
MASS TRANSFER 



Molecular Mass Transfer
• Molecular diffusion
• Mass transfer law components:

– Molecular concentration:

– Mole fraction:
                          (liquids,solids) ,                         

(gases) c
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    For gases,

– Velocity:
       mass average velocity,

       
       molar average velocity,

       velocity of a particular species relative to 
mass/molar average is

       the diffusion velocity.
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– Flux:
    A vector quantity denoting amount of a particular 

species that passes per given time through a unit 
area normal to the vector,

    given by Fick’s First Law, for basic molecular 
diffusion

    or, in the z-direction,

    For a general relation in a non-isothermal, isobaric 
system,
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– Since mass is transferred by two 
means:
• concentration differences
• and convection differences from density 

differences
• For binary system with constant Vz,

• Thus,

• Rearranging to
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• As the total velocity,

• Or

• Which substituted, becomes
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• Defining molar flux, N as flux relative to a 
fixed z,

• And finally,

• Or generalized,
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• Related molecular mass transfer
– Defined in terms of chemical 

potential:

– Nernst-Einstein relation

dz
d

RT
D

dz
duVv cABc

AzzA
mm

-==-,

dz
d

RT
DcVvcJ cAB

AzzAAzA
m

-=-= )( ,,



Diffusion Coefficient
• Fick’s law proportionality/constant

• Similar to kinematic viscosity,  , 
and thermal diffusivity, 
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• Gas mass diffusivity
– Based on Kinetic Gas Theory

–    = mean free path length, u = 
mean speed

– Hirschfelder’s equation:
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– Lennard-Jones parameters   and   
from tables, or from empirical 
relations

– for binary systems, (non-polar,non-
reacting)

– Extrapolation of diffusivity up to 25 
atmospheres
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Binary gas-phase Lennard-
Jones “collisional integral”







– With no reliable   or  , we can use 
the Fuller correlation,

– For binary gas with polar compounds, 
we calculate   by
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and

– For gas mixtures with several 
components,

– with
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• Liquid mass diffusivity
– No rigorous theories
– Diffusion as molecules or ions
– Eyring theory
– Hydrodynamic theory

• Stokes-Einstein equation

– Equating both theories, we get Wilke-
Chang eq.
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– For infinite dilution of non-electrolytes 
in water, W-C is simplified to Hayduk-
Laudie eq.

– Scheibel’s equation eliminates  B,
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– As diffusivity changes with 
temperature, extrapolation of DAB is 
by

– For diffusion of univalent salt in dilute 
solution, we use the Nernst equation
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• Pore diffusivity
– Diffusion of molecules within pores of 

porous solids
– Knudsen diffusion for gases in 

cylindrical pores
• Pore diameter smaller than mean free 

path, and density of gas is low
• Knudsen number

• From Kinetic Theory of Gases,
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• But if Kn >1, then

• If both Knudsen and molecular diffusion 
exist, then

• with

• For non-cylindrical pores, we estimate
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Example 6









Types of porous diffusion.  Shaded areas represent nonporous solids



– Hindered diffusion for solute in 
solvent-filled pores
• A general model is

• F1 and F2 are correction factors, function 
of pore diameter,

• F1 is the stearic partition coefficient
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• F2 is the hydrodynamic hindrance factor, 
one equation is by Renkin,
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Example 7









Convective Mass Transfer
• Mass transfer between moving 

fluid with surface or another fluid
• Forced convection
• Free/natural convection
• Rate equation analogy to Newton’s 

cooling equation
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Example 8





Differential Equations
• Conservation of mass in a control 

volume:

• Or,
        in – out + accumulation – 

reaction = 0
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• For in – out,
– in x-dir,

– in y-dir,

– in z-dir,

• For accumulation,
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• For reaction at rate rA,

• Summing the terms and divide by 
 x y z,

– with control volume approaching 0,
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• We have the continuity equation 
for component A, written as 
general form:

• For binary system,

• but
• and
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• So by conservation of mass,

• Written as substantial derivative,

– For species A,
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• In molar terms,

– For the mixture,

– And for stoichiometric reaction,
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