process 3

Page 3

Page 2

Page 1

Process 2

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Process 5

We have 6 non contiguous
frames available in the memory

and paging provides the
flexibility of storing the process

at the different places.

46

Paging

5

3

4

0

1

2

5

4

3

2

1

0

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

47

Paging
▪ Size of Virtual Address Space is greater than that of main

memory, so instead of loading entire address space in to memory
to run the process, MMU copies only required pages into main
memory.

▪ In order to keep the track of pages and page frames, OS
maintains a data structure called page table.

48

Logical Address vs Physical Address
▪ Logical Address is generated by CPU while a program is running.

The logical address is virtual address as it does not exist physically
therefore it is also known as Virtual Address.

▪ Physical Address identifies a physical location of required data in
a memory. The user never directly deals with the physical address
but can access by its corresponding logical address.

▪ The hardware device called Memory-Management Unit is used
for mapping (converting) logical address to its corresponding
physical address.

49

Conversion of virtual address to physical address

▪ When virtual memory is used, the virtual address is presented to
an MMU (Memory Management Unit) that maps the virtual
addresses onto the physical memory addresses.

X

X

5

X

X

3

4

0

X

1

2

5

4

3

2

1

0

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

50

Conversion of virtual address to physical address

▪ We have a computer generated 16-bit addresses, from 0 up to
44K. These are the virtual addresses.

X

X

5

X

X

3

4

0

X

1

2

5

4

3

2

1

0

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

With 44 KB of virtual address
space , we get 11 virtual pages and
24 KB of physical memory, we get
6 page frames.

51

Conversion of virtual address to physical address

▪ However, only 24KB of physical memory is available, so although
44KB programs can be written, they cannot be loaded in to
memory in their entirety and run.

X

X

5

X

X

3

4

0

X

1

2

5

4

3

2

1

0

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

52

Conversion of virtual address to physical address

▪ A complete copy of a program’s core image, up to 44 KB, must be
present on the disk.

▪ Only required pages are loaded in the physical memory.

X

X

5

X

X

3

4

0

X

1

2

5

4

3

2

1

0

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

53

Conversion of virtual address to physical address

▪ A complete copy of a program’s core image, up to 44 KB, must be
present on the disk.

▪ Only required pages are loaded in the physical memory.

X

X

5

X

X

3

4

0

X

1

2

5

4

3

2

1

0

40K – 44K

36K – 40K

32K – 36K

28K – 32K

24K – 28K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

20K – 24K

16K – 20K

12K – 16K

8K – 12K

4K – 8K

0K – 4K

Physical
Memory
Address

Virtual
Address
Space

Virtual page

Page frame

Transfers between RAM and disk
are always in units of a page.

54

Internal operation of the MMU

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0

000 0

000 0

000 0

000 0

111 1

000 0

101 1

000 0

000 0

000 0

011 1

100 1

000 1

110 1

001 1

010 1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Incoming logical address (8196)

Outgoing physical address (24580)

Page
Table

110

12 bit offset
copied directly from
input to output

Present/
Absent bit

Virtual page=2
is used as an

index into the
page table

1 1 0

55

Conversion of virtual address to physical address

▪ The virtual address is split into a virtual page number (high order
bits) and an offset (low-order bits).

▪ With a 16-bit address and a 4KB page size, the upper 4 bits could
specify one of the 11 virtual pages and the lower 12 bits would
then specify the byte offset (0 to 4095) within the selected page.

▪ The virtual page number is used as an index into the Page table.

56

Conversion of virtual address to physical address

▪ If the present/absent bit is 0, it is page-fault; a trap to the
operating system is caused to bring required page into main
memory.

▪ If the present/absent bit is 1, required page is there with main
memory and page frame number found in the page table is copied
to the higher order bit of the output register along with the offset.

▪ Together Page frame number and offset creates physical address.

▪ Physical Address = Page frame Number + offset of virtual
address.

57

Page table
▪ Page table is a data structure which translates virtual address

into equivalent physical address.

▪ The virtual page number is used as an index into the Page table to
find the entry for that virtual page and from the Page table
physical page frame number is found.

▪ Thus the purpose of page table is to map virtual pages onto page
frames.

58

Page table structure

▪ Page frame Number: It gives the frame number in which the
current page you are looking for is present.

▪ Present/Absent bit: Present or absent bit says whether a
particular page you are looking for is present or absent. If it is not
present, that is called Page Fault. It is set to 0 if the corresponding
page is not in memory. Sometimes this bit is also known as
valid/invalid bits.

▪ The Protection bits: Protection bit says that what kind of
protection you want on that page. In the simplest form, 0 for
read/write and 1 for read only.

Page frame number

Present/ absentProtection

59

Page table structure

▪ Modified bit: Modified bit says whether the page has been
modified or not. If the page in memory has been modified, it
must be written back to disk. This bit is also called as dirty bit as it
reflects the page’s state.

▪ Referenced bit: A references bit is set whenever a page is
referenced, either for reading or writing. Its value helps
operating system in page replacement algorithm.

▪ Cashing Disabled bit: This feature is important for pages that
maps onto device registers rather than memory. With this bit
cashing can be turned off.

Page frame number

Present/ absentProtectionModifiedCaching
Disabled

Referenced

60

Demand Paging
▪ In paging system, processes are started up with none of their

pages in memory.

▪ When CPU tries to fetch the first instruction, it gets page fault,
other page faults for global variables and stack usually follow
quickly.

▪ After a while, the process has most of the pages it needs in main
memory and it has few page faults.

▪ This strategy is called demand paging because pages are loaded
only on demand, not in advance.

61

Definitions
▪ Working Set: The set of pages that a process is currently using is

known as working set.

▪ Thrashing: A program causing page faults every few instructions
is said to be thrashing.

▪ Pre-paging: Many paging systems try to keep track of each
process‘s working set and make sure that it is in memory before
letting the process run.

▪ Loading pages before allowing processes to run is called pre-
paging.

62

Issues in Paging
▪ In any paging system, two major issues must be faced:

1. The mapping from virtual address to physical address must be
fast.

2. If the virtual address space is large, the page table will be large.

63

Mapping from virtual address to physical address must be fast

Page Frame

P1 F2

P2 F3

P3 F1

CPU

P D

Logical Address

Memory

F3 D
Physical Address

P2

Page Table

For every instruction
Memory reference
occur two time

performance is
reduced by half

Use a hardware
TLB (Translation
Lookaside Buffer)

64

Mapping from virtual address to physical address must be fast

Page Frame

P1 F2

P2 F3

P3 F1

CPU

P D

Logical Address

Memory

F3 D
Physical Address

P2

Page Table

Page Frame

P1 F2

P2 F3

TLB

Hardware

Data Structure
Inside memory

P3

F1

Instruction 1
Instruction 2
Instruction 3
…
…
Instruction 100

Page

65

Mapping from virtual address to physical address using TLB

▪ Steps in TLB hit:
1. CPU generates virtual address.
2. It is checked in TLB (present).
3. Corresponding frame number is retrieved, which now tells where in the

main memory page lies.

▪ Steps in Page miss:
1. CPU generates virtual address.
2. It is checked in TLB (not present).
3. Now the page number is matched to page table residing in main

memory.
4. Corresponding frame number is retrieved, which now tells where in the

main memory page lies.
5. The TLB is updated with new Page Table Entry (if space is not there, one

of the replacement technique comes into picture i.e either FIFO, LRU or
MFU etc).

66

Virtual address space is large, the page table will be large

▪ Two different ways to deal with large page table problems:

1. Multilevel Page Table

2. Inverted Page Table

67

Multilevel Page Table

Page Frame

P1 F301

P2 F302

CPU

PT2
10 bit

Offset
12 bits

Logical Address

Memory

F202 D
Physical Address

Page Pointer

1

2

3

Page Frame

P1 F201

P2 F202

Page Frame

P1 F101

P2 F102

PT1
10 bit

2 P2

68

Inverted Page Table

Page No 2 Offset

Current process ID - 245

Frame No 4 Offset

Physical Address

Hash
Function

Frame No Page No Process ID Pointer
1 2 211

2

3

4 2 245

5

6

Process IDs do not match.
So follow chaining pointer

Process IDs match.
So frame no added to
physical address.

69

Inverted Page Table
▪ Each entry in the page table contains the following fields.

1. Page number – It specifies the page number range of the logical
address.

2. Process id – An inverted page table contains the address space
information of all the processes in execution.

Since two different processes can have similar set of virtual
addresses, it becomes necessary in Inverted Page Table to store
a processID of each process to identify it’s address space
uniquely.

This is done by using the combination of PID and Page Number.
So this Process Id acts as an address space identifier and
ensures that a virtual page for a particular process is mapped
correctly to the corresponding physical frame.

70

Inverted Page Table
▪ Each entry in the page table contains the following fields.

3. Control bits – These bits are used to store extra paging-related
information. These include the valid bit, dirty bit, reference bits,
protection and locking information bits.

4. Chained pointer – It may be possible sometime that two or more
processes share a part of main memory.

In this case, two or more logical pages map to same Page Table
Entry then a chaining pointer is used to map the details of these
logical pages to the root page table.

71

Page replacement algorithms
▪ Following are different types of page replacement algorithms

1. Optimal Page Replacement Algorithm

2. FIFO Page Replacement Algorithm

3. The Second Chance Page Replacement Algorithm

4. The Clock Page Replacement Algorithm

5. LRU (Least Recently Used) Page Replacement Algorithm

6. NRU (Not Recently Used)

72

Optimal Page Replacement Algorithm
▪ The moment a page fault occurs, some set of pages will be in the

memory.

▪ One of these pages will be referenced on the very next instruction.

▪ Other pages may not be referenced until 10, 100, or perhaps 1000
instructions later.

▪ Each page can be labeled with the number of instructions that
will be executed before that page is first referenced.

▪ The optimal page algorithm simply says that the page with the
highest label should be removed.

▪ The only problem with this algorithm is that it is unrealizable.

▪ At the time of the page fault, the operating system has no way of
knowing when each of the pages will be referenced next.

73

Optimal Page Replacement Algorithm
▪ Page Reference String:

• 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 0, 2, 0, 1, 7, 0, 1

• Three frames

Page
Requests 7 0 1 2 0 3 0 4 2 3 0 3 2 0 2 0 1 7 0 1

Frame 1 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

Frame 2 0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0

Frame 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 7 7 7

Page Faults
(9)

F F F F F F F F F

74

FIFO Page Replacement Algorithm
▪ The first in first out page replacement algorithm is the simplest

page replacement algorithm.

▪ The operating system maintains a list of all pages currently in
memory, with the most recently arrived page at the tail and least
recent at the head.

▪ On a page fault, the page at head is removed and the new page is
added to the tail.

▪ When a page replacement is required the oldest page in memory
needs to be replaced.

▪ The performance of the FIFO algorithm is not always good
because it may happen that the page which is the oldest is
frequently referred by OS.

▪ Hence removing the oldest page may create page fault again.

75

FIFO Page Replacement Algorithm
▪ Page Reference String:

• 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

• Three frames

Page
Requests 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Frame 1 7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

Frame 2 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

Frame 3 1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

Page Faults
(15)

F F F F F F F F F F F F F F F

76

Belady’s Anomaly
▪ Page Reference String:

• 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Page Requests 1 2 3 4 1 2 5 1 2 3 4 5

Frame 1 1 1 1 4 4 4 5 5 5 5 5 5

Frame 2 2 2 2 1 1 1 1 1 3 3 3

Frame 3 3 3 3 2 2 2 2 2 4 4

Page Faults (9) F F F F F F F F F

Page Requests 1 2 3 4 1 2 5 1 2 3 4 5

Frame 1 1 1 1 1 1 1 5 5 5 5 4 4

Frame 2 2 2 2 2 2 2 1 1 1 1 5

Frame 3 3 3 3 3 3 3 2 2 2 2

Frame 4 4 4 4 4 4 4 3 3 3

Page Faults (10) F F F F F F F F F F

Th
re

e
 F

ra
m

e
s

Fo
u

r
Fr

am
e

s

Page Faults of 3 Frame > Page Faults of 4 Frame

Belady’s Anomaly

77

Belady’s Anomaly
▪ Belady’s anomaly is the phenomenon in which increasing the

number of page frames results in an increase in the number of
page faults for certain memory access patterns.

▪ This phenomenon is commonly experienced when using the first-
in first-out (FIFO) page replacement algorithm.

▪ In FIFO, the page fault may or may not increase as the page
frames increase, but in Optimal and stack-based algorithms like
LRU, as the page frames increase the page fault decreases.

78

Second Chance Page Replacement Algorithm

▪ It is modified form of the FIFO page replacement algorithm.

▪ It looks at the front of the queue as FIFO does, but instead of
immediately paging out that page, it checks to see if its
referenced bit is set.

• If it is not set (zero), the page is swapped out.

• Otherwise, the referenced bit is cleared, the page is inserted at
the back of the queue (as if it were a new page) and this process
is repeated.

A B C D E

1 0 1 0 1Page loaded
first

Most recently
loaded page

B C D E A

0 1 0 1 0

C D E A F

1 0 1 0 1

Remove Add at end

79

Second Chance Page Replacement Algorithm

80

Second Chance Page Replacement Algorithm

▪ If all the pages have their referenced bit set, on the second
encounter of the first page in the list, that page will be swapped
out, as it now has its referenced bit cleared.

▪ If all the pages have their reference bit cleared, then second
chance algorithm degenerates into pure FIFO.

A B C D E

1 1 1 1 1

A B C D E

0 0 0 0 0

B C D E F

0 0 0 0 1

85

LRU (Least Recently Used) Page Replacement Algorithm

▪ A good approximation to the optimal algorithm is based on the
observation that pages that have been heavily used in last few
instructions will probably be heavily used again in next few
instructions.

▪ When page fault occurs, throw out the page that has been used
for the longest time. This strategy is called LRU (Least Recently
Used) paging.

▪ To fully implement LRU, it is necessary to maintain a linked list of
all pages in memory, with the most recently used page at the
front and the least recently used page at the rear.

▪ The list must be updated on every memory reference.

▪ Finding a page in the list, deleting it, and then moving it to the
front is a very time consuming operations.

86

LRU (Least Recently Used) Page Replacement Algorithm

▪ Page Reference String:

• 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

• Three frames

Page
Requests 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Frame 1 7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 1 1 1 1

Frame 2 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

Frame 3 1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 7 7 7

Page Faults
(12)

F F F F F F F F F F F F

87

NRU (Not Recently Used) Page Replacement Algorithm

▪ NRU makes approximation to replace the page based on R
(referenced) and M (modified) bits.

▪ When a process is started up, both page bits for all pages are set
to 0 by operating system.

▪ Periodically, the R bit is cleared, to distinguish pages that have not
been referenced recently from those that have been.

▪ When page fault occurs, the operating system inspects all the
pages and divide them into 4 categories based on current values
of their R and M bits
1. Case 0 : not referenced, not modified
2. Case 1 : not referenced, modified
3. Case 2 : referenced, not modified
4. Case 3 : referenced, modified

▪ The NRU (Not Recently Used) algorithm removes a page at
random from the lowest numbered nonempty class.

88

NRU (Not Recently Used) Page Replacement Algorithm

▪ For example if,

1. Page-0 is of class-2 (referenced, not modified)

2. Page-1 is of class-1 (not referenced, modified)

3. Page-2 is of class-0 (not referenced, not modified)

4. Page-3 is of class-3 (referenced, modified)

▪ So lowest class page-2 needs to be replaced by NRU.

89

Sum
▪ A computer has four page frames. The time of loading, time of last

access and the R and M bit for each page given below. Which
page FIFO, LRU and NRU will replace.

▪ FIFO:- Page which is arrived first needs to be removed first, so
page-3 needs to replace.

Page Loaded Last Ref. R M

0 126 280 1 0

1 230 265 0 1

2 140 270 0 0

3 110 285 1 1

90

Sum
▪ A computer has four page frames. The time of loading, time of last

access and the R and M bit for each page given below. Which
page FIFO, LRU and NRU will replace.

▪ LRU:- When page fault occurs, throw out the page that has been
used for the longest time.

▪ Page page-1 is not used for the long time from all four, so LRU
suggest replacing page-1.

Page Loaded Last Ref. R M

0 126 280 1 0

1 230 265 0 1

2 140 270 0 0

3 110 285 1 1

91

Sum
▪ A computer has four page frames. The time of loading, time of last

access and the R and M bit for each page given below. Which page FIFO,
LRU and NRU will replace.

▪ NRU:-
• Page-0 is of class-2 (referenced, not modified)
• Page-1 is of class-1 (not referenced, modified)
• Page-2 is of class-0 (not referenced, not modified)
• Page-3 is of class-3 (referenced, modified)
• So lowest class page-2 needs to be replaced by NRU

Page Loaded Last Ref. R M

0 126 280 1 0

1 230 265 0 1

2 140 270 0 0

3 110 285 1 1

92

Segmentation
▪ Segmentation is a memory management technique in which each

job is divided into several segments of different sizes, one for
each module that contains pieces that perform related functions.

▪ Each segment is actually a different logical address space of the
program.

▪ When a process is to be executed, its corresponding
segmentation are loaded into non-contiguous memory though
every segment is loaded into a contiguous block of available
memory.

▪ Segmentation memory management works very similar to paging
but here segments are of variable-length where as in paging
pages are of fixed size.

93

Segmentation

Sr Size Memory
Address

1 300 100

2 500 400

3 100 900

N X NM

Segment 1

Segment 2

Segment 3

Segment N

Process P Segment Map Table

Physical Memory

100

200

300

400

500

600

700

800

900

1000

1100

94

Segmentation
▪ A program segment contains the program's main function, utility

functions, data structures, and so on.

▪ The operating system maintains a segment map table for every
process.

▪ Segment map table contains list of free memory blocks along
with segment numbers, their size and corresponding memory
locations in main memory.

▪ For each segment, the table stores the starting address of the
segment and the length of the segment.

▪ A reference to a memory location includes a value that identifies a
segment and an offset.

95

Paging VS Segmentation

Paging Segmentation

Paging was invented to get large address
space without having to buy more
physical memory.

Segmentation was invented to allow
programs and data to be broken up into
logically independent address space and
to add sharing and protection.

The programmer does not aware that
paging is used.

The programmer is aware that
segmentation is used.

Procedure and data cannot be
distinguished and protected separately.

Procedure and data can be distinguished
and protected separately.

Change in data or procedure requires
compiling entire program.

Change in data or procedure requires
compiling only affected segment not
entire program.

Sharing of different procedures not
available.

Sharing of different procedures
available.

96

Questions asked in GTU
1. Explain multiprogramming with fixed partition.

2. Explain link list method for dynamic memory management.

3. How free space can be managed by OS.

4. Explain Swapping and Fragmentation in detail.

5. What is Paging? Explain paging mechanism in MMU with
example.

6. Explain TLB and Virtual Memory.

7. Discuss demand paging.

8. Define following Terms: Thrashing

9. List different Page Replacement Algorithms? Discuss it in terms of
page faults.

10. What is Belady’s anomaly? Explain with suitable example.

97

Questions asked in GTU
11. Given six Partition of 300KB, 600KB, 350KB, 200KB, 750KB and

125KB(in order), how would the first-fit, best-fit and worst-fit
algorithms places processes of size 115 KB, 500KB, 358KB, 200KB
and 375KB(in order)? Which algorithm is efficient for the use of
memory?

12. Calculate the page fault rates for below reference string in case of
FIFO and Optimal page replacement algorithm. Assume the
memory size is 4 page frames and all frames are initially empty.
0,2,1,6,4,0,1,0,3,1,2,1

13. Consider (70120304230321201701) page reference string: How
many page fault would occur for following page replacement
algorithm. Consider 3 frames and 4 frames.

1. FIFO 2. LRU 3. Optimal

98

Questions asked in GTU
14. Consider the following reference string. Calculate the page fault

rates for FIFO and OPTIMAL page replacement algorithm. Assume
the memory size is 4 page frame.

1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2

OR

Consider the following page reference string:

1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2 With four Frames How
many page faults would occur for the FIFO, Optimal page
replacement algorithms? which algorithm is efficient? (assume all
frames are initially empty)

