Enrolment No.

Mechanical Vibrations

LABORATORY MANUAL

B.E. SEM.VII

MECHANICAL ENGINEERING DEPARTMENT INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING AHMEDABAD

SEM - VII (Mechanical Vibrations – MEC)705)
--	-------

CERTIFICATE

This is to certify that	
Mr./Ms./Mrs.	
Enrolment No	of Class
(Divison :)	has satisfactory completed the laboratory work of the
subject	at Indus Institute
of Technology and Engineering, l	Rancharda, Ahmedabad.
Date of Submission:	
Concern Faculty:	
Head of Department:	

INDEX

SR.		PAGE NO			GLON	MARKS	
NO.	TITLE	FROM	то	DATE	SIGN	/GRADES	
1	To study frequency of simple pendulum.						
2	To study frequency of compound pendulum.						
3	To study frequency of sprig mass system.						
4 To study frequency of lateral vibration system.							
5	To study frequency of torsion vibration system (single Rotor).						
6	6 To study free (torsional) damped vibration system.						
7	To study whirling speed of shaft.						
8	To study forced damped vibration system.						
9	9 To study frequency of simple 9 pendulum with considering mass of rod						
10	To study frequency of roller rolls without slip inside cylinder						
11	1 To study frequency of U tube filled with liquid						
12							

* INSTRUCTIONS *

- ✓ This laboratory manual is issued once only. This is your responsibility to preserve it in good condition up to Term work submission & Oral examination.
- \checkmark Your writing should be neat and clean.
- \checkmark Get checked your manual at the end of the performance of each practical.
- ✓ Practical & Tutorials that cannot be read or are not presented in a professional engineering style will not receive credit (Higher Grades).
- \checkmark You have to bring every time you attend the laboratory.

EXPERIMENT NO:-1

<u>AIM</u>: To study the natural frequency of Simple Pendulum. Also compare the experimental result with practical results.

OBJECTIVES:

- 1. To find periodic time theoretically.
- 2. To study and find periodic time experimentally.
- 3. To draw the graph of frequency versus length of string.

APPARATUS:

One string, Bob, Stop Watch.

ASSUMPTION:

- The String does not have mass.
- Air friction is neglected.
- The vibration of system is completely simple harmonic.
- The mass of bob is concentrate at geometric center.
- The displacement angle is small.

DERIVATION:

Consider bob of connected mass (m) is suspended at the end of string or road of negligible mass for small deflection.

$$J\frac{d^2\theta}{dt^2} = -mgX = -mgL\sin\theta \tag{1}$$

where m is mass of bob, J is Moment of Inertia of bob about hinge point, L is length of string (from hinge point to center of gravity of bob).

$$mL^{2}\frac{d^{2}\theta}{dt^{2}} + mgL\sin\theta = 0 \qquad \qquad \therefore (J = mL^{2})$$

$$L\frac{d^2\theta}{dt^2} + g\theta = 0$$

For, smaller angular displacement, $\sin \theta \approx \theta$, hence

$$f_n = \frac{1}{2\pi} \sqrt{\frac{g}{L}} \tag{2}$$

PROCEDURE:

- Measure the length of string.
- Knot the string with bob & knot the end of string with horizontal bar.
- Keep steady the system.
- Now simply vibrate the system.
- Note the time for 10 oscillations

GIVEN DATA: -

OBSERVATION TABLE:

Sr. No.	Mass of Bob m (Kg)	Length of Suspension L (m)	Time for 10 oscillations (Average of three observations) (s)
1.			
2.			
3.			
4.			
5.			
6.			
7.			

CALCULATIONS:

$$Error = E = \frac{\left(f_{n(T)} - f_{n(P)}\right)}{f_{n(T)}}$$

RESULT TABLE:

Sr.	Longth L (m)	$f_{n(P)}$ (Practical)	$f_{n(T)}$ (Theoretical)	Error E
No.	Length L (m)	(Hz)	(Hz)	(%)
1.				
2.				
3.				
4.				
5.				
6.				

GRAPH :

Plot a graph of frequency (f_n) Vs Length of string

CONCLUSION:

REMEDIES:

QUESTIONS:

- 1. What is simple pendulum? State the application.
- 2. Define period of oscillation state the parameters on which it depends.
- 3. What is restoring force in simple pendulum?
- 4. What are the limitations so that the string cannot be replaced by spring?

Date:-		Sign:-		Grade:-	
	INDUS INS	TITUTE OF TECH	INOLOGY & ENGINEERING-AHM	EDABAD	

EXPERIMENT NO :- 2

<u>AIM:</u> To study compound pendulum system and calculate radius of gyration of unsymmetrical rod.

APPARTUS: String, weight, stop watch, scale.

ASSUMPTIONS:

- Neglect air resistance and string mass.
- Pendulum oscillates in single plane.

Compound Pendulum

PROCEDURE:

- Take the rotating mass.
- Measure the length of the same.
- Find C.O.G. of mass.
- Hang it without any external mass on fixed point.
- Give little oscillation to the mass.
- Take the readings.

$$\begin{split} \underline{\text{DERIVATION:}} \\ (f_u)_{pr} &= \frac{\text{oscallations}}{\text{tpr}} \\ K_{th} &= \frac{1}{2\sqrt{3}} \\ (f_u)_{th} &= \frac{1}{2\pi} \sqrt{\frac{gl}{L^2 + K^2}} \end{split}$$

GIVEN DATA:-

OBSERVATION TABLE:

Sr. No.	Mass of m (Kg)	Length of Suspension L (m)	Time for 10 oscillations (Average of three observations) (s)
1.			
2.			
3.			
4.			
5.			
6.			
7.			

CALCULATIONS:

$$Error = E = \frac{\left(f_{n(T)} - f_{n(P)}\right)}{f_{n(T)}}$$

RESULT TABLE:

Sr. No.	Length of suspension of rod L (m)	$f_{n(P)}$ (Practical) (Hz)	$f_{n(T)}$ (Theoretical) (Hz)	Error E (%)
1.				

2.		
3.		
4.		
5.		
6.		

GRAPH :

Plot a graph of frequency (f_n) Vs Length of suspension

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:-	Sign:-	Grade:-	

EXPERIMENT NO: - 3

<u>AIM:</u> To study the natural frequency of spring-mass system.

APPARATUS:

One spring, mass, stop watch, stand.

ASSUMPTION:

- Air friction is neglected.
- The vibration of system is completely simple harmonic.
- The mass is of uniform density.
- The displacement value is small.
- The oscillations of system are in single plane.

DERIVATION:

- m =value of mass
- x = displacement of mass and spring

K = stiffness of spring

 Δ =static deflection when mass is hanged to spring

Consider a mass M is suspended at the end of spring for small deflection.

$$(m\ddot{x}) = \sum (External forces)$$

$$+ m\ddot{x} = +mg - K(x + \Delta)$$

$$m\ddot{x} = mg - Kx - K\Delta$$

$$But \dots mg = K\Delta$$

$$\therefore m\ddot{x} = -Kx$$

$$\dddot{x} + \frac{K}{m}x = 0$$

$$comparing \quad with \quad \ddot{x} + \omega 2x = 0 \text{ we get}$$

$$\omega = \sqrt{\frac{K}{m}}$$

$$\therefore f = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$

PROCEDURE:

- Measure the value of mass.
- Suspend the assembly of spring and mass as shown in figure on stand.
- Keep steady the system.
- Now simply vibrate the system.
- Note the time for 10 oscillations

GIVEN DATA:-

OBSERVATION TABLE:

Sr. No.	Mass (Kg)	Length of Suspension L (m)	Time for 10 oscillations (Average of three observations) (s)
1.			
2.			
3.			
4.			
5.			
6.			

CALCULATIONS:

$$Error = E = \frac{\left(f_{n(T)} - f_{n(P)}\right)}{f_{n(T)}}$$

RESULT TABLE:

Sr.	\mathbf{L} on \mathbf{g} th \mathbf{L} (m)	$f_{n(P)}$ (Practical)	$f_{n(T)}$ (Theoretical)	Error <i>E</i>
No.	Lengui L (m)	(Hz)	(Hz)	(%)
1.				
2.				
3.				
4.				
5.				
6.				

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:-		Sign:-		Grade:-	
--------	--	--------	--	---------	--

EXPERIMENT NO :-4

<u>AIM:</u> To study about natural frequency of lateral vibration system.

APPARATUS: Rod, Masses, Stopwatch, Measuring Tape.

ASSUMPTIONS:

- Air friction is neglected.
- The vibration of system is completely simple harmonic.
- The mass is of uniform density.
- The displacement value is small.
- The oscillations of system are in single plane.

FREE BODY DIAGRAM:

DERIVATION:

According to D Alembert's principle,

 \sum [Inertia force + External forces] = 0

$$\therefore m\ddot{x} + Kx = 0$$
$$\therefore \ddot{x} + \frac{K}{m}x = 0$$

Comparing equation with fundamental equation of simple harmonic motion, we get,

$$\omega_n^2 = \frac{\kappa}{m}$$
 OR $\omega_n = \sqrt{K/m}$, rad/s

$$f_n = \frac{1}{2\pi} \sqrt{\frac{K}{m}}, \text{Hz} \qquad (1)$$

At equilibrium position $mg = K\delta$

So
$$\frac{\kappa}{m} = \frac{g}{\delta}$$
(2)

Substituting the equation (2) in equation (1), we get,

$$f_n = \frac{1}{2\pi} \sqrt{\frac{g}{\delta}}, \text{Hz}$$

PROCEDURE:

- 1. Measure the length of bar.
- 2. Attach the mass at the end of the rod.
- 3. Keep steady the system and note down the value of δ .
- 4. Now vibrate the system.
- 5. Note the time for oscillation.

GIVEN DATA:-

OBSERVATION TABLE:

Sr. No	Length of rod in	Time f	Time for 10 oscillation (sec)		
	suspension (m)	T 1	T 2	T 3	<i>I</i> (sec)
1.					
2.					
3.					
4.					
5.					

CALCULATION:

 δ =deflection of bar.

m= mass attached at end of bar.

$$f_{n(prac)} = \frac{10}{time \quad for \quad 10 \quad oscilation}$$

ERROR % =
$$\frac{f_n(th) - f_n(pr)}{f_n(th)} * 100$$

RESULT TABLE:

Sr.	\mathbf{L} on \mathbf{g} th \mathbf{L} (m)	$f_{n(P)}$ (Practical)	$f_{n(T)}$ (Theoretical)	Error E
No.	Length L (m)	(Hz)	(Hz)	(%)
1				
2				
3				

CONCLUSION:

REMEDIES:

QUESTIONS:-

Date:-		Sign:-		Grade:-	
INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING-AHMEDABAD					

EXPERIMENT NO: - 5

AIM: To study about torsional vibration system

round disc, shaft, measuring tape, stop watch **APPARATUS:**

ASSUMPTION:

- Neglect air resistance.
- Neglect rod weight.
- Oscillation in single plane.
- Neglect the thickness of rod.

SKETCH :-

DERIVATION:

- I= mass moment of inertia
- $K_t =$ torsional stiffness
- θ = angular displacement $I \dot{\theta} = -K_t \theta$ (restoring torque)

 $I\ddot{\theta} + \frac{K_t\theta}{K_t\theta} = 0$ $\ddot{\theta} + \frac{k_t}{I}\theta = 0$

Putting,

 $w_n^2 = \frac{k_t}{I}$

 W_{n} The equation becomes,

INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING-AHMEDABAD

 $\frac{k_t}{I}$

PROCEDURE:

- First of all measure the diameter of the rod and the disc.
- Then oscillate the disc.
- Measure the time required for 10 oscillations with the help of stop watch.
- Now find out the average time required for the oscillations.
- Finally calculate the practical frequency and then compare it with theoretical frequency.

GIVEN DATA:-

OBSERVATION TABLE:

Sr. No.	Mass (Kg)	Length of Suspension L (m)	Time for 10 oscillations (Average of three observations) (s)
1.			
2.			
3.			
4.			
5.			
6.			

CALCULATIONS:

$$f_{th} = \frac{1}{2\pi} \sqrt{\frac{K_t}{l_p}} \text{ Hz}$$

$$K_t = \frac{GJ}{L}$$

$$K_t = \frac{G*\pi*d^4}{32*L}$$

$$I_p = \frac{m*D^2}{8} \frac{kg}{m^2}$$

$$Error = E = \frac{\left(f_{n(T)} - f_{n(P)}\right)}{f_{n(T)}}$$

RESULT TABLE:

Sr.	Longth L (m)	$f_{n(P)}$ (Practical)	$f_{n(T)}$ (Theoretical)	Error E
No.	Length L (III)	(Hz)	(Hz)	(%)
1.				
2.				
3.				
4.				
5.				
6.				

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:-	Sign:-		Grade:-	
--------	--------	--	---------	--

EXPERIMENT No.:- 6

<u>AIM:</u>	To study about free (torsional) damped vibration system.
APPARATUS:	M. S. rod, Disc, Stopwatch, Drum, Measure taps.
ASSUMPTION:	• The straightness of rod

- The straightness of rod.
- Oscillation in one plane.
- Neglect mass of rod.
- Neglect air resistance.
- Neglect viscosity of fluid.
- Gravitational force acting on centre of the disc

SKETCH:

DERIVATION:

PROCEDURE:

- Measure the length of string.
- Oil fill in the drum.
- After give the initial twist at small angle to the circular disc.
- Measure the depth of immersion.
- Note the time for 5 oscillations of disc.

GIVEN DATA:-

OBSERVATION TABLE:

	T 1	T_2	T 3	T 4	T 5	Tavg
Θ_1						
Θ_2						

CALCULATION:

 $\frac{\textbf{GRAPH:}}{\text{Length} \rightarrow \text{Depth of immersion}}$

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:-		Sign:-		Grade:-	
INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING-AHMEDABAD					

EXPERIMENT NO. - 7

<u>AIM:</u> To study the whirling speed of the shaft.

<u>APPARTUS</u>: AC/DC driving motor, speed controller, the caurds, shaft, Tachometer & ruler.

ASSUMPTIONS:

- Assume that shaft being of negligible weight.
- Assume that shaft has uniform cross section area.
- Neglect the air resistance.

First mode whirl.

Second mode whirl

PRCEDURE:

- 1. Choose the required size of the shaft.
- 2. Mount the two fixing ends on the frame to obtain the desired condition.
- 3. The shaft is fixed between two ends.
- 4. The motor is started.
- 5. Motor speed is increased slowly.
- 6. The amplitude of vibrations in lateral direction starts and mode shape is observed.
- 7. The speed is noted down so also the mode shape and mode point.
- 8. To observe second mode shape the speed is increased further.
- 9. The speed and the mode shape is noted down.
- 10. The procedure is followed for different shafts and different end conditions.

OBSERVATION TABLE:

Sr. No.	Speed(rpm)	Amplitude	Length of shaft

CALCULATION:

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{\delta}}$$

 $m\omega^2r=m\omega^2c=magnitude$

RESULT TABLE:

Sr. No.	Theoretical frequency	Practical frequency	Error (%)

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:- Sign:- Grade:-

EXPERIMENT NO: - 8

AIM: TO STUDY THE FORCE DAMPED VIBRATION SYSTEM.

APPRATUS: Cantilever beam, spring, motor, tachometer, recorder, damper.

ASSUMPTIONS:

- 1) System is one degree of freedom.
- 2) Resistance offered by the air to the vibration system is negligible.
- 3) System foundation is totally rigid.
- 4) Material of spring is homogenous & isentropic.

Figure 1. Setup of the experiment

THEORY:

M=Mass of the system.

m₀=Rotating unbalance mass.

e=Eccentricity of unbalanced mass.

F=mew²

The cantilever beam subjected to the force at the free end, exerted by the unbalanced rotating mass. For static deflection

$$\delta = \int_{0}^{1} \frac{\partial}{\partial P} \left[\frac{M^{2} dx}{2EI} \right]$$
$$= \int_{0}^{1} \frac{2M}{2EI} \frac{\partial M}{\partial P} dx$$
$$= \frac{1}{EI} \int_{0}^{1} F_{x} x dx$$
$$= \frac{F}{EI} \left[\frac{x^{3}}{3} \right]_{0}^{1}$$
$$\delta = \frac{Fl^{3}}{3EI}$$
$$\omega_{n} = \sqrt{\frac{g}{\delta}}$$
$$\therefore \omega_{n} = \sqrt{\frac{K}{M}} \Longrightarrow K = m\omega^{2}$$

The governing equation of force vibration system subjected to force due to unbalance rotating mass is given as below.

$$M\frac{d^2x}{dt^2} + c\frac{dx}{dt} + Kx = m_o e\omega^2 \sin \omega t$$

And solution of this equation is given by

$$x = \frac{m_o e \omega^2 / K}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}$$

But,

$$m_0 e \omega^2 / K$$

$$\therefore \frac{x}{\delta} = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}$$

The above term is also called as magnification factor.

By plotting the graph using the experiment observation of magnification factor v_s frequency ratio for different of damping factor get the resonance frequency practically. And verify that resonance frequency of the system is nearly natural frequency of system.

PROCEDURE:

- 1. Prepare the set up according to the fig.
- 2. Measure the various parameter of instrument which is used in system.
- 3. Provide the motor to the cantilever beam & supported at the free end with spring, find the deflection of beam, without providing the damper.
- 4. Using state deflection find the natural frequency.
- 5. Provide the force excitation using motor for a constant speed take the amplitude reading for different damping factor. Vary the damping factor using adjustable screw provided over the damper.
- Take the reading for different speed & drew the graph of magnification factor v/s frequency ratio.

CONCLUSION:

EXPERIMENT NO: - 9

AIM:- To study frequency of simple pendulum with considering mass of rod

APPARATUS:

- 1. A steel bar having no. of holes along its length
- 2. Steel rule
- 3. Stopwatch
- 4. Stand

ASSUMPTION:

- Air friction is neglected.
- The vibration of system is completely simple harmonic.
- Resistance at hinge neglected.
- The displacement angle is small.
- Motion is only oscillator

SKETCH:

DERIVATION:

 \overline{L} = length of steel bar

M = mass of pendulum

X = Amplitude

 θ = Angle of deflection

J = polar moment of inertia of pendulum

d=distance from pivot to the centre of mass of pendulum

Consider a rigid steel bar of mass M which is hinge supported by the knife-edge of the stand at the hole nearest to one end of the bar.

$$\begin{split} I \ddot{\theta} &= -M \, g \, d \, \sin \theta \\ I \ddot{\theta} &= -M \, g \, d \, \theta. \\ \omega &= \sqrt{\frac{M \, g \, d}{I}}. \\ \omega_n \, \sqrt{\frac{M g \, d}{M \, (k^2 + l^2)}} \\ \omega_n &= \sqrt{\frac{g \, d}{(k^2 + l^2)}} \\ f_n &= \frac{1}{2\Pi} \, \sqrt{\frac{g \, d}{(k^2 + l^2)}} \end{split}$$

PROCEDURE:

- Measure the length of the bar.
- Support the pendulum on the knife-edge at the hole nearest to one end of the bar.
- Keep steady the system.
- Now simply vibrate the system.
- Note the time for 10 oscillations

GIVEN DATA:

OBSERVATION TABLE:

Sr.	Length of suspension	Time f	or 10 oscillatio	on (sec)	Average
No.	<i>h</i> (m)	T 1	T ₂	T 3	T(sec)
1.					
2.					
3.					
4.					

CALCULATION:

$$\omega^2 = \frac{gh}{(k^2 + l^2)}$$

RESULT TABLE:

Sr.	Length (m)	Mass (Kg)	fn (practical)	fn (theoretical)
No.			Hz	Hz
1.				
2.				
3.				
4.				

GRAPH:

Plot a graph of frequency (f_n) Vs Length.

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:-	Sign:-		Grade:-	
--------	--------	--	---------	--

EXPERIMENT NO:- 10

<u>AIM:</u> To study about the frequency of the roller in the circular surface.

<u>APPARTUS</u>:

- Hollow circular cross section body,
- Stop watch, Scale, String,
- Circular rod of different material.

ASSUMPTIONS:

- No slip,
- Mass concentrated at the centre,
- Axis of roller in same plane as the axis of cylinder,
- Simple harmonic motion,
- Neglect air resistance,

SKETCH:

PROCEDURE:

- 1. First of all assure that the hollow cylinder cross section body which we use is completely half circle means radius of any point from the
- 2. Centre point is same.
- 3. Then roll the roller on the hollow cylinder with different material of
- 4. Roller.
- 5. Measure the time for different oscillation and different angle of
- 6. Rotation.
- 7. Then find the average time and find theoretical and practical
- 8. Frequency and error from equation.

GIVEN DATA:-

OBSERVATION TABLE:

Sr.	Material of the	Radius of Roller		Tim	e (s)		Frequencies
No.	roller	<i>r</i> (m)	T1	T2	T3	Tavg	(Hz)
1.	Wooden						
2.	Aluminum						
3.							

CALCULATION:

P.E=mg(R-r)(1-cos θ) K.E=1/2m(R-r)² θ ^{·2}+1/4mr²($\frac{R}{r}$ -1)² θ ^{·2} Total energy method = P.E+ K.E Differentiate this equation = 2· ³/₄m(R-r)² θ θ "+mg(R-r) sin θ θ ' =0 ³/₂(R-r) θ "+g θ =0 $\omega = \sqrt{\frac{2g}{3(R-r)}} rad/sec$ $\mathcal{F}th = \frac{2\pi}{\omega}$ $\mathcal{F}pre = \frac{Oscillation}{T avg}$

RESULT TABLE:

Sr. No.	Material of the roller	Radius of Roller <i>r</i> (m)	$f_{n(P)}$ (Practical) (Hz)	$f_{n(T)}$ (Theoretical) (Hz)	Error E (%)
1.					
2.					

3.			
4.			

CONCLUSION:

REMEDIES:

QUESTIONS:

Date:-	Sign:-	Grade:-	

EXPERIMENT NO.:- 11

AIM: - To study frequency of U-tube filled with liquid.

APPARTUS: U-tube manometer, string, tape, stopwatch.

ASSUMPTION:

- Neglect air resistance.
- Human error.
- Ideal form of liquid.
- Viscosity of liquid.

DERIVATION: -

- L = length of the fluid in manometer
- x = distance of displacement
- $h=x+x=2^{\ast}x$
- ρ = density of fluid
- A = cross-sectional area of the tube
- m = mass of the fluid = $\rho * A * L$
- $m_1 = \text{mass of displaced fluid} = \rho^* A^* (2x)$

$$\mathbf{F} = \boldsymbol{m_1}^* \mathbf{g}$$

By using Equilibrium method, Inertia force + External force = 0 $m\ddot{x} + F = 0$ $m\ddot{x} + m_1g = 0$ $\rho AL\ddot{x} + \rho A(2x)g = 0$

$$\ddot{x} + \left(\frac{2g}{L}\right)x = 0$$

By comparing equation with equation of simple harmonic motion,

We get, $\omega_n^2 = \frac{2g}{L}$

$$\begin{split} \omega_n &= \sqrt{2g/L} \text{, rad/s} \\ (f_n)_{TH} &= \frac{1}{2\pi} \sqrt{\frac{2g}{L}} \text{, Hz} \\ (f_n)_{PR} &= oscillation/t_{avg} \text{, Hz} \end{split}$$

PROCEDURE: -

- Keep steady the system
- Measure length of steady fluid in manometer
- Now simply vibrate the system
- Note the time for oscillations

GIVEN DATA: -

OBSERVATION TABLE: -

L	Oscillation	<i>t</i> ₁	<i>t</i> ₂	t ₃	t_4	t ₅	t _{avg}

CALCULATION: -

RESULT TABLE: -

Sr.	Length (m)	Mass (Kg)	f _n (practical)	f _n (theoretical)
No.			Hz	Hz
1.				
2.				
3.				

SEM - VII (Mechanical Vibrations – ME070	5)
--	----

4.		

CONCLUSION: -

REMENDIES: -

QUESTIONS:

Date:-		Sign:-		Grade:-					
INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING-AHMEDABAD									