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ABSTRACT 

This article presents an overview of the state-of-the art in modeling and simulation, and studies to which extent 
current simulation technologies can effectively support the design process.  For simulation-based design, modeling 
languages and simulation environments must take into account the special characteristics of the design process.  
For instance, languages should allow models to be easily updated and extended to accommodate the various 
analyses performed throughout the design process.  Furthermore, the simulation software should be well integrated 
with the design tools so that designers and analysts with expertise in different domains can effectively collaborate on 
the design of complex artifacts. This review focuses in particular on modeling for design of multi-disciplinary 
engineering systems that combine continuous time and discrete time phenomena. 

INTRODUCTION 

Modeling and simulation enables designers to test whether design specifications are met by using virtual rather 
than physical experiments. The use of virtual prototypes significantly shortens the design cycle and reduces the cost 
of design.  It further provides the designer with immediate feedback on design decisions which, in turn, promises a 
more comprehensive exploration of design alternatives and a better performing final design.  Simulation is 
particularly important for the design of multi-disciplinary systems in which components in different disciplines 
(mechanical, electrical, embedded control, etc.) are tightly coupled to achieve optimal system performance. 

This article surveys the current state of the art in modeling and simulation and examines to which extent current 
simulation technologies support the design of engineering systems. 

We limit the scope of the survey by concentrating on system-level modeling.  At a systems level, components 
and sub-systems are considered as black boxes that interact with each other through a discrete interface.  In general, 
such systems can be modeled using differential algebraic equations (DAEs) [1] and/or discrete event systems 
specifications (DEVS) [2].  We will not consider the systems that require partial differential equations or finite 
element models to model system components or component interactions. 

We further focus our attention on these aspects of modeling and simulation that are particularly important in the 
context of design.  Specifically, we evaluate the current state-of-the-art with respect to model expressiveness, model 
reuse, integration with design environments, and collaborative modeling. 

One of the most basic requirements for simulations in the context of design is that the modeling language be 
sufficiently expressive to model the non-linear, multi-disciplinary, hybrid continuous-discrete phenomena 
encountered in the design prototypes. Over the years, many modeling and simulation languages have been 
developed, but only a few of these languages are well suited for modeling of multi-disciplinary systems. The earliest 
simulation languages, based on CSSL (Continuous System Simulation Language), were procedural and provided a 
low-level description of a system in terms of ordinary differential equations. From these languages emerged two 
important developments: declarative (or equation-based) modeling, and object-oriented modeling. Current research 
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further builds on these developments by moving towards component-based modeling and by providing support for 
hybrid (mixed continuous-discrete event) systems. 

Another requirement is that simulation models be easy to create and reuse. Creating high-fidelity simulation 
models is a complex activity that can be quite time-consuming.  Object-oriented languages provide clear advantages 
with respect to model development, maintenance, and reuse.  In addition, to take full advantage of simulation in the 
context of design, it is necessary to develop a modeling paradigm that is integrated with the design environment, and 
that provides a simple and intuitive interface that requires a minimum of analysis expertise. 

Finally, we address the issue of collaborative modeling. Design of complex multi-disciplinary systems requires 
the expertise of a group of collaborating specialists. Designers with backgrounds in different disciplines collaborate 
with analysts, manufacturing engineers, marketing specialists, and business managers. To support this collaborative 
aspect of simulation and design, it is important to carefully document the models, capture their semantics, and make 
them available in well-organized repositories that fit within the context of the world-wide-web. 

MODELING PARADIGMS AND LANGUAGES 

Several general-purpose simulation modeling paradigms and languages have been developed.  They can be 
classified according to the following criteria [3]: graph-based versus language-based paradigms, procedural versus 
declarative models, multi-domain versus single-domain models, continuous versus discrete models, and functional 
versus object-oriented paradigms. 

We will illustrate the differences between the modeling paradigms with the example in Figure 1. It is a 
simplified servo system with one rotational degree of freedom used to control the read head on a disk drive. This 
mechatronic system has five major components: a power source, a DC motor, a load that represents the drive head, 
an encoder that measures the angular velocity of the load and integrates it to output an angular position, and a PWM 
controller (Pulse Width Modulation [4]) that controls the positioning of the head.  

Graph-Based Modeling 

Graphs have been used to represent interconnected systems in many different modeling domains [5, 6].  In systems 
modeling, research has focused on three graph-based paradigms: bond graphs, linear graphs, and block diagrams. 

Bond graph modeling [7, 8] is based on energy-conserving junctions that connect energy storing or transforming 
elements through bonds.  The bonds represent the power flow between the modeling elements as a product of a flow 
and effort variable.  Elements are connected to each other through 0- and 1-junctions that represent Kirchhoff’s 
current and voltage laws, respectively.  Although bond graphs are domain independent, they are not very convenient 
for the modeling of 3D mechanics [6] or continuous-discrete hybrid systems [9, 10]. 

In Figure 3, the servo system introduced previously is modeled using bond graphs. Even for this simple system, 
beginning users may find it counterintuitive that the topology of the bond graph is quite different from the topology 
of the corresponding physical system.  For example, the encoder component in the conceptual model does not map to 
a particular bond graph element; rather, it is represented as a link between a 1-junction and the controller.  
Furthermore, the causality of this model is fixed at the time of model creation.  This may pose problems for models 
in which the causality changes dynamically (e.g. at zero velocity for Coulomb friction models).  Although bond 
graph elements are normally linear, some languages such as CAMP-G and SIDOPS+ [11] support nonlinear multi-
dimensional bond-graph models that can contain both continuous-time and discrete-time parts. 

The second graph-based modeling paradigm builds on linear graph theory.  The relationship between physical 
systems and linear graphs was first recognized by Trent [12] and by Branin [13].  Similar to bond graphs, these linear 
graphs represent the energy flow through the system, expressed by through and across variables (also called terminal 
variables).  An edge in the linear graph indicates the existence of an energy flow in a system component, while the 
terminals of the component correspond to the nodes of the graph.  For each edge, there is a terminal equation 
expressing the relation between its terminal variables.  One or more edges and associated terminal equations 
completely define the dynamics of a component.  Such terminal graphs of individual components can be composed 
into system graphs by merging the nodes between which physical connections exist.  Unlike bond graph models, 
linear graph models do reflect the system topology directly [14, 15].  They are domain independent and can be easily 
extended to model 3D mechanics [15, 16] and hybrid systems [17].  Linear graphs form the underlying 
representation for the VHDL-AMS simulation language.  In Figure 2, edge e1 represents the power source and 
connects two electrical nodes a and b.  The DC motor participates in two energy domains: electrical and mechanical.  
It is represented by two edges e2 and e3 in the electrical and mechanical domains, respectively.  The load is a purely 
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mechanical component, and therefore is represented by the single edge e4 connecting nodes d and e in the mechanical 
domain.  The signal part of the linear graph is represented by block icons connected to each other and to the 
energetic part by dashed lines.  The encoder measures the angular velocity of the load, and integrates it to obtain the 
angular position.  This value is passed to the controller that outputs a voltage to the DC motor. 

The third group of graph-based modeling paradigms is based on block diagrams, as in SimuLink or Easy5.  
Here, models are specified by connecting inputs and outputs of primitive models such as integrators, multipliers, or 
adders.  Complex systems are modeled by hierarchically configuring lower-level encapsulated models of subsystems. 

Typically, the individual models in block diagrams are defined procedurally (see next section).  As a result, the 
solvers cannot break possible algebraic loops, and the user is required to reorganize the system equations manually.  
In the block diagram model for the servo system, shown in Figure 4, the motor and the load models are combined to 
avoid an algebraic loop.  To make the system solvable, the load and motor inertias are summed and assigned to a 
single gain block. 

Figure 5 illustrates the use of port-based icons to represent the signal flow through the system.  Similar block 
representations have been used for declarative object oriented modeling [18] and modular discrete event modeling 
[19].  Each component in the conceptual model is represented as a component in the port-based model of Figure 5.  
The load is represented as a hierarchical composition of an inertia model and a viscous damping model. The nodes 
correspond to the nodes of the linear graph in Figure 2. 

Declarative and Procedural Modeling 

Many early simulation languages were based on the Continuous System Simulation Language (CSSL) [20].  
They were procedural in nature, meaning that models were defined through assignments as is common in most 
programming languages.  Assignments express a dependent variable as a function of independent variables (fixed 
causality), and have to be evaluated in the order defined by the user.  This limits the reuse of procedural models and 
prohibits symbolic manipulation. 

Declarative or equation-based languages, on the other hand, do not impose a fixed causality on the model. In 
these languages, the model is defined by a set of equations that establishes relations between the states, their 
derivatives, and time.  The simulation engine is responsible for converting these equations into software procedures 
that can be evaluated by the computer.  The advantage of declarative languages is that users do not have to define the 
mathematical causality of the equations, so that the same model can be used for any causality imposed by other 
system components. 

Several declarative languages have been developed, such as VHDL-AMS, MOSES [21], Smile [22], 
ObjectMath, SIDOPS+, and Modelica [23]. Some languages like ASCEND [24] take the declarative paradigm even 
further by allowing models to be non-causal even in their parameters, implying that it is possible to solve for model 
parameters, given model inputs and outputs. 

Many of the declarative languages such as Modelica and VHDL-AMS provide constructs for procedural models 
as well.  This is useful for including discrete event models or embedded control programs that are more conveniently 
specified as procedures (e.g. the PWM controller in the example). 

Discrete and Continuous Simulation 

The behavior of multidisciplinary systems is a combination of continuous time physical phenomena and events 
occurring at discrete space and time coordinates. For high-fidelity simulation of such systems, hybrid modeling and 
simulation is required in which both continuous and discrete event phenomena can be represented. 

Many physical phenomena, such as rigid body motion, flow of electric currents, fluid flow, or heat flow, evolve 
as continuous functions of time and are therefore best modeled by a set of differential algebraic equations (DAEs) [1, 
25]. 

Physical events and digital components, on the other hand, generate outputs at discrete points in time and space; 
they are best modeled using discrete variables or impulse functions [2, 26, 27]. Examples include rigid body 
collisions, data buses, and digital controllers.  In addition, discrete event simulation is applied to a variety of other 
disciplines, including logistics, transportation, material handling, and military simulation [28]. A good overview of 
the principles and industrial applications of discrete-event simulation can be found in [2, 28]. 

Because mechatronic systems combine both continuous time phenomena and discrete events, they require mixed 
continuous-discrete models [2, 29, 30]. Several simulation languages, including Modelica and VHDL-AMS, support 
mixed systems modeling.  These models also require advanced solvers that efficiently synchronize between DAE 
solving and discrete event propagation.  Most commercial simulation software packages include this capability now. 
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Object-Oriented Modeling 

The software design methodology of object-oriented programming can be applied to systems modeling as well, 
with the benefits of simplified model creation and maintenance. 

An important principle of object-oriented programming is that of information hiding or encapsulation: an object 
can only be accessed through its public interface, which is independent of the underlying implementation. The same 
principle can be applied to modeling by making a clear distinction between the physical interactions of an object 
with its environment (interface) and its internal behavior (implementation) [31, 32].  A model interface consists of 
ports that discretize the exchange of energy, mass, or information to a finite number of points on the component’s 
interface.  When connecting ports, Kirchhoff’s network laws are imposed on the port variables.  As for the equations 
describing the internal behavior of the components, the causality of the energy connections is assigned by the solver. 
The advantage of encapsulation is that a system can be modeled by composing and connecting the interfaces of its 
sub-systems, independently of the future implementations of these subsystems [32-34].   

In Figure 5, the DC-motor has an interface consisting of two electrical connections and two mechanical 
connections (stator and rotor).  The actual equations describing the conversion of electrical energy to mechanical 
energy are hidden from the rest of the system by encapsulating them in the implementation of the motor. 

A second important principle of object-oriented programming is inheritance: objects that are derived from a 
parent class inherit its interface and data members.  Similarly, in modeling, a model that derives from a parent model 
inherits the parent’s interface and equations.  The child model can be extended by including additional physical 
interactions (ports) in the interface, or additional equations in the implementation [18, 19, 24]. 

Object oriented model design results in a hierarchical organization of models and simplifies the tasks of reusing, 
maintaining, and extending families of simulation models.  Several research groups have developed object-oriented 
languages for discrete event systems [2, 19] as well as continuous systems [18, 24, 30, 35].  Not all these languages 
support the object-oriented paradigm to the same extent; the most comprehensive support for object-oriented 
principles is contained in Modelica [18]. 

Comparison between Modelica and VHDL-AMS 

Recently, there have been two important efforts to define advanced simulation languages capable of modeling 
complex multi-disciplinary systems: Modelica [18] and VHDL-AMS. Modelica has been developed primarily by the 
continuous systems community in Europe, while VHDL-AMS has evolved as an extension from VHDL to support 
Analog and Mixed-Signal components. 

In general, the scope and expressiveness of both languages are very similar: Both support continuous time and 
discrete time modeling in multiple energy domains, and both support declarative modeling and hierarchical 
encapsulation. 

In addition, Modelica has the advantage that is truly object-oriented with support for model inheritance and sub-
typing (VHDL is limited to encapsulation).  It further allows the definition of aggregate connections in which 
multiple across, through, and signal variables from different energy domains can be combined. 

VHDL-AMS, on the other hand, as an extension of VHDL, has more modeling primitives for discrete-event 
simulation.  In addition to continuous time simulation, it offers quiescent point, small-signal AC, and small-signal 
noise analyses. 

A final important difference between the two languages relates to the solvers that exist to evaluate these models.  
Modelica is currently only supported by Dynasim.  Through symbolic index reduction, their solver is capable of to 
handling index 3 problems that are common in mechanical models. (The index of a system of DAEs is the minimum 
number of differentiations required to obtain an equivalent explicit system of ordinary differential equations [1]).  
VHDL-AMS has only recently been standardized by IEEE, and has limited support currently, although several 
electronic CAD vendors are in the process of developing solver implementations. 

SINGLE-DOMAIN SIMULATION 

Simulation modeling defined for a single domain such as mechanical or electrical systems is a mature area, with 
several companies offering robust simulation packages. In this section, we examine those aspects of single-domain 
modeling that have an impact on multi-domain systems-level modeling. 
Multi-body Dynamics Simulation. The mechanical interactions between multiple rigid bodies constitute an 
important aspect of the behavior of mechatronic systems.  One method that is particularly relevant to component-
based systems modeling is based on graph theory [15, 16]. Multi-body systems consist of two basic elements: bodies 
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(e. g., rigid bodies) and connections (e. g., joints).  These elements map to vertices and edges, respectively, in a 
systems graph, from which standard graph algorithms can symbolically extract the DAEs describing the multi-body 
system [15, 36].  A second approach is based on modular, object-oriented models that can be hierarchically 
combined into complete systems [37-40]. Instead of a closed form symbolic expression, this approach generates a set 
of DAEs, often with an index of two or even three [38]. 

Based on these research results, several software systems, including ADAMS and DADS, provide efficient 
multi-body analysis capabilities [41, 42]. Some of these analysis systems are integrated with design tools allowing 
the mechanism data to be transferred to the simulator directly from CAD models. A more in-depth review of 
modeling and simulation of rigid body mechanics can be found in [43]; research in flexible multi-body systems 
modeling is surveyed in [44], while specific numerical methods are treated in [45-47]. 

Electrical and Electronics Systems. For the simulation of electrical systems, there exist a variety of 
simulation languages.  For analog circuits the family of SPICE dialects is most popular, while for digital circuits 
VHDL and Verilog are common.  More recently, languages, such as VHDL-AMS, have been developed for the 
simulation of mixed analog-digital circuits and multi-disciplinary systems.  Most commercial vendors of simulation 
software for electrical systems integrate their simulation engines tightly with ECAD software.  This results in a 
complete design and simulation environment in which the designer can define the circuit topology, create a physical 
layout, and verify the circuit’s behavior. 

Control Systems. Embedded controllers have a high degree of interaction with the electrical and mechanical 
components in the system. They also tend to be digital so that a hybrid continuous/discrete simulator is required to 
evaluate their interaction with the environment [48, 49]. 

An important aspect of the evaluation of embedded controllers is Hardware-in-the-Loop (HWIL) testing [50, 
51].  This allows the evaluation of a physical controller prototype interacting with a virtual electro-mechanical 
system, as well as the evaluation of a virtual embedded controller interacting with a real physical system. Several 
development environments for control algorithms provide special extensions for HWIL testing and automatic code 
generation [50]. 

Hydraulic and Thermal Systems. Hydraulic and thermal systems are often modeled as interacting with 
each other and with mechanical components [52, 53]. The behavior of both thermal and hydraulic systems depends 
strongly on the geometry of the components and their physical configurations.  As for mechanical systems, a tight 
integration with the 3D design environment is essential. 

From the review above, it is clear that many single-domain simulation environments are closely integrated with 
design tools.  This trend is currently expanding towards the simulation and design of multi-disciplinary systems in 
general.  

INTERLEAVING DESIGN AND SIMULATION 

One can think of design as a process that consists of decomposition and composition.  High-level functions are 
hierarchically decomposed into functions for subsystems; these sub-functions are then mapped to physical 
components that are in turn recomposed into a complete system [40, 54, 55].  During the process of composition (i.e. 
synthesis), the designer defines which components are used and how they interact with each other.  This process 
parallels the hierarchical modeling process:  models of components are connected to each other via interaction 
models (describing the dynamics of the component interactions) to define the behavior of a system or subsystem.  
Both processes are based on hierarchical composition: composition of form in design and behavioral models in 
simulation [33, 56].  

As pointed out in the previous section, many electronic CAD vendors offer close integration between the circuit 
design process and the behavioral modeling of these circuits using industry-standard languages. When the user 
defines the circuit topology, the corresponding models of components and component interactions are automatically 
composed into a system-level model. This can be easily accomplished because the interactions between the electrical 
components are very simple: the voltages of two connecting terminals are equal and the currents sum to zero. 

In the mechanical domain, however, parts can interact with each other according to a variety of connections, 
such as lower pairs, gear contacts, or rolling contacts.  These connections result in both kinematic and dynamic 
constraints on the positions of the interacting parts.  The information needed to instantiate these interaction models 
(the model structure and corresponding parameters) either can be obtained directly from the mechanical CAD model, 
or has to be provided by the designer [57-60].  

Some CAD tools, such as Pro/Engineer Behavioral Modeler™  [61], allow for the integration between CAD data 
and behavioral modeling. By including evaluation procedures as features in the feature tree, one can automatically 
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perform behavioral analysis whenever a part or assembly is modified. For example, an evaluation feature could 
compute the mass of the design from the CAD geometry and the material density. 

The current research trend is to extend the single-domain integration between design tools and simulation tools 
to multiple domains.  This can be achieved through component models [40, 62, 63] that include a description of both 
the form and the behavior. The act of connecting two components configures not only the form, but also the 
behavioral models of the components. This component-based paradigm can be extended even further towards object-
oriented intelligent components in which knowledge-based systems containing design rules are integrated with the 
CAD and behavioral models [64, 65]. 

A domain in which component based modeling has already been demonstrated is MEMS (Micro Electro-
Mechanical Systems) [66-69]. Although MEMS systems are multi-disciplinary in nature (often consisting of 
electrical and mechanical components), the mechanical behavior can frequently be approximated as being limited to 
two dimensions.  The resulting mechanical equations are sufficiently simple to be modeled within the existing 
modeling paradigms of electrical CAD tools.  In certain simulation experiments, it may be necessary to model the 
MEMS device not as a collection of rigid bodies, but as a more detailed finite-element model. This is an area of 
ongoing research [70, 71]. 

COLLABORATIVE MODELING 

Design of complex multi-disciplinary systems requires the expertise of a group of collaborating specialists: 
Designers with backgrounds in different disciplines collaborate with analysts, manufacturing engineers, marketing 
specialists, and business managers. To coordinate design processes among geographically dispersed and multi-
disciplinary teams, many global enterprises have taken advantage of computer aided engineering (CAE) technologies 
that provide sharing, visualization, documentation, and management of product models [72-77].   However, the 
aspect of collaborative simulation modeling is still in its infancy.  To support collaborative modeling, design teams 
need common, shared model representations, repositories to manage model components, and model abstraction 
capabilities to provide different views of models to designers. 

Common Representation 

To share simulation models within a collaborative modeling environment, designers need a common model 
representation.  The Very High-Speed Integrated Circuit Hardware Description Language (VHDL), for instance, has 
been used as a design automation tool in all phases of modern very large-scale integration (VLSI) design.  Similarly, 
the U.S. Department of Defense and its contractors have used the High Level Architecture (HLA) for simulation of 
battlefield scenarios [78, 79]. HLA is a set of specifications that defines how multiple simulations, called federates, 
can interoperate within a federation to form a larger simulated environment.  These standards facilitate collaborative 
modeling by eliminating the conversion between the representations of various modeling and simulation tools.  
Further research will have to address the issue of integration and interoperability of models developed in different 
application domains. 

Model Management  

In a collaborative modeling environment, product models are stored in repositories, usually implemented as 
databases.  To manage such model repositories, researchers have developed several organizational schemes [79-81], 
domain ontologies [82-84], and unified data formats [85]. 

Park and Kim [79] introduced a relational algebraic framework for the management of VHDL models.  Within 
this framework, a family of hierarchical system structures is organized as a VHDL model structure.  First, a candidate 
model structure that meets design objectives is selected from the family. Then, the VHDL model for the structure is 
systematically constructed by combining primitive VHDL models in a VHDL library. 

Breunese et al. [80] provide a framework for model reuse.  There are three levels of abstractions for a model: 
engineering components, conceptual descriptions in terms of physical processes, and mathematical relations.  Each 
component is associated with a number of alternative conceptual descriptions. Concepts, in turn, are further specified 
by selecting from a number of alternative mathematical relationships.  By storing the models assembled from these 
generic building blocks also in the library, one can combine models with different levels of detail and validation 
status. 

A very comprehensive effort to organize and store simulation models is part of the NIST design repository 
project [86, 87]. In contrast to traditional design databases, the goal of design repositories is to capture, share, and 
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reuse design knowledge.  This knowledge goes well beyond just CAD data and includes behavioral models, 
functional representations, process plans, and possibly design rationale. 

Model Abstraction 

In the context of design, it is important to be able to simulate a system at different levels of abstraction.  
Different stages of the design process require different levels of analysis— high-level analysis in the early, conceptual 
stage when only few design details are known, and more detailed towards the end of the design process.  
Furthermore, the design of a particular sub-system may require only a high-level description of the behavior of other 
sub-system with which it does not interact directly.  The goal of model abstraction is to provide users with a model of 
the design prototype that captures only the relevant dynamics [74, 88-91]. 

DISCUSSION 

Although a vast body of work exists in the area of modeling and simulation of engineering systems, additional 
research is needed to address the following issues and challenges. 

Modeling 

Modeling at the component level.  Simulation languages have evolved from procedural and functional languages 
towards equation-based and object-oriented languages, moving away from the differential equation level towards the 
use of more intuitive and user-friendly building blocks. The next step in this evolution is the development of 
simulation languages that operate at the level of components and sub-systems.  These component models include 
multiple behavioral models describing the component from different perspectives and at different levels of detail.   
As the designer builds a system from components, the corresponding system-level model is instantiated from the 
component models. Depending on the type of the simulation experiment, the appropriate behavioral models for each 
of the components and component interactions can be instantiated. 

Component interaction modeling. When a designer composes a system from components, he also defines how 
these components interact with each other (their relative positions, electrical contacts, etc.). Currently, the dynamics 
of these interactions need to be modeled explicitly by the user.  However, often the information to extract these 
interaction models has already been provided by the designer.  The information needed to determine the interaction 
models can be automatically obtained from the domain-specific design tools that are integrated with the modeling 
environment. 

Selecting an adequate level of detail.  At different stages of the design process, different analyses need to be 
performed.  Correspondingly, the simulation model of a system needs to be adapted to be adequately accurate 
without being overly detailed to avoid wasting computational resources.  The current state of the art does not allow 
simulation models to be easily converted to different levels of abstraction.  Future research should focus on methods 
to automatically select the most appropriate model for each component and component interaction in a system.  

Improvement of numerical solvers. Currently, most VHDL-AMS simulators are not suited for modeling of 
systems with mechanical components.  They often fail to find algebraically consistent initial conditions and have 
difficulty solving index-3 problems that are common in mechanical systems.  With the simulation of multi-
disciplinary systems becoming more frequent, solvers need to address the special characteristics posed by all the 
different application domains.  They should also provide the user with finer control over the numerical integration, 
beyond merely selecting the step size and integration algorithm.   

Integration with design tools 

Integration with CAD. As described in previous sections, close integration between design tools and the 
modeling and simulation environment simplifies model creation and design verification.  However, such tight 
integration has occurred successfully only for electronic CAD (with some limited integration in other domains).  
Further integration of single-domain CAD tools with a common simulation environment is needed so that a team of 
designers can create virtual prototypes from within the design environments with which they are familiar and that are 
custom-tailored to their needs. 

Finite-element modeling. Finite-element tools are currently not integrated with systems-level modeling 
environments— partly due to their computational requirements, partly due to the difficulty interfacing finite element 
models with lumped models.  With the increases in computational resources, future research should focus these 
interfacing issues so that we can includes models of distributed physical phenomena like mechanical flexure, or 
complex electromagnetic and thermal behavior in system-level models. 
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Integration with optimization and synthesis tools. The support for integration with optimization and synthesis 
tools within current simulation environments is mostly limited to some scripting capabilities (for instance to run a 
particular simulation for a range of parameter values).  Based on the results, the designer has to update the design 
parameters manually.  Through a closer integration between simulation and design tools, this process should be 
automated in the future.  First steps in this direction have already been taken in [61, 64]. 

Collaborative Modeling 

Unified model representation. Recently, several standardization and unification efforts have resulted in modeling 
languages and frameworks for simulations in multiple domains— e.g. Modelica, VHDL-AMS, and HLA.  However, 
most single domain simulation environments still use proprietary data formats and solvers that are tightly integrated 
with the modeling environment.  Future modeling and simulation environments should allow for a tight integration 
between application domains, either by interfacing the solvers or by using common model representations. 

Ontologies for modeling and simulation. To further improve the exchange of model information (between both 
agents and humans), researchers have started to develop domain ontologies [83, 84].  For instance, Ozawa [82] 
proposed a common ontology to support different levels of information sharing between humans and multiple 
modeling and simulation software agents.  Upon these domain ontologies, unified taxonomies and keyword networks 
can be built to support model retrieval and repository management.   

CONCLUSIONS 

This paper reviews the state-of-the-art in modeling and simulation of engineering systems.  Simulation is a very 
broad area that comprises many research issues that are not included in this survey.  We have limited our attention to 
issues that are particularly important with respect to system-level modeling in support of design. 

The modeling of mechatronic systems requires a language capable of describing physical phenomena in multiple 
energy domains, in continuous time as well as in discrete time.  Recent advances in modeling have resulted in several 
modular, object-oriented languages that satisfy these requirements. 

To further simplify the modeling process and avoid unnecessary duplication of data entry, it is critical that the 
simulation environment be integrated with the design environment.  In single-domain simulation environments, this 
is already common practice.  Current research is expanding this integration towards simulation of multi-disciplinary 
systems. 

Finally, due to the multi-disciplinary nature of mechatronic systems, the design requires a team of experts with 
different backgrounds.  Systems modeling, therefore, must support collaborative modeling, including support for 
standardized languages, model management tools, and model abstraction tools. 
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FIGURE CAPTIONS 

 
Figure 1. Conceptual model for a servo system of a disk drive head. 
 
Figure 2. Linear graph representation of the drive head servo system. A dark node (a, b, c) represents an electrical 
domain connection and a light node (d, e) represents a mechanical domain connection. Solid edges (e1, e2, e3, e4) 
indicate energy flow between nodes. Dashed lines represent signal flow between the energetic portion and the signal 
portion of the graph. 
 
Figure 3. Bond graph representation of the drive head servo system. 
 
Figure 4. Block diagram representation of the drive head servo system generated using SimuLink and Matlab. 
 
Figure 5. Port-based model representation of the drive head servo system. Nodes a through e correspond to the 
nodes in Figure 2. 
 


