
1

Topics to be covered
▪ What is scheduling

▪ Objectives of scheduling

▪ Types of scheduler

▪ Scheduling criteria

▪ Scheduling algorithms

• First Come First Served (FCFS)

• Shortest Job First (SJF)

• Shortest Remaining Time Next (SRTN)

• Round Robin (RR)

• Priority

✓ Preemptive Priority

✓ Non-Preemptive Priority

2

What is Process scheduling?
▪ Process scheduling is the activity of the process manager that

handles suspension of running process from CPU and selection of
another process on the basis of a particular strategy.

▪ The part of operating system that makes the choice is called
scheduler.

▪ The algorithm used by this scheduler is called scheduling
algorithm.

▪ Process scheduling is an essential part of a multiprogramming
operating systems.

3

Objectives (goals) of scheduling
▪ Fairness: giving each process a fair share of the CPU.

▪ Balance: keeping all the parts of the system busy (Maximize).

▪ Throughput: no of processes that are completed per time unit
(Maximize).

▪ Turnaround time: time to execute a process from submission to
completion (Minimize).

• Turnaround time = Process finish time – Process arrival time

4

Objectives (goals) of scheduling
▪ CPU utilization: It is percent of time that the CPU is busy in

executing a process.

• keep CPU as busy as possible (Maximized).

▪ Response time: time between issuing a command and getting the
result (Minimized).

▪ Waiting time: amount of time a process has been waiting in the
ready queue (Minimize).

• Waiting time = Turnaround time – Actual execution time

5

Types of schedulers

Admit

Ready Queue
Dispatch

Time-out

Event Wait

Exit
Processor

Blocked Queue
Event

Occurs

Long Term

Scheduler

Short Term

Scheduler

Medium Term

Scheduler

6

Types of schedulers
Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler

It is a job scheduler. It is a CPU scheduler. It is a process swapping
scheduler.

It selects processes from
pool and loads them into
memory for execution.

It selects those processes
which are ready to execute.

It can re-introduce the
process into memory and
execution can be continued.

Speed is lesser than short
term scheduler.

Speed is fastest among other
two schedulers.

Speed is in between both
short and long term
scheduler.

It is almost absent or
minimal in time sharing
system.

It is also minimal in time
sharing system.

It is a part of time sharing
systems.

7

Scheduling algorithms
1. First Come First Served (FCFS)

2. Shortest Job First (SJF)

3. Shortest Remaining Time Next (SRTN)

4. Round Robin (RR)

5. Priority

1. Preemptive

2. Non-Preemptive

8

First Come First Served (FCFS)
▪ Selection criteria

• The process that request first is served first.

• It means that processes are served in the exact order of their
arrival.

▪ Decision Mode

• Non preemptive: Once a process is selected, it runs until it is
blocked for an I/O or some other event or it is terminated.

▪ Implementation:

• This strategy can be easily implemented by using FIFO (First In
First Out) queue.

• When CPU becomes free, a process from the first position in a
queue is selected to run.

Head TailP1 P2 P3

9

First Come First Served (FCFS)
▪ Example

▪ Gantt Chart

Process Arrival Time (T0) Time required for completion (∆T)
(CPU Burst Time)

P0 0 10

P1 1 6

P2 3 2

P3 5 4

P0 P1 P2 P3

0 10 16 18 22

10

First Come First Served (FCFS)
▪ Example

▪ Gantt Chart

▪ Average Turnaround Time: (10+15+15+17)/4 = 14.25 ms.

▪ Average Waiting Time: (0+9+13+13)/4 = 8.75 ms.

P0 P1 P2 P3

0 10 16 18 22

Process Arrival Time
(T0)

Burst Time
(∆T)

Finish Time
(T1)

Turnaround Time
(TAT = T1-T0)

Waiting Time
(WT = TAT-∆T)

P0 0 10 10 10 0

P1 1 6 16 15 9

P2 3 2 18 15 13

P3 5 4 22 17 13

11

First Come First Served (FCFS)
▪ Advantages

• Simple and fair.

• Easy to understand and implement.

• Every process will get a chance to run, so starvation doesn't
occur.

▪ Disadvantages

• Not efficient because average waiting time is too high.

• Convoy effect is possible. All small I/O bound processes wait for
one big CPU bound process to acquire CPU.

• CPU utilization may be less efficient especially when a CPU
bound process is running with many I/O bound processes.

12

Shortest Job First (SJF)
▪ Selection criteria

• The process, that requires shortest time to complete execution,
is served first.

▪ Decision Mode

• Non preemptive: Once a process is selected, it runs until either it
is blocked for an I/O or some other event or it is terminated.

▪ Implementation:

• This strategy can be easily implemented by using FIFO (First In
First Out) queue.

• All processes in a queue are sorted in ascending order based on
their required CPU bursts.

• When CPU becomes free, a process from the first position in a
queue is selected to run.

13

Shortest Job First (SJF)
▪ Example

▪ Gantt Chart

Process Arrival Time (T0) Time required for completion (∆T)
(CPU Burst Time)

P0 0 10

P1 1 6

P2 3 2

P3 5 4

P0 P1P2 P3

0 10 1612 22

14

Shortest Job First (SJF)

▪ Gantt Chart

▪ Average Turnaround Time: (10+21+9+11)/4 = 12.75 ms.

▪ Average Waiting Time: (0+15+7+7)/4 = 7.25 ms.

P0 P1P2 P3

0 10 1612 22

Process Arrival Time
(T0)

Burst Time
(∆T)

Finish Time
(T1)

Turnaround Time
(TAT = T1-T0)

Waiting Time
(WT = TAT-∆T)

P0 0 10 10 10 0

P1 1 6 22 21 15

P2 3 2 12 9 7

P3 5 4 16 11 7

15

Shortest Job First (SJF)
▪ Advantages:

• Less waiting time.

• Good response for short processes.

▪ Disadvantages :

• It is difficult to estimate time required to complete execution.

• Starvation is possible for long process. Long process may wait
forever.

16

Shortest Remaining Time Next (SRTN)
▪ Selection criteria :

• The process, whose remaining run time is shortest, is served first.
This is a preemptive version of SJF scheduling.

▪ Decision Mode:

• Preemptive: When a new process arrives, its total time is compared to
the current process remaining run time.

• If the new process needs less time to finish than the current process,
the current process is suspended and the new job is started.

▪ Implementation :

• This strategy can also be implemented by using sorted FIFO queue.

• All processes in a queue are sorted in ascending order on their
remaining run time.

• When CPU becomes free, a process from the first position in a queue is
selected to run.

17

Shortest Remaining Time Next (SRTN)
▪ Example

▪ Gantt Chart

Process Arrival Time (T0) Time required for completion (∆T)
(CPU Burst Time)

P0 0 10

P1 1 6

P2 3 2

P3 5 4

P0P1

0 9 22

P0

1

P1

3

P2

5

P3

13

Process Remaining Time

P1 6

P0 9

Process Remaining Time

P0 9

P2 2

P1 4

Process Remaining Time

P0 9

P1 4

P3 4

Process Remaining Time

P0 9

P3 4

Process Remaining Time

P0 9

18

Shortest Remaining Time Next (SRTN)

▪ Gantt Chart

▪ Average Turnaround Time: (22+8+2+8) / 4 = 10 ms.

▪ Average Waiting Time: (12+2+0+4)/4 = 4.5 ms.

P0P1

0 9 22

P0

1

P1

3

P2

5

P3

13

Process Arrival Time
(T0)

Burst Time
(∆T)

Finish Time
(T1)

Turnaround Time
(TAT = T1-T0)

Waiting Time
(WT = TAT-∆T)

P0 0 10 22 22 12

P1 1 6 9 8 2

P2 3 2 5 2 0

P3 5 4 13 8 4

19

Shortest Remaining Time Next (SRTN)
▪ Advantages :

• Less waiting time.

• Quite good response for short processes.

▪ Disadvantages :

• Again it is difficult to estimate remaining time necessary to
complete execution.

• Starvation is possible for long process. Long process may wait
forever.

• Context switch overhead is there.

20

Round Robin (RR)
▪ Selection Criteria

• Each selected process is assigned a time interval, called time
quantum or time slice.

• Process is allowed to run only for this time interval.

• Here, two things are possible:

• First, process is either blocked or terminated before the quantum
has elapsed. In this case the CPU switching is done and another
process is scheduled to run.

• Second, process needs CPU burst longer than time quantum. In this
case, process is running at the end of the time quantum.

• Now, it will be preempted and moved to the end of the queue.

• CPU will be allocated to another process.

• Here, length of time quantum is critical to determine.

21

Round Robin (RR)
▪ Decision Mode:

• Preemptive: When quantum time is over or process completes its
execution (which ever is earlier), it starts new job.

• Selection of new job is as per FCFS scheduling algorithm

▪ Implementation :

• This strategy can be implemented by using circular FIFO queue.

• If any process comes, or process releases CPU, or process is
preempted. It is moved to the end of the queue.

• When CPU becomes free, a process from the first position in a
queue is selected to run.

22

Round Robin (RR)
▪ Example

▪ Gantt Chart (Quantum time is 4 ms & context switch overhead is 1 ms)

Process Arrival Time (T0) Time required for completion (∆T)
(CPU Burst Time)

P0 0 10

P1 1 6

P2 3 2

P3 5 4

0

P0

4 5

P1

9 10

P2

12 13

P0

17 18

P3

22 23

P1

25 26

P0

28
Process Remaining Time

P1 6

P2 2

P0 6

Process Remaining Time

P2 2

P0 6

P3 4

P1 2

Process Remaining Time

P0 6

P3 4

P1 2

Process Remaining Time

P3 4

P1 2

P0 2

Process Remaining Time

P1 2

P0 2

Process Remaining Time

P0 2

23

Round Robin (RR)

▪ Gantt Chart (Quantum time is 4 ms & context switch overhead is 1 ms)

▪ Average Turnaround Time: (28+24+9+17)/4 = 19.5 ms.

▪ Average Waiting Time: (18+18+7+13)/4 = 14 ms.

Process Arrival Time
(T0)

Burst Time
(∆T)

Finish Time
(T1)

Turnaround Time
(TAT = T1-T0)

Waiting Time
(WT = TAT-∆T)

P0 0 10 28 28 18

P1 1 6 25 24 18

P2 3 2 12 9 7

P3 5 4 22 17 13

0

P0

4 5

P1

9 10

P2

12 13

P0

17 18

P3

22 23

P1

25 26

P0

28

24

Round Robin (RR)
▪ Advantages:

• Simplest, fairest and most widely used algorithms.

▪ Disadvantages:

• Context switch overhead is there.

• Determination of time quantum is too critical.

✓ If it is too short, it causes frequent context switches and lowers
CPU efficiency.

✓ If it is too long, it causes poor response for short interactive
process.

25

Non Preemptive Priority Scheduling
▪ Selection criteria :

• The process, that has highest priority, is served first.

▪ Decision Mode:

• Non Preemptive: Once a process is selected, it runs until it blocks
for an I/O or some event or it terminates.

▪ Implementation :

• This strategy can be implemented by using sorted FIFO queue.

• All processes in a queue are sorted based on their priority with
highest priority process at front end.

• When CPU becomes free, a process from the first position in a
queue is selected to run.

26

Non Preemptive Priority Scheduling
▪ Example

▪ Gantt Chart (small values for priority means higher priority of a process)

Process Arrival Time
(T0)

Time required for completion
(∆T) (CPU Burst Time)

Priority

P0 0 10 5

P1 1 6 4

P2 3 2 2

P3 5 4 0

P0 P1P2P3

0 10 14 16 22

27

Non Preemptive Priority Scheduling

▪ Gantt Chart (small values for priority means higher priority of a process)

▪ Average Turnaround Time: (10+21+13+9) / 4 = 13.25 ms

▪ Average Waiting Time: (0+15+11+5) / 4 = 7.75 ms

P0 P1P2P3

0 10 14 16 22

Process Arrival Time
(T0)

Burst Time
(∆T)

Finish Time
(T1)

Turnaround Time
(TAT = T1-T0)

Waiting Time
(WT = TAT-∆T)

P0 0 10 10 10 0

P1 1 6 22 21 15

P2 3 2 16 13 11

P3 5 4 14 9 5

28

Non Preemptive Priority Scheduling
▪ Advantages:

• Priority is considered so critical processes can get even better
response time.

▪ Disadvantages:

• Starvation is possible for low priority processes. It can be
overcome by using technique called ‘Aging’.

• Aging: gradually increases the priority of processes that wait in
the system for a long time.

29

Preemptive Priority Scheduling
▪ Selection criteria :

• The process, that has highest priority, is served first.

▪ Decision Mode:

• Preemptive: When a new process arrives, its priority is compared
with current process priority.

• If the new process has higher priority than the current, the
current process is suspended and new job is started.

▪ Implementation :

• This strategy can be implemented by using sorted FIFO queue.

• All processes in a queue are sorted based on priority with
highest priority process at front end.

• When CPU becomes free, a process from the first position in a
queue is selected to run.

30

Preemptive Priority Scheduling
▪ Example

▪ Gantt Chart (small values for priority means higher priority of a process)

Process Arrival Time
(T0)

Time required for completion
(∆T) (CPU Burst Time)

Priority

P0 0 10 5

P1 1 6 4

P2 3 2 2

P3 5 4 0

P0P3

0 5 9 13 22

P0 P1 P2 P1

31

Process Priority

P1 4

P0 5

Process Priority

P0 5

P2 2

P1 4

Process Priority

P0 5

P1 4

P3 0

Process Priority

P0 5

P1 4

Process Priority

P0 5

31

Preemptive Priority Scheduling

▪ Gantt Chart (small values for priority means higher priority of a process)

▪ Average Turnaround Time: (22+12+2+4) / 4 = 10 ms

▪ Average Waiting Time: (12+6+0+0) / 4 = 4.5 ms

Process Arrival Time
(T0)

Burst Time
(∆T)

Finish Time
(T1)

Turnaround Time
(TAT = T1-T0)

Waiting Time
(WT = TAT-∆T)

P0 0 10 22 22 12

P1 1 6 13 12 6

P2 3 2 5 2 0

P3 5 4 9 4 0

P0P3

0 5 9 13 22

P0 P1 P2 P1

31

32

Preemptive Priority Scheduling
▪ Advantages:

• Priority is considered so critical processes can get even better
response time.

▪ Disadvantages:

• Starvation is possible for low priority processes. It can be
overcome by using technique called ‘Aging’.

• Aging: gradually increases the priority of processes that wait in
the system for a long time.

• Context switch overhead is there.

33

Real Time Operating System
▪ Real time computing may be defined as that type of computing in

which the correctness of the system depends not only on the
logical result of the computation but also on the time at which
the results are produced.

▪ Real time task may be classified as hard and soft.

▪ A hard real time task is one that must meet its deadline;
otherwise it will cause unacceptable damage or a fatal error to
the system.

▪ A soft real time task has an associated deadline that is desirable
but not mandatory; it will not cause unacceptable damage or a
fatal error on missing deadline.

34

Characteristics of Real Time OS
1. Determinism: Operations are performed at fixed, predetermined

times or within predetermined time intervals.

2. Responsiveness: How long, after acknowledgment, the operating
system takes to service the interrupt.

It includes the time to begin execution of the interrupt service
routine (ISR). If a context switch is necessary, the delay is longer
than an ISR executed within the context of the current process.

35

Characteristics of Real Time OS
3. User Control: User should be able to

1) Specify paging or process swapping

2) Decide which processes must reside in main memory

3) Establish the rights of processes

4) Select algorithms for disks scheduling

4. Reliability: Real time system must be reliable. Reliability means
the system should not fail.

5. Fail-soft operation: It is an ability of a system to fail in such a way
as to preserve as much capability and data as possible.

36

Factors of Real Time Scheduling
1. Whether a system performs schedulability analysis or not

2. If it does, whether it is done statically or dynamically

3. Whether the result of the analysis itself produces a schedule or
plan according to which task are dispatched at run time.

37

Classes of Real Time Scheduling Algorithms

1. Static table-driven approaches

• It is applicable to a periodic tasks. This performs a static analysis
of feasible schedules.

• Input required for analysis are: periodic arrival times, execution
time, periodic ending deadline and relative priority of tasks.

• The scheduler tries to develop schedule to meet all needs.

38

Classes of Real Time Scheduling Algorithms

2. Static priority-driven preemptive approaches

• A static analysis is done, and the result is used to assign priorities
to tasks. A traditional priority driven preemptive scheduler can
then be used.

• At run-time, task with highest-priority are executed first, with
preemptive-resume policy. When resources are used, need to
compute worst-case blocking times.

• Usually, in a real-time system, the priority is related to the time
constraints on the tasks.

39

Classes of Real Time Scheduling Algorithms

3. Dynamic planning-based approaches

• Feasibility is determined at run-time rather than an offline
analysis prior to start of execution.

• An arriving task is accepted only if it is feasible to meet its time
constraints.

• Requires constant reworking of the schedule to accommodate
new tasks and existing ones.

40

Classes of Real Time Scheduling Algorithms

4. Dynamic Best Effort

• There is no feasibility analysis.

• System tries to meet all deadlines and aborts any started process
whose deadline is missed.

