
1

Topics to be covered
▪ Definitions

▪ Deadlock characteristics

▪ Deadlock ignorance

• Ostrich Algorithm

▪ Deadlock detection and recovery

▪ Deadlock avoidance

• Banker’s algorithm

▪ Deadlock prevention



2

What is Deadlock?



3

What is Deadlock?
▪ A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can
cause.

▪ Deadlocks are a set of blocked processes each holding a resource
and waiting to acquire a resource held by another process.

Resource

Process

Hold

Resource

Process

Request

P1

P2

R1 R2

Hold

Hold
Request

Request

DEADLOCK



4

Preemptable and non-preemptable resource 

▪ Preemptable:- Preemptive resources are those which can be
taken away from a process without causing any ill effects to the
process.

• Example:- Memory.

▪ Non-preemptable:- Non-pre-emptive resources are those which
cannot be taken away from the process without causing any ill
effects to the process.

• Example:- CD-ROM (CD recorder), Printer.



5

Deadlock v/s Starvation
Deadlock Starvation

All processes keep waiting for each other to 
complete and none get executed.

High priority process keep executing and low 
priority process are blocked.

Resources are blocked by the process. Resources are continuously utilized by the 
higher priority process.

Necessary conditions are mutual exclusion, 
hold and wait, no preemption, circular wait.

Priorities are assigned to the process.

Also known as circular wait. Also known as lived lock.

It can be prevented by avoiding the 
necessary conditions for deadlock.

It can be prevented by Aging.



6

Conditions that lead to deadlock
1. Mutual exclusion

• Each resource is either currently assigned to exactly one process
or is available.

2. Hold and wait
• Process currently holding resources granted earlier can request

more resources.
3. No preemption

• Previously granted resources cannot be forcibly taken away from
process.

4. Circular wait
• There must be a circular chain of 2 or more processes. Each

process is waiting for resource that is held by next member of the
chain.

▪ All four of these conditions must be present for a deadlock to
occur.



7

Strategies for dealing with deadlock
1. Just ignore the problem.

2. Detection and recovery.

• Let deadlocks occur, detect them and take action.

3. Dynamic avoidance by careful resource allocation.

4. Prevention, by structurally negating (killing) one of the four
required conditions.



8

Deadlock ignorance (Ostrich Algorithm)
▪ When storm approaches, an ostrich puts his head in the sand

(ground) and pretend (imagine) that there is no problem at all.

▪ Ignore the deadlock and pretend that deadlock never occur.

▪ Reasonable if

• deadlocks occur very rarely

• difficult to detect

• cost of prevention is high

▪ UNIX and Windows takes this approach



9

• We are starting from node D.
• Empty list L = ()
• Add current node so Empty 

list = (D).
• From this node there is one 

outgoing arc to T so add T to 
list.

• So list become L = (D, T).
• Continue this step….so we get 

list as below
• L = (D, T, E)………… L = (D, T, E, 

V, G, U, D)
• In the above step in list the 

node D appears twice, so 
deadlock.

Deadlock detection for single resource (RAG)

R A

SC D T E

B

VUF

GW



10

Deadlock detection for single resource
▪ Algorithm for detecting deadlock for single resource

1. For each node, N in the graph, perform the following five steps
with N as the starting node.

i. Initialize L to the empty list, designate all arcs as unmarked.

ii. Add current node to end of L, check to see if node now appears
in L two times. If it does, graph contains a cycle (listed in L),
algorithm terminates.

iii. From given node, see if any unmarked outgoing arcs. If so, go to
step 4; if not, go to step 5.

iv. Pick an unmarked outgoing arc at random and mark it. Then
follow it to the new current node and go to step 2.

v. If this is initial node, graph does not contain any cycles, algorithm
terminates. Otherwise, dead end. Remove it, go back to previous
node, make that one current node, go to step 2.



11

Deadlock detection for multiple resource

E =

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

4 2 3 1

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

2 1 0 0

A =

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 1 0

P2 2 0 0 1

P3 0 1 2 0

C = R =

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 2 0 0 1

P2 1 0 1 1

P3 2 1 0 0

total no of each resource no of resources that are 
available (free)

no of resources held by each 
process

no of resources still needed by 
each process to proceed



12

Deadlock detection for multiple resource

E =

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

4 2 3 1

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

0 0 0 0

A =

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 1 0

P2 2 0 0 1

P3 2 2 2 0

C = R =

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 2 0 0 1

P2 1 0 1 1

P3 0 0 0 0

total no of each resource no of resources that are 
available (free)

no of resources held by each 
process

no of resources still needed by 
each process to proceed



13

Deadlock detection for multiple resource

E =

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

4 2 3 1

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

2 2 2 0

A =

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 1 0

P2 2 0 0 1

P3 0 0 0 0

C = R =

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 2 0 0 1

P2 1 0 1 1

P3 0 0 0 0

total no of each resource no of resources that are 
available (free)

no of resources held by each 
process

no of resources still needed by 
each process to proceed

DEADLOCK



14

Deadlock recovery
1. Recovery through pre-emption

• In this method resources are temporarily taken away from its
current owner and give it to another process.

• The ability to take a resource away from a process, have another
process use it, and then give it back without the process noticing
it is highly dependent on the nature of the resource.

• Recovering this way is frequently difficult or impossible.

P1

P2

R1 R2

Hold

Hold

Request
Hold



15

Deadlock recovery (cont…)
2. Recovery through rollback

• PCB (Process Control Block) and resource state are periodically
saved at “checkpoint”.

• When deadlock is detected, rollback the preempted process up
to the previous safe state before it acquired that resource.

• Discard the resource manipulation that occurred after that
checkpoint.

• Start the process after it is determined it can run again.

A

First
Checkpoints

Second
Checkpoints

A A

F1 F2
R

B

R

A



16

Deadlock recovery (cont…)
3. Recovery through killing processes

• The simplest way to break a deadlock is to kill one or more
processes.

• Kill all the process involved in deadlock

• Kill process one by one.

– After killing each process check for deadlock
» If deadlock recovered then stop killing more process

» Otherwise kill another process



17

Safe and unsafe states
▪ A state is said to be safe if it is not deadlocked and there is some

scheduling order in which every process can run to completion
even if all of them suddenly request their maximum number of
resources immediately.

▪ Total resources are 10

▪ 7 resources already allocated

▪ So there are 3 still free

▪ A need 6 resources more to complete it.

▪ B need 2 resources more to complete it.

▪ C need 5 resources more to complete it.

Process Has Max

A 3 9

B 2 4

C 2 7

Free : 3



18

Safe states
Process Has Max

A 3 9

B 2 4

C 2 7

Free : 3

Process Has Max

A 3 9

B 4 4

C 2 7

Free : 1

Process Has Max

A 3 9

B 0 -

C 2 7

Free : 5

Process Has Max

A 3 9

B 0 -

C 7 7

Free : 0

Process Has Max

A 3 9

B 0 -

C 0 -

Free : 7

Process Has Max

A 9 9

B 0 -

C 0 -

Free : 1

2
4

5

7

6



19

Unsafe states
Process Has Max

A 3 9

B 2 4

C 2 7

Free : 3

Process Has Max

A 4 9

B 2 4

C 2 7

Free : 2

Process Has Max

A 4 9

B 4 4

C 2 7

Free : 0

1
2

Process Has Max

A 4 9

B 0 -

C 2 7

Free : 4

4



20

Deadlock avoidance
▪ Deadlock can be avoided by allocating resources carefully.

▪ Carefully analyse each resource request to see if it can be safely
granted.

▪ Need an algorithm that can always avoid deadlock by making right
choice all the time (Banker’s algorithm).

▪ Banker’s algorithm for single resource

▪ Banker’s algorithm for multiple resource



21

Banker’s algorithm for single resource
▪ What the algorithm does is check to see if granting the request

leads to an unsafe state. If it does, the request is denied.

▪ If granting the request leads to a safe state, it is carried out.

▪ If we have situation as per figure

• then it is safe state

• because with 10 free units

• one by one all customers can be served.

Process Has Max

A 0 6

B 0 5

C 0 4

D 0 7

Free : 10



22

Banker’s algorithm for single resource

Process Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Free : 2

Process Has Max

A 1 6

B 1 5

C 4 4

D 4 7

Free : 0

Process Has Max

A 1 6

B 1 5

C 0 0

D 4 7

Free : 4

Process Has Max

A 1 6

B 1 5

C 0 -

D 7 7

Free : 1

Process Has Max

A 1 6

B 1 5

C 0 -

D 0 -

Free : 8

Process Has Max

A 1 6

B 5 5

C 0 -

D 0 -

Free : 4



23

Banker’s algorithm for single resource

Process Has Max

A 1 6

B 0 -

C 0 -

D 0 -

Free : 9

Process Has Max

A 6 6

B 0 -

C 0 -

D 0 -

Free : 4

Process Has Max

A 0 -

B 0 -

C 0 -

D 0 -

Free : 10

• The order of execution is C, D, B, A. So if we can find proper order of execution then 
there is no deadlock.



24

Banker’s algorithm for single resource

Process Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Free : 1



25

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 3 0 1 1

P2 0 1 0 0

P3 1 1 1 0

P4 1 1 0 1

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 1 1 0 0

P2 0 1 1 2

P3 3 1 0 0

P4 0 0 1 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

1 0 2 0

Available (free) resources



26

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 3 0 1 1

P2 0 1 0 0

P3 1 1 1 0

P4 1 1 1 1

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 1 1 0 0

P2 0 1 1 2

P3 3 1 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

1 0 1 0

Available (free) resources



27

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 3 0 1 1

P2 0 1 0 0

P3 1 1 1 0

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 1 1 0 0

P2 0 1 1 2

P3 3 1 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

2 1 2 1

Available (free) resources



28

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 4 1 1 1

P2 0 1 0 0

P3 1 1 1 0

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 1 1 2

P3 3 1 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

1 0 2 1

Available (free) resources



29

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 0 1 0 0

P3 1 1 1 0

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 1 1 2

P3 3 1 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 1 3 2

Available (free) resources



30

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 0 2 1 2

P3 1 1 1 0

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 0 0 0

P3 3 1 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 0 2 0

Available (free) resources



31

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 - - - -

P3 1 1 1 0

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 0 0 0

P3 3 1 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 2 3 2

Available (free) resources



32

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 - - - -

P3 4 2 1 0

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 0 0 0

P3 0 0 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

2 1 3 2

Available (free) resources



33

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 - - - -

P3 - - - -

P4 - - - -

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 0 0 0

P3 0 0 0 0

P4 0 0 0 0

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Available (free) resources



34

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 - - - -

P3 - - - -

P4 - - - -

P5 2 1 1 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 0 0 0

P3 0 0 0 0

P4 0 0 0 0

P5 0 0 0 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

4 2 3 2

Available (free) resources



35

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 - - - -

P2 - - - -

P3 - - - -

P4 - - - -

P5 - - - -

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 0 0 0 0

P2 0 0 0 0

P3 0 0 0 0

P4 0 0 0 0

P5 0 0 0 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Available (free) resources



36

Banker’s algorithm for multiple resource
Ta

p
e

 
D

ri
ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

6 3 4 2

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

5 3 2 2

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 3 0 1 1

P2 0 1 0 0

P3 1 1 1 0

P4 1 1 0 1

P5 0 0 0 0

total no of each resource resources hold

n
o

 o
f 

re
so

u
rc

es
 h

e
ld

 b
y 

ea
ch

 
p

ro
ce

ss

n
o

 o
f 

re
so

u
rc

es
 s

ti
ll 

n
e

ed
ed

 b
y 

ea
ch

 p
ro

ce
ss

 t
o

 p
ro

ce
ed

P
ro

ce
ss

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

P1 1 1 0 0

P2 0 1 1 2

P3 3 1 0 0

P4 0 0 1 1

P5 2 1 1 0

Ta
p

e
 

D
ri

ve

P
lo

tt
e

rs

Sc
an

n
e

rs

C
D

 R
o

m
s

1 0 2 0

Available (free) resources



37

Deadlock prevention
▪ Deadlock can be prevented by attacking the one of the four

conditions that leads to deadlock.

1. Attacking the Mutual Exclusion Condition

2. Attacking the Hold and Wait Condition

3. Attacking the No Preemption Condition

4. Attacking the Circular Wait Condition



38

Attacking the mutual exclusion condition
▪ No deadlock if each resource can be assigned to more than one

process.

▪ We can not assign some resources to more than one process at a
time such as CD-Recorder, Printer etc…

▪ So this solution is not feasible.



39

Attacking the hold and wait condition
▪ Require processes to request all their resources before starting

execution.

▪ A process is allowed to run if all resources it needed is available.
Otherwise nothing will be allocated and it will just wait.

▪ Problem with this strategy is that a process may not know
required resources at start of run.

▪ Resource will not be used optimally.



40

Attacking the no preemption condition
▪ When a process P0 request some resource R which is held by

another process P1 then resource R is forcibly taken away from
the process P1 and allocated to P0.

▪ Consider a process holds the printer, halfway through its job;
taking the printer away from this process without having any ill
effect is not possible.

▪ This is not a possible option.



41

Attacking the circular wait condition
▪ Provide a global numbering of all the resources.

▪ Now the rule is that: processes can request resources whenever
they want to, but all requests must be made in numerical order.

▪ A process need not acquire them all at once.

▪ Circular wait is prevented if a process holding resource n cannot
wait for resource m, if m > n.

1. Printer

2. Scanner

3. Plotter

4. Tape Drive

5. CD Rom

▪ A process may request 1st a CD ROM, then tape drive. But it may
not request 1st a tape drive, then CD ROM.

▪ Resource graph can never have cycle.



42

Example
▪ Consider a system consisting of four resources of same type that

are shared by three processes, each of which needs at most two
resources. Show the system is deadlock free.

Process Has Max

A 1 2

B 1 2

C 1 2

Total : 4, Free : 1

Process Has Max

A 2 2

B 1 2

C 1 2

Free : 0

Process Has Max

A 0 0

B 1 2

C 1 2

Free : 2

Process Has Max

A 0 0

B 2 2

C 1 2

Free : 1

Process Has Max

A 0 0

B 0 0

C 1 2

Free : 3

Process Has Max

A 0 0

B 0 0

C 2 2

Free : 2

Process Has

A 0

B 0

C 0

Free : 4


