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What is Vibration?

Vibration is the motion of a particle or body which oscillates about a
position of equilibrium. Most vibrations in machines and structures are
undesirable due to increased stresses and energy losses.

Vibration in Everyday L.ife




Useful Vibration

Concrete
Compactor

7 '-' )
4 & Drivers

Ultrasonic
Cleaning
Baths

Harmful Vibration




Vibration in our Lives

Our heart beats

e

Our lungs oscillate \/
We hear because our ear drums vibrate
Vibration makes us snore

Light waves permit us to see

Sound waves allow us to hear

We move because of oscillation of legs

We can not utter ‘vibration’ without the oscillation
of larynges and vocal cords




Vibration in our Lives

« We limit our discussion to Mechanical Vibration

* Vibration of dynamic system of a structure

* |tis the oscillations of a system that has mass
and elasticity

Vibration
Absorber




Vibration — Friend or Foe

Friend Foe
e *RESONANCE — RESONANCE — RESONANCE

*Conveyvors. Hoppers. Compactors.

Pneumatic Drills. etc. DISASTER!
The Greatest
*Opening of a cork from a wine bottle Camera Scoop

*Washing Machine
*Similar problems in machine tools. vehicles.
turbines. pumps. compressors. buildings, aircraft &
spacecraft systems

*Mechanical Shakers, Mixers. Sieves.
Sorters, etc.

NMu qC stru < . ” " »
fusical Instruments *Excessive vibration leads to loosening on parts.

noise & eventual failure
*Clocks, Watches
dical Field — Mas ‘ *Effects of vibration on human body: Discomfort.
Mesteal Ficld —Massagers; Sic. Fatigue. Loss of Efficiency

*Sound quality in products
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Basic Definitions

TYPES OF FORCES ]

- I
| |
Static or

Monotonic

Dynamic

7

[ Periodic ] Impulse] Random]
Type l

[Harmonic] [ Non-_ ]
Harmonic

[ Steady ]

State

Transient ]




Basic Definitions

Periodic Motion: A motion that repeats itself
after equal interval of time.

Time Period: Timetaken for one
complete cycle.

Simple Harmonic Motion: Motion of particle
with time that moves  round a circle
unifowith angular velocity Trigonometric

functions can be used to represent such

n motion.




Basic Definitions

Amplitude (Z or 2Z): The maximum displacement of a
vibrating body from its mean position. The amplitude can
either be single amplitude (Z) when the distance from mean
position to maximum displacement is measured or double
amplitude (2Z) when the distance from negative maximum to
positive maximum displacement (motion) is measured.

Freqguency: It Is the number of cycles per unit time.
Frequency and time period are inversely proportional to each

other. A vibratory motion can have either a very high
frequency or a very low frequency. FredquenCy can be

expressed either as angular (circular) frequency (w) or
oscillatory frequency (f). o i1s expressed in radians per second
and f Is expressed in cycles per second or Hertz.




Basic Definitions

Natural frequency: It is the frequency of free
vibration of a system. It is constant for a system. In
fact, it iIs an inherent property of a system. It depends
on the elastic properties, mass and stiffness of the
system.

Resonance: Vibration of a system when the

frequency of external force is equal to the natural

frequency of the system. The amplitude of vibration at

resonance becomes excessive. During resonance,

with minimum input, there will be a maximum output.

Hence both displacement and the stresses in the
n vibrating body become very high.




Basic Definitions

Damping: It is the resistance to motion. It Is also the
sluggishness. Hence it I1s the delay In response to any
action. Damping is observed only under fast loading, and
not during static loading.

Degree of freedom: The number  of independent
coordinate systems required to specify a motion. If the
motion Is In one direction due to the vibration of a single
spring, then it is a Single degree of freedom system. If a
particle i1s likely to vibrate in space, it will have six
degrees of freedom, namely three translations and three
rotations along three axis. A continuum can have infinite
degrees of freedom.




Basic Definitions

Phase difference : The angle between two rotating
vectors representing Simple Harmonic Motion, In time
domain, it can be represented as the delay in one motion
compared with the other.

Wave : It is the vibratory motion of a body or a particle
represented In time domain or space domain. For
representing a one dimensional wave mathematically, the
partial differential equation is given by,

ot? OX?




Basic Definitions

T_27z 1 /12_72 Vv
K f

T = Time period (in sec)

w = Angular or Circular velocity (in rad/sec)

f = Frequency of oscillations (in cycles/sec or Hz)
A = Wave length (in m)

k = Wave number = w/v (in rad/m) v = Wave
velocity (in m/sec)




Dynamics

— Linear o

Non-Linear

Arbitrary motion =

— Harmonic Mot1on e
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FORCE

TYPES OF LOADING

A RAPID OR TRANSIENT LOADING

STATIC LOADING

SLOW LOADING

R REPETN IVE




FORCE

TYPES OF LOADING

/ STATIC LOADING

QSCIDATORY LOAD

LOW STAS OARING
A

\ / CYCIAC ORBEPETITIVE LOADING

TIME




WHAT IS DYNAMIC FORCE ?
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Typical Seismogram
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Basic Definitions

Free Vibration: Vibration of a system because
of its own elastic property. No external force is
required for this vibration and only initiation of

vibration may be necessary.

Forced Vibration: A system that vibrates
under an external force at the same

frequency as that of external force.




Free vibration

 When a system is initially disturbed by a displacement,
velocity or acceleration, the system begins to vibrate with
a constant amplitude and frequency depending on its
stiffness and mass.

« This frequency is called as natural frequency, and the
form of the vibration is called as mode shapes

Displacement
4 d =D sino,t

JUAWASRE
™

Equilibrium
pos.

m
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Forced Vibration

Frequency

Frequency

Frequency

If an external force Is
applied to a system, the
system will follow the force
with the same frequency.

However, when the forcing
frequency Is increased to
the system’s natural
frequency, amplitudes will
dangerously increase In
this region. This
phenomenon called as
“Resonance”




Mechanical Parameters and Components

Displacement Velocity Acceleration
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All mechanical systems contain the three basic components: spring,
damper, and mass. When each of these in turn is exposed to a constant

force they react with a constant displacement, a constant velocity and a

constant acceleration respectively.
31



Spring in vibration
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Damper - Dashpot

DASHPOT
A
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Vibration System

DASH POT
(energy dissipation elemenf)

SPRING
(energy storage element)
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Fundamentals of Vibrations: Vibration Analysis

PHYSICAL SOLVE
o AT Ly S Lt M
SYSTEM EQUATIONS

35




Fundamentals of Vibrations

Single degree of freedom (DOF)

Two DOF

Modeling of the systems
Multi DOF

222

Continuous system

Each system can be under

2N A A

Free Forced Damped Undamped

Or a combination of these modes .,



Mathematical Modeling System
SDOF Reduction Of

¢ DOF |
Rider \ Bike Ride System
\_‘.ﬂ
\ — Subscripts
. \ ‘ _— Strut f: tire v : vehicle

Strut — (/‘ -' w: wheel r:rider
° ]\ al

2\
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—, ) T Wheel
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Most Accurate (MDOF) Modeling
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Single Degree of Freedom System

Free Vibrations of Particles: (\Vertical, Undamped) Simple Harmonic
If a particle is displaced through a distance x., from its
equilibrium position and released with no velocity, the
particle will undergo simple harmonic motion,

ma=F =W — k(5 + X) = —kx

mX+kx =0

General solution is the sum of two particular solutions,

e

= Cy sin(wpt)+C, cos(wpt)

X 1s a periodic function and o, is the natural circular
frequency of the motion.

C, and C, are determined by the initial conditions:

X = Cy sin(ept)+C, cos(wpt) C, =X

V=X = Cymy, cos(@nt)—Comp sin(wpt)  Cp =vp/ay
- 38



Free Vibrations of Particles: Simple Harmonic Motion

X = X, Sin(w,t + @)

Xm = J(Vo/wn )2 + Xg = amplitude
¢ =tan1(vg/Xow, )= phase angle

Th = oz _ period

Wn
1
fp=—= “n _ natural frequency
Thw 2%

39



Free Vibrations of Particles: Simple Harmonic Motion

\Hl(o

Velocity-time and acceleration-time curves can be
represented by sine curves of the same period as the
displacement-time curve but different phase angles.

X = X, Sin(w,t +¢)

V=X

= Xm@p COS(wnt + @)

= Xy, Sin(wpt + ¢ +7/2)

a==X
2

= —Xmop Sin(w,t +¢)

:xmwﬁﬁn

(a)nt +¢+7z)

Displacement
ar)=Asin (0 +¢)

Ve luuly

(1) = wA cos (wr + )

Acceleration

x(1) = —w?A sin (wf + ¢)

A

0

/\A

wA o

0

YN
A

-_2

WA —

0

Vi
[
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Free Vibrations of Particles: (Horizontal, Undamped)

* One coordinate ( x ) is sufficient to specify the position of the mass at any time

.... SDOF
» No external force applied to the mass; hence the motion resulting from an initial

disturbance ..... free vibration.
* No element that causes dissipation of energy during the motion of the mass, so
the amplitude of motion remains constant with time .. Un-damped system

+X XX
Free length ‘

TR R .
\\\\ k 7 kx
\ fiii)\_ m ;4%— - m
N\ /)
A NEETIE NI RN RN | I
‘* ~<~—Stretched length — /

(a) (b) (¢)

F(t) = —kx = mx

mx + kx =0
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Free Vibrations: Simple Pendulum (Approximate Solution)

Results obtained for the spring-mass system can be
applied whenever the resultant force on a particle is
proportional to the displacement and directed towards
the equilibrium position.

Consider tangential components of acceleration and
force for a simple pendulum,

S>F =ma : ~Wsing =mlé

é+%ﬁn9:0

For small angles,
é+%9=o
0 =0, sin(wpt + @)

T =2—7T=27z\/g
@n

42



Spring Constant of a Cantilever Beam
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Cantilever with end force

w3 LW 3E]
- 3E] & &

W= mg

Tx{ )

Equivalent spring
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Free Vibration of an Undamped Torsional System

-

~— Shaft

Gl
M.t _ rig

[

md*
Iy = n

M, Gly wGd*
kr p— p— f—

t [ 32/

Jo® + kO =0
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Free Vibrations: Springs in Combinations:
Parallel Combination

_ Foy ————
. ENARE ) —
= DYV q e
g - Fra a w m
F=lx+ kx+-+ kx= (Efej.)x
i =1
k., = ;&i
Series combination
[
g ko, ko LE ky, g Feq
- ® = .—""..r'".,.i".,,.— 1 .
Xx=x +x,+ o +x = Dx,
i=1
0 p _ 1




Viscous Damping Principle

.............................................

dz =

Vv _ —dissipates energy

- Viscous Medium

Clearormee

« Damping force is proportional to velocity and
Damping Coefficient C times Welocity dx/dt

 Dashpots can de designed as in shock absorbers
Dty or the equivalent effect of energy dissipating

capacity determined from tests to find the value of
this coefficient c

46



Free Motion of a Damped SDoF System

Free Vibration with Viscous Damping
Equation of motion :mX+cx+kx=0
Dividing by m: X+ 2lwnX+ @i X =0

where an = \/E Is the undamped natural frequency,
m

C c . : - : :
 =—= IS the viscous critical damping ratio.

C, 2+km

Solution of the equation of motion

Eq of motion : X+ 2cwnX + i X =0

ot t

Solution is of theform: x(t) = Ae + Be“?

A & B are two constants depending on initial conditions.

LSS LSS LSS LSS

k e
0
H1
System T
+ X
kx cX

m

+x
FBD*



Possibilities depending on the value of C

Tofind o, & «,, insert x(t) = Ae* into EOM.
Ae™ (a? +2lowna + »2) =0

—> 5 :(_gi\/gz —1)on

Case 1. (<1. Underdamped case with oscillatory motion

Both roots are complex : o, = (=& +i4/1—¢7)an

ay =(=¢ —iyy1-¢*)om

The general solution becomes:

x(t) = e~ [ Acos(1— &2 ant) + Bsin(y1— &2 ant)]

e gm”tc sin(\/1—7a)nt +@)=¢e éVC’)”tC sin(axt + @)
where au = /1— ¢ an is thedamped natural frequency.

48



Time history for oscillatory motion

x(1

w2

Exponential term
e— g@nt

Oscillatory term
T,; = Eﬂfﬁ},;

Csin(axt + @)

49



Case 2. (>1. Overdamped case with oscillatory motion

Both rootsarereal : o, = (=& + w/g’z —1Don

a, =(—¢ =& 1)com'

The solution becomes: | \r S S
T _ | 7 o
X(t) = pe("¢ TV —Dart —> \\ﬂe( S+ VB2 Nt .

Be(_é/ N\ éVZ —1)C()nt

L

50



o

O

Case 3. (=1. Critically damped motion case with Max rate of decay |

x(t)
Double root: o, =a, =—on

The solution becomes:

x(0)

x(t) = (A+ Bt)e ™ @t

Undamped (£ = 0)

Underdamped (£ < 1)
(w,1s smaller
than w,,)

Overdamped ({ = 1)

\.( Critically

damped (£ = 1)
S

51



« A critically damped system will have the smallest damping required for
aperiodic motion; hence the mass returns to the position of rest in the

shortest possible time without overshooting.
« The property of critical damping is used in many practical applications.

« For example, large guns have dashpots with critical damping value, so that
they return to their original position after recoil in the minimum time
without vibrating. If the damping provided were more than the critical
value, some delay would be caused before the next firing.



Logarithmic Decrement

The logarithmic decrement represents the rate at which the amplitude of a
free damped vibration decreases. It is defined as the natural logarithm of the
ratio of any two successive amplitudes.

The amplitude ratio between two successivecycles:

X(tm) e sin(witm + @)

o) & ity gy X0 = G S aat

:e—éla)n(tm—tm+1) NK(t )X(tm_n) . '
o a A\ \/\

27 Gn

é/a)n— _ 2
—ebT o7 o 1=¢ a)n_

X(tm)
X(tm + 1)




Logarithmic Decrement X = C e 59t sin (0gt + ¢)

27T
¢ ' m’%t)
X(tm) e \/1_4’2 N X m+1
X(tm+1)

e

Taking logarithms of both sides :

logarithmi ¢ decrement & = In X() |_ 2% 27 (ford <<1)
X(tm +1) /1_4,2
If the twoamplitudes are separated by (N-1) cycles:
5= 1 n X(tm)
N X(tm + N)

X 27 27 27 C
o= =w,ry =lw, = =—X

X, d N-Ctw -2 o, 2m




Damped Forced Vibrations

|

MX+cX+kx =Py sin ¢t X = Xcomplementary + X particular

X _ Magnification

Pk J[l (o /0 T + [2c/cxwf/w>]2 factor (M.F)

(C/ Ce )(wf / Cf)n) _ phase difference between forcing and
1_(wf /wn)z steady state response

tan ¢ =

55



4.0
£=0.125
: !
3.0 p
S S
in ar

PHASE ANGLE ¢

w/wp

It is seen from these curves that the response of a particular system at a any particular
frequency is lower for higher value of damping. In other words, the curves for higher
values of damping lie below those for lower values of damping.

56



Magnification Factor

« At zero frequency the magnification is unity and is independent of the damping i.e.
X= Xst which itself is the definition of zero frequency deflection.

« At very high frequency the magnification tends to zero or the amplitude of
vibration becomes very small.

« At resonance (w= wn), the amplitude of vibration becomes excessive for small
damping and decreases with increase in damping.

«  For zero damping at resonance the amplitude is infinite theoretically.

Phase angle

« The phase angle also varies from zero at low frequencies to 180 degree at very high
frequencies.

« Itis 90 degree at resonance and is independent of damping. Over a small frequency
range containing the resonance point, the variation of phase angle is more abrupt
for lower values of damping than for higher values. More abrupt the changes in
phase angle about resonance, more sharp is the peak in frequency response curve.

 For zero damping the phase lag suddenly changes from zero to 180 degree at
resonance.



Vector Diagram for Forced Vibrations for Various Operating Conditions

- >/-"

™ G 3

e > w>e,

Mw? x

Fo

Chod WG

« At very low frequencies, phase angle is zero and impressed force balances the
spring force.

« At resonant frequency, phase angle is 90 degree and the impressed force balances
the damping force. Also spring force and the inertia force are equal and opposite at
resonance.

« At very high frequencies the phase angle is 180 degree and impressed force
balances the inertia force. >



| M/@“zs It should be carefully seen that the
maximum amplitude occurs not at the

«’»7/ \Y" resonant frequency but a little towards its

2.0 SRR left. This shift increases with the increase in

ey damping. For zero damping the maximum

NS . amplitude (infinite value), of course, is
oL = 1?”\\::\—* =] obtained at the resonant frequency.

w/w

Frequency at which maximum amplitude occurs can be obtained:

o P
G EONER)

where , means the frequency corresponding to the peak amplitude.

: . @y | _ 2
Which gives, — |=41-27

n

No maxima or peak will occur whenexpression within the radical sign

Is -ive. for £ > 0.707.
It can also be seen that responsecurveis below unity magnification line.



Forced Response
Source of vibration

F. sin(wt+®) g_%m,\m - F,sinmt

C

—

The response of the system to some given harmonic excitation can be found
using a transfer function approach:

OUTPUT =SYSTEM FUNCTION x INPUT

X = H(system properties, ) X Force
For forcedresponse, wehave : ([K]-o” [M]) {X}={F}
—->{X}=([K]-o* [M]) {F}=[HI{F}

We want the normalized response to a single excitation, applied to each co-
ordinate in turn so that we can obtain the total response by summation.



Basic Theory

The force transmitted to ground is due to the spring and damper :
Fr = kX+CX

Forcetransmitted Fr
Excitation Force Fo

What we want toknow Is the ratio :

m 0)2X0 From the phasor diagram :

Ca))(o Fr= XO\/k2 + (Cw)’
From Lecture, weknow that:

ot-¢  _ F,
T Jk—me?)? + (cw)’

So, transmissibility, T, is given by :

F

F,

_\/ k2 + (co)’ _\/ 1+ (2 1 )?
) (L-r?)?+ (25 r)?

(k—me?)? +(cw)®

@ C
where r=— and ¢ =

(On ZM




How to Obtain Low Transmissibility ?

= k?+(cw)’

T =|—T|=
|V (k=mae?) + (co)?

« We wantT to be as low as possible.
e Tissmall.................. if ®>> w,,.
« We want to lower o,

«  We want low stiffness and/or high mass.



Coulomb Damping (Dry Friction)

W W

T l !

K
§ Z00000) . kx <— o b—>i kx <—— g |le— &
N IO, M ‘_T T_"“ N
N

(a) (b) (c)

In vibrating structures, whenever the components slide relative to each other, dry-
friction damping appears internally. As stated, Coulomb damping arises when
bodies slide on dry surfaces. Coulomb s law of dry friction states that, when two
bodies are in contact, the force required to produce sliding is proportional to the
normal force acting in the plane of contact. Thus the friction force F is given by
F=puN = puW = umg
where N is the normal force, equal to the weight of the mass and is the
coefficient of sliding or kinetic friction. The friction force acts in a direction
opposite to the direction of velocity. Coulomb damping is sometimes called
constant damping, since the damping force is independent of the displacement
and velocity; it depends only on the normal force N between the sliding
surfaces. v




Equation of motion  mX + umg sgn(x) + kx =0

where sgn(y) is called the signum function, whose value is defined as 1 for
y>0, -1 for y<0 and 0 for y=0.

To find the solution using this procedure, let us assume the initial conditions
. .'l'(f = U\} = Xp
X(r=0) =0
Case 1.
When x iIs positive and dx/dt is positive or when X Is negative and dx/dt is
positive (i.e., for the half cycle during which the mass moves from left to right),

the equation of motion can be obtained using Newton s second law:
mx = —kx — uN or mx + kx = —uN

The solution can be:

x(1) = Ay cos w,l + Apysinw,l — —

—_—

Where w,, = V k/m is the frequency of vibration and Al and A2 are constants
whose values depend on the initial conditions of this half cycle.



Case 2. When x is positive and dx/dt is negative or when X Is negative and dx/dt
IS negative (i.e., for the half cycle during which the mass moves from right to
left), the equation of motion can be:

—kx + uN = mx or mx + kx = uN

The solution of Eq.:
N

x(1) = Azcos w,t + Agsinw,t +

The term uN/k appearing in Equations Is a constant representing the virtual
displacement of the spring under the force uN, if it were applied as a static
force. o

Xo

Motion of the mass with Coulomb damping 65



Note the following characteristics of a system with coulomb damping:

1. The equation of motion is nonlinear with coulomb damping.

2. The natural frequency of the system is unchanged with the addition of
coulomb damping.

3. The motion is periodic with coulomb damping.

4. The system comes to rest after some time with coulomb damping.

5. The amplitude reduced linearly with coulomb damping.



The Structural (Hysteresis) Damping

\ I.}dluq/;\
hysteresis loop i //
The damping caused by the friction between the / /- noates
Internal planes that slip or slide as the material S
deforms is called hysteresis (or solid or structural) //’ ) 4
damping . 4
pINg 7

The Coulomb-friction model is as a rule used to describe energy dissipation
caused by rubbing friction. While as structural damping (caused by contact
or impacts at joins), energy dissipation is determined by means of the
coefficient of restitution of the two components that are in contact.
This form of damping is caused by Coulomb friction at a structural joint. It
depends on many factors such as joint forces or surface properties .

Area of hysteresis loop is energy dissipation per cycle of motion- termed as

&1

per-unit- =
AW = § Fdx = § (kX sinwt + cX coswt)(wX coswt)dt = twcX* = d = the area
0

The purpose of structural damping is to dissipate vibration energy in a
structure, thereby reducing the amount of radiated and transmitted sound



Free Vibration with Hysteresis Damping

By the applying the Newton's second law :
F=kx+cx x(t)=Xcoswt
For a harmonic motion of frequency w and amplitude X :

F(t) = kx + cwVX? — x? c=—

ol

The damping coefficient ¢ is assumed to be inversely proportional

to the frequency as
The energy dissipated by the damper in a cycle of motion becomes

AW = mhX? :

e
K i
c coX ‘/ vV X
5 |
5 -

{

Flt)
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Complex Stiffness
The force displacement relation can be expressed by:
F=(k+ih)x=k(1+i%)x=k(1+if)x
let g =E IS a constant indicating dimensionless
measurement of damping.

k(1+if) is called the complex stiffness of the system
the energy loss per cycle : aw = mkgx?

Forced Vibration with Hysteresis Damping:

The system is subjected to harmonic force ;
F(t) = F, coswt

The equation of motion can be expressed as

mi + 2% + ko = Fp coswt

The particular solution is x,(t) = X cos(wt — ¢) and Where

e
T

Filj

69



The amplitude ratio == reaches its . i e
maximum value of g /g atthe s ___B=02
resonant frequency in the case of

hysteresis damping (r === 1), while
It occurs at a frequency below I 2| = i
resonance in the case of viscous : %

damping .

k)

-

l/,
i
Vo

tan_lﬁ' atw =0 0 1 2 3 4 5

« The phase ¢ has a value ?

In the case of hysteresis damping .
This indicates that the response can 0 ; : : " 5
never be in phase with the forcing &)

function in the case of hysteresis
damping .

70



Measurement of Damping

Hysteresis Loop Method:

Depending on inertial and elastic conditions the hysteresis loop will
change but the work done in the conservative forces will be zero,
consequently work done will be equal to energy dissipated by damping
only without normalizing with respect to mass.

The energy dissipation per hysteresis loop of hysteretic damping is
AU, = mx, we

And the initial max potential energy is

AU, = mxy*h

the loss factor of hysteretic damping is given by :

h

Then ,the equivalent damping ratio for hysteretic damping is

(-2

-
=
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Models of Hysteresis Damping (Structural Damping ):

The Maxwell Model c k
The Maxwell model can be represented by a purely 0 /BIN—0
viscous damper and a purely elastic spring connected in
k
— T —

O— —O
The Kelvin—Voigt Model £
Also called the Voigt model, can be represented by a purely
viscous damper and purely elastic spring connected in parallel .

ka

M1, )
O— c —O

Standard Linear Solid Model K.
The standard linear solid (SLS) model, (Zener model), 1s a method
of modeling the behavior of viscoelastic material using a linear
combination of springs and damper.
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Determination of Equivalent Viscous Damping from Frequency Response Curve

Where the free vibration test is not practical, damping may be obtained from the
frequency- response curve of forced vibration test.

Suppose the frequency response curve as obtained for as system excited with a constant
force is shown in figure below:

Fa

Magnification at resonance is given by: o dzmoe — ¥
CC()X — FO a2 3
or theamplitude at resonancels : s
R, "
X, = I = 4 \
Cw
Xst Xst
= > = > as o = o, at resonance e
0) N
(%, 2% .
X Tl
24’: st "
X, :
§
1.0
W



1

% Ji-loo 1T +cloro,

Xst 2
X=0.707X,
assuming ¢ <<1

2 2
that is [”1] ~1-2¢ and [Zj —1+2¢
C()p )

@y

), + a, — Q.
W, =— 250{2 1:24}

r
AN L L
_/',c}_ N
L lelln] l\
@3iwp w2

Taking these measurements
from the frequency response
curve after making necessary
construction, we get the first
approximate value of .



Vibration Isolation (Moving Base)

IM Objective:
Vibration &~ To isolate a device from the source
solator (kg e) of vibration (moving base).
— I II') (To reduce vibration of machine
Base transmitted through moving base.)
Application

Table isolator

x(t)

Automobile suspension

Lo

v
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Vibration isolation (Fixed base)

Iff‘. Objective:
f‘fibl"ﬁﬂ*““ Hj\ To isolate the source of vibration
RN ___? (machine) from the other system.

| To reduce vibration (force) transmitted
from the machine to base.

Generator or the

Washing other machines
machine | : :
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No Base Isolation

BREINS

wE-maD

Coil spring isolator with integral
viscous damping unit

2 H E

|

With Base Isolation
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The force experienced by the instrument or mass m (same as the force
transmitted to mass m) is given by:

F(1) = mx(t) = k{x(1) — y(0)} + c{x(t) — ¥(1)}

where y(t) is the displacement of the base, x(t)-y(t) is the relative
displacement of the spring, and #(t) —3(t) is the relative velocity of the
damper. In such cases, we can insert an isolator (which provides stiffness
and /or damping) between the base being subjected to force or excitation
and the mass to reduce the motion and/or force transmitted to the mass.
Thus both displacement isolation and force isolation become important in
this case also.

Vibration Isolation System with Rigid Foundation

It is assumed that the operation of the machine gives rise to a harmonically
varying force F(t) = F, coswt
The equation of motion of the machine (of mass m) is given by:

mx + cx + kx = F,cos wl
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Since the transient solution dies out after some time, only the steady-state
solution will be left. The steady-state solution of Eq. is given by

x(1) = X cos(wt — )

Fy wc
Where X = - = and ¢ = tan (—)
(k — mw?)? + w*c?)V? k — mw?

The force transmitted to the foundation through the spring and the dashpot, F.(t)
Is given by F(1) = kx(1) + cx(1) = kX cos(wt — ¢) — cwX sin(wt — @)

The magnitude of the total transmitted force FT is given by

Fr = [(k)? + ()22 = X\/I? + o2 Mo’ X

)

F'{](}I[xz L {Uzﬁ_z)l;'

(k — mwz)z + wzc'z:l-’iz

CoX

ot-¢
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Variation of F,with w

2
2 Mo~ X
o<o, Mo X, 0= :

CoX,

0>, 2
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The transmissibility or transmission ratio of the isolator (7 )is defined as the
ratio of the magnitude of the force transmitted to that of the exciting force:

Fy 12+ w22 1/2
- .
! Fy {(R mw?)? {sz.'z}

where r = ;-is the frequency ratio. The variation of 7, with the frequency ratio

r =2 1s shown in Fig. In order to achieve isolation, the force transmitted to
the foundation needs to be less than the excitation force. It can be seen, from
Fig., that the forcing frequency has to be greater than \/2 times the natural
frequency of the system in order to achieve isolation of vibration.
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For small values of damping ratio ¢ and for frequency ratio r > 1the force transmissibility,
given by Eq., can be approximated as

| + Ty
rt =1 Iy
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The magnitude of the force transmitted to the foundation can be reduced by
decreasing the natural frequency of the system ( w,,).

The force transmitted to the foundation can also be reduced by decreasing the
damping ratio. However, since vibration isolation requires r> v2, the machine
should pass through resonance during start-up and stopping. Hence, some damping
IS essential to avoid infinitely large amplitudes at resonance.

Although damping reduces the amplitude of the mass (X) for all frequencies, it
reduces the maximum force transmitted to the foundation (F) only if r< v2. Above
that value, the addition of damping increases the force transmitted.

If the speed of the machine (forcing frequency) varies, we must compromise in
choosing the amount of damping to minimize the force transmitted. The amount of
damping should be sufficient to limit the amplitude X and the force transmitted F.
while passing through the resonance, but not so much to increase unnecessarily the
force transmitted at the operating speed.



Reduction of the Vibratory Motion of the Mass. In many applications, the isolation is
required to reduce the motion of the mass (machine) under the applied force. The
displacement amplitude of the mass m due to the force F(t), given by Eq., can be

expressed as:
Displacement transmissibility or amplitude ratio:
X kX 1

Ot Fy \.f‘f(l — .*'3]3 1+ (2;”1‘}2

It indicates the ratio of the amplitude of the mass, X, to the static deflection under
the constant force FO.
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