
Mechanical 

Vibrations
Basics & Beyond

1

~Dr. Mitesh Mungla



What is Vibration?

Vibration is the motion of a particle or body which oscillates about a

position of equilibrium. Most vibrations in machines and structures are

undesirable due to increased stresses and energy losses.

Vibration in Everyday Life
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Useful Vibration

Concrete 

Compactor

Ultrasonic 

Cleaning

Baths

Pile 

Drivers

Harmful Vibration

Noise

Destruction

Wear

Fatigue
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Vibration in our Lives

• Our heart beats

• Our lungs oscillate

• We hear because our ear drums vibrate

• Vibration makes us snore

• Light waves permit us to see

• Sound waves allow us to hear

• We move because of oscillation of legs

• We can not utter ‘vibration’ without the oscillation  

of larynges and vocal cords



• We limit our discussion to Mechanical Vibration

• Vibration of dynamic system of a structure

• It is the oscillations of a system that has mass  

and elasticity

Vibration in our Lives



Vibration – Friend or Foe
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TYPES OF FORCES

Static or  
Monotonic

Dynamic

Periodic

Harmonic

Steady  
State

Transient

Non-
Harmonic

Impulse  
Type

Random

Basic Definitions



Periodic Motion: A motion that repeats itself  

after equal interval of time.

Time Period: Time taken for one

complete  cycle.

Simple Harmonic Motion: Motion of particle  

with time that moves round a circle

withuniform angular velocity

.

Trigonometric

functions can be used to represent such

motion.

Basic Definitions



Amplitude (Z or 2Z): The maximum displacement of a

vibrating body from its mean position. The amplitude can

either be single amplitude (Z) when the distance from mean

position to maximum displacement is measured or double

amplitude (2Z) when the distance from negative maximum to

positive maximum displacement (motion) is measured.

Frequency: It is the number of cycles per unit time.

Frequency and time period are inversely proportional to each

other. A vibratory motion can have either a very high
frequency or a  

expressed either

very low frequency. Frequency  

as angular (circular) frequency

can be

(ω) or
oscillatory frequency (f). ω is expressed in radians per second  

and f is expressed in cycles per second or Hertz.

Basic Definitions



Natural frequency: It is the frequency of free

vibration of a system. It is constant for a system. In

fact, it is an inherent property of a system. It depends

on the elastic properties, mass and stiffness of the

system.

Resonance: Vibration of a system when the

frequency of external force is equal to the natural

frequency of the system. The amplitude of vibration at

resonance becomes excessive. During resonance,

with minimum input, there will be a maximum output.

Hence both displacement and the stresses in the

vibrating body become very high.

Basic Definitions



Damping: It is the resistance to motion. It is also the

sluggishness. Hence it is the delay in response to any

action. Damping is observed only under fast loading, and

not during static loading.

Degree of freedom: The number of independent

coordinate systems required to specify a motion. If the

motion is in one direction due to the vibration of a single

spring, then it is a Single degree of freedom system. If a

particle is likely to vibrate in space, it will have six

degrees of freedom, namely three translations and three

rotations along three axis. A continuum can have infinite

degrees of freedom.

Basic Definitions



Phase difference : The angle between two rotating

vectors representing Simple Harmonic Motion, In time

domain, it can be represented as the delay in one motion

compared with the other.

Wave : It is the vibratory motion of a body or a particle

represented in time domain or space domain. For

representing a one dimensional wave mathematically, the

partial differential equation is given by,

v
t 2 x2

2u
 2 2u

Basic Definitions



T 
2


1

 
2


v

 vT  
k f

•  f

T = Time period (in sec)

ω = Angular or Circular velocity (in rad/sec)
f = Frequency of oscillations (in cycles/sec or Hz)  

λ = Wave length (in m)

k = Wave number = ω/v (in rad/m)  v = Wave 

velocity (in m/sec)

Basic Definitions





TYPES OF LOADING

RAPID OR TRANSIENT LOADING

STATIC LOADING

SLOW  LOADING

TIME  CYCLIC OR REPETITIVE

LOADING

F
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R
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TYPES OF LOADING
F

O
R

C
E

RAPID OR TRANSIENT LOADING

STATIC LOADING

OSCILLATORY LOAD

SLOW STATIC  LOADING

TIME

CYCLIC OR REPETITIVE  LOADING



Large Period Small Period

LOAD

Single Impulse Multiple Impulse

WHAT IS DYNAMIC FORCE ?

Time Time

Time Time

Actual Impulse



Typical Seismogram

Start of Secondary  

Waves

Start of Surface Waves

Trace  

Amplitude

Strong Motion

• Random

• Time Dependent

• Cyclic

Time

SA

Acceleration

Start of Primary  

Waves

• PGA

• Predominant Frequency

• Duration of Strong Motion



Free Vibration: Vibration of a system because

of its own elastic property. No external force is

required for this vibration and only initiation of

vibration may be necessary.

that vibratesForced Vibration:  

under an external

A system

force at the same

frequency as that of external force.

Basic Definitions



Free vibration

Equilibrium

pos.

• When a system is initially disturbed by a displacement,  

velocity or acceleration, the system begins to vibrate with  

a constant amplitude and frequency depending on its  

stiffness and mass.

• This frequency is called as natural frequency, and the  

form of the vibration is called as mode shapes



Forced Vibration
If an external force is  

applied to a system, the  

system will follow the force  

with the same frequency.

However, when the forcing  

frequency is increased to  

the system’s natural  

frequency, amplitudes will  

dangerously increase in  

this region. This  

phenomenon called as  

“Resonance”

’



Mechanical Parameters and Components

All mechanical systems contain the three basic components: spring,

damper, and mass. When each of these in turn is exposed to a constant

force they react with a constant displacement, a constant velocity and a

constant acceleration respectively.
31



Spring in vibration



F = C.V

c

Damper - Dashpot



Vibration System



Fundamentals of Vibrations: Vibration Analysis

FBD

PHYSICAL
DYNAMIC
SYSTEM

MATHEMATICAL
MODEL

GOVERNING
EQUATIONS

SOLVE 
GOVERNING
EQUATIONS

INTERPRETE
RESULTS
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Fundamentals of Vibrations

36

Modeling of the systems 

Single degree of freedom (DOF)

Two DOF

Multi DOF

Free DampedForced 

Or a combination of these modes

Continuous system

Each system can be under

Undamped



SDOF Reduction Of

Bike Ride System

Mathematical Modeling System

Most Accurate (MDOF) Modeling
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Single Degree of Freedom System
Free Vibrations of Particles: (Vertical, Undamped) Simple Harmonic 

Motion If a particle is displaced through a distance xm from its 

equilibrium position and released with no velocity, the 

particle will undergo simple harmonic motion,
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kxxm
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x is a periodic function and ωn is the natural circular

frequency of the motion.

C1 and C2 are determined by the initial conditions:
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   txx nm sin
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Free Vibrations of Particles: Simple Harmonic Motion
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Velocity-time and acceleration-time curves can be

represented by sine curves of the same period as the

displacement-time curve but different phase angles.
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Free Vibrations of Particles: Simple Harmonic Motion

   txx nm sin
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• One coordinate ( x ) is sufficient to specify the position of the mass at any time

…. SDOF

• No external force applied to the mass; hence the motion resulting from an initial

disturbance ….. free vibration.

• No element that causes dissipation of energy during the motion of the mass, so

the amplitude of motion remains constant with time .. Un-damped system

Free Vibrations of Particles: (Horizontal, Undamped)
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Results obtained for the spring-mass system can be

applied whenever the resultant force on a particle is

proportional to the displacement and directed towards

the equilibrium position.

For small angles,

 
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Consider tangential components of acceleration and 

force for a simple pendulum,
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sin









l
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Free Vibrations: Simple Pendulum (Approximate Solution)
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Spring Constant of a Cantilever Beam

Cantilever with end force Equivalent spring
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Free Vibration of an Undamped Torsional System
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Free Vibrations: Springs in Combinations: 
Parallel Combination

Series combination
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Viscous Damping Principle

• Damping force is proportional to velocity and

= Damping Coefficient C times Velocity dx/dt

– dissipates energy

• Dashpots can de designed as in shock absorbers

or the equivalent effect of energy dissipating

capacity determined from tests to find the value of

this coefficient c

s/m-N 

)(







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Dt
c

xc
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DtF

dz

dv
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


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Free Motion of a Damped SDoF System

Free Vibration with Viscous Damping

System

FBD

.ratio damping critical  viscous theis
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A & B are two constants depending on initial conditions.
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Possibilities depending on the value of 
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t
e
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Oscillatory term

t

Time history for oscillatory motion

Exponential term
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• A critically damped system will have the smallest damping required for

aperiodic motion; hence the mass returns to the position of rest in the

shortest possible time without overshooting.

• The property of critical damping is used in many practical applications.

• For example, large guns have dashpots with critical damping value, so that

they return to their original position after recoil in the minimum time

without vibrating. If the damping provided were more than the critical

value, some delay would be caused before the next firing.
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Logarithmic Decrement 
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The logarithmic decrement represents the rate at which the amplitude of a

free damped vibration decreases. It is defined as the natural logarithm of the

ratio of any two successive amplitudes.
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Logarithmic Decrement
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Damped Forced Vibrations
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It is seen from these curves that the response of a particular system at a any particular

frequency is lower for higher value of damping. In other words, the curves for higher

values of damping lie below those for lower values of damping.
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Magnification Factor

• At zero frequency the magnification is unity and is independent of the damping i.e.

X= Xst which itself is the definition of zero frequency deflection.

• At very high frequency the magnification tends to zero or the amplitude of

vibration becomes very small.

• At resonance (ω= ωn), the amplitude of vibration becomes excessive for small

damping and decreases with increase in damping.

• For zero damping at resonance the amplitude is infinite theoretically.

Phase angle

• The phase angle also varies from zero at low frequencies to 180 degree at very high

frequencies.

• It is 90 degree at resonance and is independent of damping. Over a small frequency

range containing the resonance point, the variation of phase angle is more abrupt

for lower values of damping than for higher values. More abrupt the changes in

phase angle about resonance, more sharp is the peak in frequency response curve.

• For zero damping the phase lag suddenly changes from zero to 180 degree at

resonance.
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Vector Diagram for Forced Vibrations for Various Operating Conditions

58

• At very low frequencies, phase angle is zero and impressed force balances the

spring force.

• At resonant frequency, phase angle is 90 degree and the impressed force balances

the damping force. Also spring force and the inertia force are equal and opposite at

resonance.

• At very high frequencies the phase angle is 180 degree and impressed force

balances the inertia force.
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It should be carefully seen that the

maximum amplitude occurs not at the

resonant frequency but a little towards its

left. This shift increases with the increase in

damping. For zero damping the maximum

amplitude (infinite value), of course, is

obtained at the resonant frequency.

Frequency at which maximum amplitude occurs can be obtained: 
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Forced Response

The response of the system to some given harmonic excitation can be found

using a transfer function approach:

[H]{F}{F}[M]) ω([K]{X}
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We want the normalized response to a single excitation, applied to each co-

ordinate in turn so that we can obtain the total response by summation.

Source of vibration
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How to Obtain Low Transmissibility ?
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• We want T to be as low as possible.

• T is small ………………if ω>> ωn.

• We want to lower ωn

• We want low stiffness and/or high mass.



Coulomb Damping (Dry Friction)

In vibrating structures, whenever the components slide relative to each other, dry-

friction damping appears internally. As stated, Coulomb damping arises when

bodies slide on dry surfaces. Coulomb s law of dry friction states that, when two

bodies are in contact, the force required to produce sliding is proportional to the

normal force acting in the plane of contact. Thus the friction force F is given by

where N is the normal force, equal to the weight of the mass and is the

coefficient of sliding or kinetic friction. The friction force acts in a direction

opposite to the direction of velocity. Coulomb damping is sometimes called

constant damping, since the damping force is independent of the displacement

and velocity; it depends only on the normal force N between the sliding

surfaces.
63



where sgn(y) is called the signum function, whose value is defined as 1 for

y>0, -1 for y<0 and 0 for y=0.

Equation of motion

To find the solution using this procedure, let us assume the initial conditions 

as:

Case 1.

When x is positive and dx/dt is positive or when x is negative and dx/dt is

positive (i.e., for the half cycle during which the mass moves from left to right),

the equation of motion can be obtained using Newton s second law:

The solution can be:

Where is the frequency of vibration and A1 and A2 are constants 
whose values depend on the initial conditions of this half cycle.
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Case 2. When x is positive and dx/dt is negative or when x is negative and dx/dt

is negative (i.e., for the half cycle during which the mass moves from right to

left), the equation of motion can be:

The solution of Eq.:

The term μN/k appearing in Equations is a constant representing the virtual

displacement of the spring under the force μN, if it were applied as a static

force.
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Note the following characteristics of a system with coulomb damping:

1. The equation of motion is nonlinear with coulomb damping.

2. The natural frequency of the system is unchanged with the addition of

coulomb damping.

3. The motion is periodic with coulomb damping.

4. The system comes to rest after some time with coulomb damping.

5. The amplitude reduced linearly with coulomb damping.
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The damping caused by the friction between the

internal planes that slip or slide as the material

deforms is called hysteresis (or solid or structural)

damping .

The Coulomb-friction model is as a rule used to describe energy dissipation

caused by rubbing friction. While as structural damping (caused by contact

or impacts at joins), energy dissipation is determined by means of the

coefficient of restitution of the two components that are in contact.

This form of damping is caused by Coulomb friction at a structural joint. It

depends on many factors such as joint forces or surface properties .

Area of hysteresis loop is energy dissipation per cycle of motion- termed as

per-unit-volume damping capacity (d):

The purpose of structural damping is to dissipate vibration energy in a

structure, thereby reducing the amount of radiated and transmitted sound

The Structural (Hysteresis) Damping

67



Free Vibration with Hysteresis Damping 

By the applying the Newton's second law :

For a harmonic motion of frequency ω and amplitude X  :

The damping coefficient c is assumed to be inversely proportional

to the frequency as

The energy dissipated by the damper in a cycle of motion becomes
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Complex Stiffness 

The force displacement relation can be expressed by:

let                is a constant indicating dimensionless 

measurement of damping.

is called the complex stiffness of the system .

the energy loss per cycle :

Forced Vibration with Hysteresis Damping:

The system is subjected to harmonic force ;

The equation of motion can be expressed as 

The  particular solution is                                   and Where
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The amplitude ratio           reaches its

maximum value of               at the

resonant frequency in the case of

hysteresis  damping                     , while

it occurs at  a frequency below 

resonance in the case of viscous 

damping .

• The phase ϕ has a value  

in the  case of  hysteresis damping .

This indicates that the response  can 

never be in phase with the forcing

function in  the case of hysteresis

damping .
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Measurement of Damping

Hysteresis Loop Method:

Depending on inertial and elastic conditions the hysteresis loop will

change but the work done in the conservative forces will be zero,

consequently work done will be equal to energy dissipated by damping

only without normalizing with respect to mass.

The energy dissipation per hysteresis loop of hysteretic damping is

And the initial max potential energy is

the loss factor of hysteretic damping is given by :

Then ,the equivalent damping ratio for hysteretic damping is
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Models of Hysteresis Damping (Structural Damping ):

The Maxwell Model

The Maxwell model can be represented by a purely

viscous damper and a purely elastic spring connected in series.

The Kelvin–Voigt Model

Also called the Voigt model, can be represented by a purely

viscous damper and purely elastic spring connected in parallel .

Standard Linear Solid Model

The standard linear solid (SLS) model, (Zener model), is a method 

of modeling  the behavior of  viscoelastic material using a linear

combination of springs and damper.
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Determination of Equivalent Viscous Damping from Frequency Response Curve

Where the free vibration test is not practical, damping may be obtained from the

frequency- response curve of forced vibration test.

Suppose the frequency response curve as obtained for as system excited with a constant

force is shown in figure below:

Magnification at resonance is given by:
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Vibration Isolation (Moving Base)

Objective:

To isolate a device from the source 

of vibration (moving base).

(To reduce vibration of machine 

transmitted through moving base.)

Application
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Vibration isolation (Fixed base)

Objective:

To isolate the source of vibration 

(machine) from the other system.

To reduce vibration (force) transmitted 

from the machine to base.
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Coil spring isolator with integral
viscous damping unit 
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The force experienced by the instrument or mass m (same as the force

transmitted to mass m) is given by:

where y(t) is the displacement of the base, x(t)-y(t) is the relative

displacement of the spring, and is the relative velocity of the

damper. In such cases, we can insert an isolator (which provides stiffness

and /or damping) between the base being subjected to force or excitation

and the mass to reduce the motion and/or force transmitted to the mass.

Thus both displacement isolation and force isolation become important in

this case also.

Vibration Isolation System with Rigid Foundation

It is assumed that the operation of the machine gives rise to a harmonically 

varying force

The equation of motion of the machine (of mass m) is given by:
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Since the transient solution dies out after some time, only the steady-state 

solution will be left. The steady-state solution of Eq. is given by

Where and

The force transmitted to the foundation through the spring and the dashpot,         

is given by

The magnitude of the total transmitted force FT is given by

X2m 

Xc

kX
t-


0F

FT
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Variation of F0 with ω
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The transmissibility or transmission ratio of the isolator (     )is defined as the 

ratio of the magnitude of the force transmitted to that of the exciting force:

where is the frequency ratio. The variation of with the frequency ratio

is shown in Fig. In order to achieve isolation, the force transmitted to

the foundation needs to be less than the excitation force. It can be seen, from

Fig., that the forcing frequency has to be greater than times the natural

frequency of the system in order to achieve isolation of vibration.
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For small values of damping ratio ζ and for frequency ratio r > 1the force transmissibility,
given by Eq., can be approximated as
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The magnitude of the force transmitted to the foundation can be reduced by

decreasing the natural frequency of the system ( ).

The force transmitted to the foundation can also be reduced by decreasing the

damping ratio. However, since vibration isolation requires r> √2, the machine

should pass through resonance during start-up and stopping. Hence, some damping

is essential to avoid infinitely large amplitudes at resonance.

Although damping reduces the amplitude of the mass (X) for all frequencies, it

reduces the maximum force transmitted to the foundation ( ) only if r< √2. Above

that value, the addition of damping increases the force transmitted.

If the speed of the machine (forcing frequency) varies, we must compromise in

choosing the amount of damping to minimize the force transmitted. The amount of

damping should be sufficient to limit the amplitude X and the force transmitted

while passing through the resonance, but not so much to increase unnecessarily the

force transmitted at the operating speed.
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Reduction of the Vibratory Motion of the Mass. In many applications, the isolation is

required to reduce the motion of the mass (machine) under the applied force. The

displacement amplitude of the mass m due to the force F(t), given by Eq., can be

expressed as:

It indicates the ratio of the amplitude of the mass, X, to the static deflection under

the constant force F0.

Displacement transmissibility or amplitude ratio:
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