
Unit - 1
Process and Thread Management



Topics to be covered
▪ Definition of process

▪ Process relationship

▪ Process states

▪ Process state transitions

▪ Process control

▪ Process control block

▪ Context switching

▪ Threads

▪ Concept of multithreads

▪ Benefits of threads

▪ Types of threads



What is Process?

Program Process



What is Process?
▪ Process is a program under execution.

▪ Process is an abstraction of a running program.

▪ Process is an instance of an executing program, including the
current values of the program counter, registers & variables.

▪ Each process has its own virtual CPU.



Multiprogramming
▪ The real CPU switches back and forth from process to process.

▪ This rapid switching back and forth is called multiprogramming.

▪ The number of processes loaded simultaneously in memory is
called degree of multiprogramming.



Multiprogramming execution

▪ There are three processes, one processor (CPU), three logical
program counter (one for each processes) in memory and one
physical program counter in processor.

▪ Here CPU is free (no process is running).

▪ No data in physical program counter.

Physical
Program Counter

Logical
Program Counter

Logical
Program Counter

Logical
Program Counter

P1 P2 P3 Memory

Processor
P1

P2

P3



Multiprogramming execution

▪ CPU is allocated to process P1 (process P1 is running).

▪ Data of process P1 is copied from its logical program counter to
the physical program counter.

Physical
Program Counter

Logical
Program Counter

Logical
Program Counter

Logical
Program Counter

P1 P2 P3 Memory

Processor
P1P1

P2

P3



Multiprogramming execution

▪ CPU switches from process P1 to process P2.

▪ CPU is allocated to process P2 (process P2 is running).

▪ Data of process P1 is copied back to its logical program counter.

▪ Data of process P2 is copied from its logical program counter to
the physical program counter.

Physical
Program Counter

Logical
Program Counter

Logical
Program Counter

Logical
Program Counter

P1 P2 P3 Memory

ProcessorP1

P2

P2

P3

P1



Multiprogramming execution

▪ CPU switches from process P2 to process P3.

▪ CPU is allocated to process P3 (process P3 is running).

▪ Data of process P2 is copied back its logical program counter.

▪ Data of process P3 is copied from its logical program counter to
the physical program counter.

Physical
Program Counter

Logical
Program Counter

Logical
Program Counter

Logical
Program Counter

P1 P2 P3 Memory

Processor

P3

P2

P1

P2

P3



Process Model

• Fig. (a) Multiprogramming of four programs in memory
• Fig. (b) Conceptual model of 4 independent, sequential processes,

each with its own flow of control (i.e., its own logical program
counter) and each one running independently of the other ones.

• Fig. (c) over a long period of time interval, all the processes have
made progress, but at any given instant only one process is actually
running.



Process Creation
1. System initialization

• At the time of system (OS) booting various processes are created

• Foreground and background processes are created

• Background process – that do not interact with user e.g. process
to accept mail

• Foreground Process – that interact with user



P3

Process Creation
2. Execution of a process creation system call (fork) by running

process

• Running process will issue system call (fork) to create one or
more new process to help it.

• A process fetching large amount of data and execute it will create
two different processes one for fetching data and another to
execute it.

P2P1



Process Creation (Cont…)
3. A user request to create a new process

• Start process by clicking an icon (opening word file by double
click) or by typing command.



Process Creation (Cont…)
4. Initialization of batch process

• Applicable to only batch system found on large mainframe



Process Termination
1. Normal exit (voluntary)

• Terminated because process has done its work.



Process Termination
2. Error exit (voluntary)

• The process discovers a fatal error e.g. user types the command
cc foo.c to compile the program foo.c and no such file exists, the
compiler simply exit.



Process Termination
3. Fatal error (involuntary)

• An error caused by a process often due to a program bug e.g.
executing an illegal instruction, referencing nonexistent memory
or divided by zero.



Process Termination
4. Killed by another process (involuntary)

• A process executes a system call telling the OS to kill some other
process using kill system call.



Process Hierarchies
▪ Parent process can create child process, child process can create

its own child process.

P1

P3
P4P2

Parent process

Child process



Process Hierarchies
▪ Parent process can create child process, child process can create

its own child process.

▪ UNIX has hierarchy concept which is known as process group

▪ Windows has no concept of hierarchy

• All the process as treated equal (use handle concept)

P1

P3
P4P2

Parent process

Child processP5 P6

P3

P5 P6



Handle 
▪ When a process is created, the parent process is given a special

token called handle.

▪ This handle is used to control the child process.

▪ A process is free to pass this token to some other process.

P1

P3
P4P2



1. Running – Process is actually
using the CPU

2. Ready – Process is runnable,
temporarily stopped to let
another process to run

3. Blocked – process is unable
to run until some external
event happens

Process State

Running

Blocked Ready

Processes are always either executing (running) or waiting to
execute (ready) or waiting for an event (blocked) to occur.



• Running – Process is actually
using the CPU

• Ready – Process is runnable,
temporarily stopped to let
another process to run

• Blocked – process is unable to
run until some external event
happens

• Processes are always either
executing (running), waiting to
execute (ready) or waiting for
an event (blocked) to occur.

Process State

Running

Blocked Ready

ReadyRunningBlocked



• When and how these transitions
occur (process moves from one
state to another)?

1. Process blocks for input or
waits for an event (i.e.
printer is not available)

2. Scheduler picks another
process

• End of time-slice or

pre-emption.

3. Scheduler picks this process

4. Input becomes available,
event arrives (i.e. printer
become available)

Process State Transitions

Running

Blocked Ready

1 2
3

4



Five State Process Model and Transitions

▪ New – process is being created

▪ Ready – process is waiting to run (runnable), temporarily stopped
to let another process run

▪ Running – process is actually using the CPU

▪ Blocked – unable to run until some external event happens

▪ Exit (Terminated) – process has finished the execution

New Ready Running Exit

Blocked

Admit

Event

Occurs

Dispatch
Release

Time-out

Event

Wait



Queue Diagram

Admit

Ready Queue

Process is 

Scheduled

to run

Dispatch

Time-out

Event Wait

Process is 

completed 

Exit
Processor

Blocked Queue
Event

Occurs



Process Control Block (PCB)
▪ A Process Control Block (PCB) is a data structure maintained by

the operating system for every process.

▪ PCB is used for storing the collection of information about the
processes.

▪ The PCB is identified by an integer process ID (PID).

▪ A PCB keeps all the information needed to keep track of a process.



Process Control Block (PCB)
▪ The PCB is maintained for a process throughout its lifetime and is

deleted once the process terminates.

▪ The architecture of a PCB is completely dependent on operating
system and may contain different information in different
operating systems.

▪ PCB lies in kernel memory space.



• Process ID - Unique identification for
each of the process in the operating
system.

• Process State - The current state of the
process i.e., whether it is ready, running,
waiting.

• Pointer - A pointer to parent process.

• Priority - Priority of a process.

• Program Counter - Program Counter is a
pointer to the address of the next
instruction to be executed for this
process.

Process Control Block (PCB) contains



• CPU registers - Various CPU registers
where process need to be stored for
execution for running state.

• IO status information - This includes a list
of I/O devices allocated to the process.

• Accounting information - This includes
the amount of CPU used for process
execution, time limits etc.

Process Control Block (PCB) contains



• Context switch means stopping
one process and restarting
another process.

• When an event occur, the OS
saves the state of an active
process and restore the state of
new process.

• Context switching is purely
overhead because system does
not perform any useful work
while context switch.

Context switching



• Sequence of action:

1. OS takes control (through
interrupt)

2. Saves context of running
process in the process PCB

3. Reload context of new
process from the new
process PCB

4. Return control to new
process

Steps performed by OS during Context switching



Thread
▪ Thread is light weight process created by a process.

Threads

Processes are used to execute large, ‘heavyweight’ jobs such as
working in word, while threads are used to carry out smaller or
‘lightweight’ jobs such as auto saving a word document.



Thread
▪ Thread is light weight process created by a process.

▪ Thread is a single sequence stream within a process.

▪ Thread has it own

1. program counter that keeps track of which instruction to
execute next.

2. system registers which hold its current working variables.

3. stack which contains the execution history.



Single Thread VS Multiple Thread



Similarities between Process & Thread
▪ Like processes threads share CPU and only one thread is running

at a time.

▪ Like processes threads within a process execute sequentially.

▪ Like processes thread can create childrens.

▪ Like a traditional process, a thread can be in any one of several
states: running, blocked, ready or terminated.

▪ Like process threads have Program Counter, Stack, Registers and
State.



Dissimilarities between Process & Thread
▪ Unlike processes threads are not independent of one another.

▪ Threads within the same process share an address space.

▪ Unlike processes all threads can access every address in the task.

▪ Unlike processes threads are design to assist one other. Note that
processes might or might not assist one another because
processes may be originated from different users.



Advantages of Threads
▪ Threads minimize the context switching time.

▪ Use of threads provides concurrency within a process.

▪ Efficient communication.

▪ It is more easy to create and context switch threads.

▪ Threads can execute in parallel on multiprocessors.

▪ With threads, an application can avoid per-process overheads

• Thread creation, deletion, switching easier than processes.

▪ Threads have full access to address space (easy sharing).



Types of Threads
1. Kernel Level Thread

2. User Level Thread

User
Level
Threads

Kernel
Level
Threads



Types of Threads (Cont…)

USER LEVEL THREAD KERNEL LEVEL THREAD

Implementation of User threads is easy. Implementation of Kernel thread is 
complex.

Context switch time is less. Context switch time is more.

Context switch requires no hardware 
support.

Context switch requires hardware support.

If one user level thread perform blocking
operation then entire process will be
blocked.

If one kernel thread perform blocking
operation then another thread with in
same process can continue execution.

Example : Java thread, POSIX threads. Example : Window Solaris

User thread are implemented by users. Kernel threads are implemented by OS.

OS doesn’t recognize user level threads. Kernel threads are recognized by OS.



• Combines the advantages of user 
level and kernel level thread.

• It uses kernel level thread and 
then multiplex user level thread 
on to some or all of kernel 
threads.

• Gives flexibility to programmer 
that how many kernel level 
threads to use and how many 
user level thread to multiplex on 
each one.

• Kernel is aware of only kernel 
level threads and schedule it.

Hybrid Thread



Multi threading models

One to One Model

Each user threads 
mapped to one kernel 
thread. 

Problem with this 
model is that creating 
a user thread requires 
the corresponding 
kernel thread.

Many to One Model

Multiple user threads 
mapped to one kernel 
thread. 

Problem with this 
model is that a user 
thread can block entire 
process because we 
have only one kernel 
thread.

Many to Many Model

Multiple user threads 
multiplex to more than 
one kernel threads. 

Advantage with this 
model is that a user 
thread can not block 
entire process because 
we have multiple 
kernel thread.



Pthread function calls
1. Pthread_create:- Create a new thread

2. Pthread_exit:- Terminate the calling thread

3. Pthread_join:- Wait for a specific thread to exit

4. Pthread_yield:- Release the CPU to let another thread run

5. Pthread_attr_init:- Create and initialize a thread’s attribute
structure

6. Pthread_destroy:- Remove a thread’s attribute structure



System calls
▪ A system call is the programmatic way in which a computer

program requests a service from the kernel of the operating
system it is executed on.

▪ A system call is a way for programs to interact with the operating
system.

▪ A computer program makes a system call when it makes a
request to the operating system’s kernel.

▪ System call provides the services of the operating system to the
user programs via Application Program Interface(API).

▪ It provides an interface between a process and operating system
to allow user-level processes to request services of the operating
system.

▪ System calls are the only entry points into the kernel system.

▪ All programs needing resources must use system calls.



System calls
1. ps (process status):- The ps (process status) command is used to

provide information about the currently running processes,
including their process identification numbers (PIDs).

2. fork:- Fork system call is used for creating a new process, which
is called child process, which runs concurrently with the process
that makes the fork() call (parent process).

3. wait:- Wait system call blocks the calling process until one of its
child processes exits or a signal is received. After child process
terminates, parent continues its execution after wait system call
instruction.

4. exit:- Exit system call terminates the running process normally.

5. exec family:- The exec family of functions replaces the current
running process with a new process.


