Gas Dynamics, UNIT 2
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What will we treat duaring this
course ? :

» Basic equations of @Edyn:
- Equation of motion"""
- Mass conservation™

- Equation of state

e Fundamental processes ina gas
- Steady Flows

- Self-gravitating gas

- Wave phenomena

- Shocks and Explosions

- Instabilities: Jeans’ Instability



Applicati
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ot It
Isothermal-sphere &
Glebular Clusters

r : *

-

Special flows and drag forces

Solar & Stellar Winds

Sound waves and surface waves on water

Shocks

Point Explosions,
Blast waves &
Supernova Remnant




STRUCTURE




Classical Mechanics vs. Fluid
Mechanics

Single-particle (classical)
Mechanics

Fluid Mechanics

Deals with single particles
with a fixed mass

Deals with a continuum
with a variable mass-density

Calculates a single particle
trajectory

Calculates a collection of
flow lines (flow field) in space

Uses a position vector and
velocity vector

Uses a fields :
Mass density, velocity field....

Deals only with externally
applied forces (e.g. gravity,
friction etc)

Deals with internal AND
external forces

Is formally linear (so: there is a
superposition principle for
solutions)

Is intrinsically non-linear
No superposition principle in
general!




Basic Definitions

Small volume AV

Fluid description

Molecular description



Mass, mass-density and velocity

Small volume AV v Mass density -
o o Y .
Am
plx, t) = hm
AV—0
Fluid description AV

Molecular description

Mass Am in volume T, in AV
AV
Y. myV,
: V — L,in AV
Mgan vglouty Vix, = Am,
t) Is defined as:




Equation of Motion: from Newton to
Navier-Stokes/Euler

dV, dV
=f

1 — F, —
dt ﬁgé:oz g P dt

/'

Single-particle dynamics Fluid dynamics



Equation of Motion: from Newton to
Navier-Stokes/Euler

v
P4t

=F

You have to work with a
velocity field that depend

on position and time!

V:(‘/X)V;fa‘/Z):V(mat)

Fluid dynamics



Derivatives, derivatives...

Eulerian change: 5Q=Q(z,t+At) —Qz, t) ~ %_? At



Derivatives, derivatives...

Eulerian change: < _ £ 2 AR — N~ 99 A
evaluated at a °Q=0Q(@, t+A4t)-Q, i ot

fixed position

Lagrangian changex, _ A 44 AF) — N~ @At
evaluated at a Q=Q@+iz, t+Al) =0, 1) dt
shifting position /

Shift along
streamline: Az =V At




Comoving derivative d/dt

= Qit+At, z+Az)—Qt, z)

Q)

Q

_ [9@
= EHV-V)Q]A?&

(dQ

= —) At.

\ dt







Notation: working with the

gradient operator

Gradient operator is a V = (aa , ; , ;)
‘machine’ that converts i
a scalar into a vector:
For scalar Q(x , t):
oQ 8@ 5 8@ 5
VO= g, & g, %15, ¢

Related operators: Agp - U = AxQ+AyQ+AZQ
turn scalar into scalar, ox oy 0z
vector into vector....

s, s, s,

V. ghat
V= Vigo +Vig, + Vg,



GRADIENT OPERATOR AND

VECTOR ANALYSIS (See Appendix

scalar into vector:

vector into scalar:

vector into vector:

tensor into vector:

Useful relations:

g =-N =+

N Yg =-4pGr

N B=2j
C

N VI =- f

09 "B|=0



Program for uncovering the basic

equations:

1. Define the fluid acceleration and
formulate the equation of motion
by analogy with single particle
dynamics;

2. ldentify the forces, such as
pressure force;

3. Find equations that describe the
response of the other fluid properties




Equation of motion for a fluid:

dV oV

P =P 5 +(V-V)VI=Ff




Equation of motion for a fluid:

dV oV

P =P 5 +(V-V)VI=Ff

The acceleration of a fluid element
IS defined as:




Equation of motion for a fluid:

dV 8V

This equation states:

mass density X acceleration = force|density

note: GENERALLY THERE IS NO
FIXED MASS IN FLUID MECHANICS!




Equation of motion for a fluid:

Non-linear term!

Makes it much more difficult
To find ‘simple’ solutions.

Prize you pay for working with
a velocity-field

V=(k V. V)=V, i




Equation of motion for a fluid:

p%z [a—V—F(V-V)V]

ot =7

—

Force-density

Non-linear term!

This force densitycan

be:

 internal:

- pressure force

- viscosity (friction)

“sglegraylty

- For instance: external
gravitational force

Makes it much more difficult
To find ‘simple’ solutions.

Prize you pay for working with
a velocity-field

V=(k V. V)=V, i




Pressure force and thermal

motions

Individual particle:

Split velocities into

the | vo=V(x,t)+o.(x,t).
average velocity

V(x, t), Average properties of random velocity o
Isotropically
distributed 02 =02 =02=152,

deviation from
average, the
random velocity: Og0y = 040, =0y0, =---=0.

and

/e 1=\



DISTRIBUTION OF RANDOM VELOCITIES ALONG
THE THREE COORDINATE AXES

A # particles A # particles A # particles
/4 N
/ \
\
— — — /  — —
- o
0 Oy 0 Oy

1sotropic case: three distributions identical

anisotropic case: three distributions differ



Mean velocity V V=0

Galilei-
transformation

Molecular description



Acceleration of particle —

dwv, ov,

@ - o T War Vv
oV o
- WATD) (V16 9) (V40
ov do,
= S (VO R (V- V)o(@s - V) o,
t:)tal derivat;:re mean ﬂox:v lineal:rin (o ’ quadratic in &




Acceleration of particle — (Il)

Effect of average over many particles in small volume:

dv Ov

— = —+(v-V)v
@~ etV
ov o
= St VeV (S (Vev))ol @Yo
t;)tal derivative mean ﬂOVJV Vanishe; T =0 ” | |remains: quadratic in O




Average equation of motion:

o (G +vewV)= £ (e Ve

mean ext. force ‘

|

SR 00
or isotropic fluid: p(c-V)o)=V = VP

3



Some tensor algebra:

Vector A=Ae,=Ae; +Aes+Aes=| A,

Three notations for the same animal!



Some tensor algebra:
the divergence of a vector in cartesian

(x, v, z) coordinates

Vector A=Ae,=Ae; +Aes+Aes=| A,

0A; 0A, O0A, OA,

Scalar Vo= Ox; Ox T oy T 0z




Rank 2 Tensor

Rank 2
tensor I'=1je,®ej==|1y, 1, 1,

\Tz:c sz 1, )



Rank 2 Tensor and Tensor

Divergence

Rank 2

tensor T T'=Tje®ej==| 1y Ly 1y

\Tza: sz Tzz )

(3Txx+8Tym+8sz\

T
Vector V. .-T= ( “) e; = 3Twy £ af,'y 4+ 3sz

8T 8ng 0T,
\ Oz T T oz )



Special case:

Dyadic Tensor = Direct Product of two

Vectors

AQRB=ABeRe;=

( A,B, A,B, A,B,)

A,B, A,B, A,B,

\ A.B, A,B, A,B,

V.-(AQB)=(V-A) B+(A-V)B

This is the product rule for differentiation!




Application: Pressure Force (I)

Tensor
divergence: (po:V)o=V . (po®oc)— (V. (po)) o

Isotropy of the
random
velocities:

Second term = scalar x vector!

This must vanish upon averaging!!



Application: Pressure Force (ll)

Isotropy of the
random velocitie

f12 . e
1 s0° when ¢ = j
= 1 3% _
0;0; = 30 5z]—<

|0 wheni#j

bO

Q| =
|

» poQRQo=p| 0

Diagonal Pressure Tensar 0 o




Pressure force, conclusion:

)@ V)0) =V (po@a) =V (| = VP

Equation of motion for frictionless (‘ideal’) fluid:

P (%—‘; +(V . V)V) = —V P+other (external) forces




Summary:.

We know how to interpret the time-derivative d/di
« We know what the equation of motion looks like;

e We know where the pressure force comes from
(thermal motions), and how it looks: f= -0 P,

e We'still'need_

- A way to link the pressure to density and
temperature: P = P(as, T);

- A way to calculate how the density &7 of the
fluid changes.



