e sl S A B e L

Hasg
Oats Structures 8-2 ‘\'ﬂ‘g

EXH The Symbol Table

* Definition

The symbol table is defined as the set of Name and Value palrsj

JER—

For example

Name | Value

a 10
b 0
¢ 0

= IS T O N S =

Fig. 8.1.1 Symbol table storing 3 identifiers

e Use of Symbol Table

The symbol tables are typically used in compilers. Basically compiler is a program
which scans the application program (for instance : your C program) and produces
machine code. During this scan compiler stores the identifiers of that application
program in the symbol table. These identifiers are stored in the form of name, value
address, type. Here the name represents the name of identifier, value represents the
value stored in an identifier, the address represents memory location of that identifier
and type represents the data type of identifier. Thus compiler can keep track of all the
identifiers with all the necessary information.

* Types of Symbol Tables & Static symbol table
There are two types of symbol tables.

The static symbol table stores the
fixed amount of information whereas
dynamic symbol table stores the

dynamic information. # Dynamic symbol table

These symbol tables are normally
used to implement static and dynamic data structures. Hence there can be static tree

.,t:ables or dynamic tree tables, which are implemented using static and dynamic symbol
tables respectively.

Examples of static symbol table : Optimal Binary Search Tree (OBST), Huffman's
coding can be implemented using static symbol table.

TECHNICAL PUBLICATIONS™ An up thrust for knowledge

R Sedlleu witl udlimScse

8

ires —2
o ¢ dynamic symbol tab]e . An

e—— Haskhj
2 AV | —Fasting
19 mp + tree g im |
h o able: ing Symbol T Plemented ygin | :
11“'1 1 {ages of using Symbol Tableg % dynamic
T dval some advantages -
A o some ages of ygj
B I,wim’a .mL. these advantages are ‘l“g Symbo tableg, A
fall nﬂ‘i“lc" Televang compij © A8 8ymbol taple i5 normaj|
aa (U RPN d . erg - ma
Pogqin silation of source prog
b o Coﬂ‘l- brﬂn]’ fast l
‘4.4 1‘\ 0
| mur'-lf]c due to use of symbol table, °k Up for the equired identif
o . ldentifiepg ;
‘OF'I : ' er’ ‘q
[ntime allocation for the identifierg jq Manage
\ - m
) o of SYmbol table allows to handle Certain fgsyeq |- & symbol taples,
L 8

B it declarations.

‘m}erations on Symbol Table
i b

'0110“'ing operations cait be p erformed on symbol table -

Fmsertion of an item in the symbol] tap]e.
1

. pletion of any item from the symbol tab]e.

| . Gearching of desired item from symbol table,

| ept of Hashing
]mconc P

e e

} , Hash Table is a data structure used for storing and

gt e e ANd tetrieving data very quickly.
| " ion of G5 T the hash table is based on e ke valu. HoncsSoe e
| tetash table is associated with some key. For example for storing an employee
' O in the hash table the employee D will work asakey.
e ' L‘slfg the hash key the required piece of data can be searched in the hash table
r by few or more key comparisons. The searching time is then dependant upon the
2 size of the hash table.

+ The effective representation of dictionary can be done using hash table. We can
place the dictionary entries (key and value pair) in the hash table using hash
function,

\\‘ .

L Define Hashin GIU = Summec13. Marto

m\ - | 14, Marks 7
i . .12, 13, Summeni4, Mat
Hashing Functions Winte

ata in the hash table. Hence

(. o the d X
Hash function is a function which is used to P = 1 from the hash table. [hus

3 e can yse the same hash function to rCtrievebtlm “
. h function is used to implem_ent lh(_‘ hash _ta e.

. . . as ke .
wmed by the hash function 15 called hash key

,.

- - <ot fr knowledge . . lﬁf
ocdllried widlil ud C

Data Structures 6-4 \H“*?

For example : Consider that we want place some employee records in the hash by,
The record of employee is placed with the help of key : employee ID. The €Mploye, f[;
is a 7 digit number for placing the record in the hash table. To plac.e.the record, the ;-
7 digit number is converted into 3 digits by taking only last three digits of the key.

If the key is 496700 it can be stored at ot position. The second key is 8421002' e
record of this key is placed at ond position in the array. N

Hence the hash function will be -
H(key)=key%1000.

Where key%1000 is a hash function and key obtained by hash function is calleq hash
key. The hash table will be -

Employee ID Record
0 4968000
1
2 7421002
396 4618396
397 4957397
399 7886399
998 7886998
999 0001999

e Bucket and Home bucket : The hash function H
dictionary entries in the hash table, E
bucket.

The function H(ke

key. |

(key) is used to map severdl
ach position of the hash table is calld

y) is home bucket for the dictionary with pair whose value ¥

—'—_—-——-_; ____—’/
TECHNICAL PUBLICATIONS™. AN up thrust for knowledge

Scdilieu witi udiirSce

8-56
Hashing

7 '/’P/
- function -
i G wpes Of hash functions that ar
g f"{ﬂ riots T at are used to place the record in the

blc o
. _The hash function d
o M meﬂmd . The epends upon the remainder of division.

, jon ,
key pm,nﬂ ~ givisor 18 table length. For example :-

. the . .
i) —, 89, 37 is to be laced in th :
the ¥ 54, 72, P e hash table and if the table size is 10
Y r‘\"‘
gtable siz)
‘,‘\\‘n\.o l
ash 7}4‘«' ' AR
3 T
510
4] 54
5
2% 10
6
10 7| 37
8
9] 89
yid square : In the mid square method, the key is squared and the middle or mid
'qm of the result is used as the index.
7 . :
e key 1S @ string, it has to be preprocessed to produce a number.

sder that if we want to place a record 3111 then

31112 = 9678321
i the hash table of size 1000
111) = 783 (the middle 3 digits)

i Multiplicative hash function :

wlie. The formula for computing the hash key is -
where p is integer constant and A is

The given record is multiplied by some constant

%ﬂey)=ﬂoor(p *(fractional part of key*A))
“at real number.

Do

ral "d Knuth suggested to use constant A =0.61803398987
ed lley107 ang p=50 then

Hikey) = floor(50%(107+0.61803398987)

= floor(3306.4818458045)
: = 3306
19306 Jocgti -
o ocation in the hash table the record 107 will be placed.
et
rerimiunal i e ATIONS - An up thrust for knowledge

Sudilieu witll udinNSc:

H.
Dats Stnrctures 8-6 W‘u-.;

—

: ¢ 1sin .
4. Digit folding : The key is divided into sclsu'lrntt}:1 P;f:jc and using some Simpy,
. as .
operation these parts are combined to produce the y
For example, consider a record 12365412 then it is divided into separate parts 5 I

654 12 and these are added together
H(key)

123+654+12
= 789

The record will be placed at location 789 in the hash table.

5. Digit analysis : The digit analysis is used in a situation when all the identifier a
known in advance. We first transform the identifiers into numbers using som
radix, r. Then we examine the digits of each identifier. Some digits having Mogt
skewed distributions are deleted. This deleting of digits is continued ung) the
number of remaining digits is small enough to give an address in the range of the
hash table. Then these digits are used to calculate the hash address.

1. What do you mean by hashing ? What are various hash functions ? Explain each one in brief.

GTU : Dec.-10, Marks 7
2. Explain different Hash function methods. ' (GTU : Winter-12; Marks 7 |

3. What do you mean by Hashing ? Explain any FOUR hashing techniques.

GTU : Winter-13, Summer-14, Marks 7

m Collision

Definition

: The situation i ‘ o S !
ion_in_which_the hash_ function returns the same_hashkey(home

bucket) for_more..than.one.record Is_called collision and two same_hash keys._returned fr.
different records. is.called-synonym:= TERTL R Y |

Similarly when there is no room for a nNew pair in the hash table then such 2
situation is called overflow. Sometimes when we handle collision it may lead
overflow conditions. Collision and overflow show the poor hash functions.

For example :

Consider a hash function.
- H(key) = recordkey%10 having the hash table of size 10.
The recordkeys to be placed are

131, 44, 43, 78, 19, 36, 57 and 77

—-——_____._-_ /
TECHNICAL PUBLICATIONS". An up thrust for knowledge

Sudlleu witll udliiScq

Tere are two methods for detectin

sbeld Hashing

| s"'ff/ 0
4 s
2
3| 43
4 4
5
6| 36
7| 57
8| 78
9| 19
Jace 77 in the hash table then we get the hash key to be 7 and at

L we try 1° F:ecordkey 57 is place. This situation is called collision. From the
f,'alrfad)' "hef r next vacant passion at subsequent indices 8,39 then we find that
i we Jook pc;ace 77 in the hash table. This situation is called overflow.

2 to
0 1000 .
| tics of Good Hashing Function -
nls .
: 1d be simple to compute.

- function shou | - |
.mehash llisions should be less while placing the record in the hash' table
: umber of Cl(l)is'on should occur. Such a function is called perfect hash function.

0 GOEES i i istributed

Hﬁﬂ)ﬁm tions should produce such a keys(buckets) which will get distr
‘Hash func

piformly over an array. ' ' Thus the hash
Te hash function should depend upon every bit of the key
tine

: : e,
inction that simply extracts the portion of 2 key is not suitable

C | ‘ 1 7
i : -11,/12, Summer-13. Marks
ﬂ ollision Resolution echniques GTU : May-1

1 techniques. Such a
Tulision occurs then it should be handled by applying some echniq
ique is called collision handling technique.

llisions an in the hash table :
g o

d overflows

| Chaining

VIIOPen addressing (linear prob'mg)

" more difficult collision handling techniques are =

adratic probing.

.lDoub]e ha Shing

P

A7)
g

s

i

Scanned with CamSc:

Hans.
Data Structures -8 anhf'\'?

IEEXR Chaining

In collision handling method chaining is a conccp' tained for colliding dut
field with data i.e. chain. A separate chain table is maintaine g data, Whep

£y ‘i 3 bucket.
collision occurs then a linked list(chain) is maintained at the home

t which introduces an addi“On,ﬂ

For example :
Consider the keys to be placed in their home buckets. are

131, 3,4, 21, 61, 24,7, 97, 8, 9
Then we will apply a hash function as

H(key) = key%D
where D is the size of table. The hash table will be -
Here D = 10.

NULL

o

~+-[131] }—-{21T }—={67 [NULL]

—_

NULL

~
1141 F—={24]NuLL]

L1 F—={ 97 [NUL]
e Inui
{9 TnuLr]

Fig. 8.5.1 Chaining

A chain is maintained for colliding elements. For instace 131 has a home bucket (key)

1. Similarly keys 21 and 61 demand for home bucket 1. Hence a chain is maintained at
index 1. Similarly the chain at index 4 and 7 is maintained.

© o0 N OO O B~ W N

X373 Open Addressing-Linear Probing

This is the easiest method of handling collision, When collision occurs i.e. when twe
records demand for the same home bucket in the hash table then collision can be solved
by placing the second record linearly down whenever the empty bucketlis found. When
use linear probing(open addressing), the hash table js represented as a one-dimensiond!
array with indices that range from (0 the desired table size!

. Before inserting any elements into this table, we mugt initialize thehtable to represent e

situation where all slots are empty, This allows us to detect overflows and collisio™
when we insert elemenls into the table, Thep usin "
element can be inserled into the hash table.

—_—

TECHNICAL PUBLICATIONS". An up thrust for knowledge

g some suitable hash function the

Sedllieu witl udlirsSce

/‘.——_—_MM—-—- -
r[ﬂ“' ’/ “q—.—_-‘h'—“—————‘.._

fdh /

Haah/rrq

ol'

[
™t followmg keys are to be inserted in fhe py

T.ﬁf 11' ash table,
w9 1 5, 31, 61,9, 29
L o} r .
o 4 e wl” put the following keys in the hash table,
ially”
il
b 4' S,
-l ision hash function. That
! il use Div means the keys are placed using the
e
Afﬁf"']a (Le)’) = key%tablesize
- HI
H(key) = keyo/olo
Jance the element 131 can be placed at
] rm_
" ey) = 131%10
=1
e 1 will be the home bucket for 131. Continuing in this fashion we will place 4, 8
7
: Index| Key
0 NULL
1 131
2 NULL
3 NULL
4 4
5 NULL
6 NULL
| 7 7
9 NULL

- Now
f ¢ next key 6 be inserted is 21. According to the hash function
| H(key)

, = 21%10

| (key) =1

by ' |
fhe 1 ‘

flscolllsl Ndex 1 location is already occupied by 131 i.e. collision occurs. To resolve

ly

‘*Ulemem € will linearly move down and at the next empty location we will prob

. Th
| €refore 21 will be placed at the index 2. If the next element is 5 then we
L TECHNICAL PUBLICATIONS" - An up thrust for knowledge

Sudlleu witll udinSc:

8-10)
I Hy
— 'lh!‘,,l]q

Data Stnuchires el |

5 as index 5 and this buckel is emply so we wj, .
ut [

get the home bucket for

clement 5 at index 5.

Index| Key

0 NULL

| 21
NULL
| 4

5
NULL
7
NULL

NULL

—

=T - - T = N S N " I)

After placing record keys 31, 61 the hash table will be

Index| Key

0 [NULL
131

—

=R RS N - S N - SV)
v

NULL

fi T;e ;eﬁ tecorchey that comes is' 9. According to decision hash function it demands
.or e o.me bucket 9. Hence we will place 9 at index 9. Now the next final recordkey
is 29 and it hashes a key 9. But home bucket 9 is already occupied. And there is no ned
empty bucket as the table size is limited to index 9. The overflow occurs. To Lh;mdle it

we move back to bucket is t ; .
O o et 0 and is the location over there is empty 29 will be placed at

Problem with linear probing

One major problem with li P : '
I i 'hiIc o b ckw“? hnea.r probing is primary clustering. Primary clustering is
P a block of data is formed in the hash table when collision is resolved

TECHNIC. ™
AL PUBLICATIONS". An up thrust for knowledge

Scdllieu witll udliiSc:

/&

ures
:m! Hashing
am le :
0
»
0% 10=9 .29 | fclusteris formed
3% 10 =8 2| 8
U]
39 %10 =9]
- h_‘_‘_—-—.
2 %10 =9 :
‘-_‘—-—-
§% 10 = 8 5 T r rest of the table is empty
6
7] .
8] 18
91 19

This clustering problem can be solved by quadratic probing.

Fﬂil!ttl***i********
Program to create hash table and handle the collision using linear probing. In this
fogram hash function is (number %10)

mﬂtllrtt*i*************************************i**i*****ii*/
frcude<stdio.h >

ficide<conio.h >

fuhide <stdlib.h >
Fifne MAX 10
['Td Main()

“aMAX) num key i
G ang,

mqeate(int);

¥id 1
ﬁm]?;ea’-f’mb(int [],int,int),display(int []);
mﬂtf "' i . "
},,ﬁt(or}ic(ﬂhsion Handling By Linear Probing");
s [y, AXii+ +)
43 '
[

|

pril]tf T
3"-&:1{((”9\(“ ?nter T'}'le Number");
:;hcfeat oum),

I e(nu f* *

bar m);/*returns hash key —y
I near probing
.Drl"”("\nOb(a'key'nUm):/ *collision handled by linear P

° U Wish To Continue?(y/n)"):

AL
1/* i ' P
@hash table*/ e
).——'-'—-_-_--—'—'_._'_—.--r‘_-“_“‘—_._. . i o - ' Y o
- ' Scdilieu willl udlioCe

-r‘.-‘PNﬂ’S
I"?#r 3158’/
:p yl Y(mt al L
; ash Table 15 \n");
:/r;iw;;:;l.a[l])-

i aber2l

;Tﬂ” bfr\; continue?(Y/ n)y

rﬁmsn um_ber3
?"3:;;"0 continue?(vf n)y
U Thg Numbeﬂ'

?Wiﬁh To continue?(y/n)y
" er

‘;;?:h To Continue?(y/n)y
| oo Number®

2 iish TO Contmue?(y/ n)y
The Number9

(JWish To Continue?(y/n)y
2 The Number18

(7iish To Continue?(y/n)n

gﬁ;shTable is...

|8

Output

g Chaining without Replacement

& colls :
i ;0? }_‘andhng method chaining is a €O
i oc: a ie. chain. A separate chain table i
u
1s we store the second colliding

h introduces an additional
lliding data. When
g method. The

ncept whic
S maintained for co
data by linear probin

TECHNICAL PUBLIC

ATIONS - An up thrust for Kknowledge

SCanneT WITTCHmST:

Data Structures 8-14 Haspj,
— %

address of this colliding data can be stored with the first colliding element in the chaip

table, without replacement.
For example consider elements,
131,3,4,21,61,6,71,8,9

Ihdexr Data Chain
0o -1 sl
R 131 2R2
2 21 &5
3 3 -1
4 4 -1
5 61 7
6 6 -1
7 71 2l
8 8 LM
9 9 =1

Fig. 8.5.2 Chaining without replacement

From the example, you can see that the chain is maintained the number who
demands for location 1. First number 131 comes we will place at index 1. Next comes 21
but collision occurs so by linear probing we will place 21 at index 2, and chain is
maintained by writing 2 in chain table at index 1 similarly next comes 61 by linear
probing we can place 61 at index 5 and chain will be maintained at index 2. Thus any
element which gives hash key as 1 will be stored by linear probing at empty location
but a chain is maintained so that traversing the hash table will be efficient.

The drawback of this method is in finding the next empty location. We are least
bothered about the fact that when the element which actually belonging to that emply
location cannot obtain its location. This means logic of hash function gets disturbed. Le!
us now see a 'C' program which implements chaining without replacement.

/***itttitil’it**tti*iiﬁi.**tltt*iiti_'itttiiittiii*i'ti*tttitii*

Program to create hash table and handle the collision using chaining Without
replacement. In this Program hash function is (number%10)
************’**'****'*itt*t*it*iit*t*ttt**tii**tittttttttt*i*/
#include <stdio.h> _
#include<conio.h>
#include<stdlib.h>
#define MAX 10

TECHNICAL PUBLICATIONS"- An up thrust for knowledge

SQcdlileu WILImSCE

Dats Sf'z.rc.‘m’S__#_____‘______,_ _—-8—‘-1{3- ﬂ?_ﬂ’"q
- 3 3 =1 "
4 2 =il :
5 -1 -1 ,
6 -1 -1 . ;'
7 -1 -1 : J
8 A il 1
9] 1

[EXXJ Chaining with Replacement

As previous method has a drawback of loosing the meaning of the hash fllnction, .
overcome this drawback the method known as changing with replacement is introduceg
Let us discuss the example to understand the method. Suppose we have ¢, Store.
following elements :

131, 21,31, 4,5

0 -1 R

1 181 ;o=

2 21 3

3 31 fonEE
i 4 Sl

N5 5 S

; .

7

8

9

Now next element is 2. As hash function will indicate h

index 2. We have stored element 21. But we also know that
which currently it is placed.

ash key as 2 but already at
21 is not of that position at

Hence we will replace 21 b .
table : i Y2 and accordingly chain table will be updated. See the

Index data chain
S

S -1
‘_“-_*—""—'"*—--—__

131
h_—_h—b—'-""'"—'w

S 2
3 e

/

TECHNICAL PUBLICATIONS". 4, UP thrust for knowledg
e

Scdllieu witi udilfScse

5 - -— . . - \- "
e | 5 1 -
vt S -1
= 8 R e
= -1 ~1
; -] — L
o value -1 in the hash table and chaj -

de<stdio.h>
ude<conio.h>
hde<stdlib, h>
fne MAX 10
MAX][2);

| main)

ntun,key.i:
ﬂans;
11create(im;)-
thain (iny <
aln(mt.mt).displav();
),
Wy
Isgyie

haining iy,

i+ 1) Replacement")

My ‘i

.lsm B(a.l’ls g \" 0 Continue?(y[n) ")i

Sedlleu witl udl9Ce

| M i \\ Hashing
W adratic Probing i
g

c probing operates by taking the
tic

. figinal hagh v
dr? arbitrary quadratic Polynomia| to the alue and adding Successjyea
\ of an Startmg valy This et
i!l“‘s a‘:omul]a - method ygeg
i

Hi(key) = (Hash(key)+2)o;,

| can be a table size or any Prime numbey
n :

;:cr:xample If we have to insert f0110wing elements jp, the hash table with table
T’ 7109-0' 55,22, 17, 49, 87.
-,' ill fill the hash table step by step
Wew
0] 90
37 %10 =7 1 11
90 % 10=0 2l »
55 % 10 =5 3
22 %10 =2 4
11% 10 =1 5| 55
6
7\ 37
8
9

oW if e want to place 17 a collision will occur as 17 % 10 =‘7 and blucket 7 h?s
;T:ady N element 37, Hence we will apply quadratic probing to insert this record in
h tabe,

Hi(keY) = (Hash(key) +i%)% m
COﬂSideri = 0 then
[17+02) % 10 = i
» (]74,.12 g
)/010 = 8,When j=1
The

' 8.
N Ucket g i empty hence we will place the element at index
en o

E 1 o Which will be placed at index 9.
P,

P

e —

o e GO U WL bdl 1S Ce

- et e e + g e

e ——————— A

Data Structures 8-26 H"sh-‘ng
—2%hing

Wheye poinu tHesd !

btan (augnt i poINMw ' =
o (ghdm BN
T amd Porndn k\md? '/ L/

(Doty) ¢4 ¢—g)

g Pt e glopad FLos Ly

. \ b'

et 9 {E ., T9(17)

: 7| 37 = £
CAlleCty muny) S LIFT (MEd0)&_
“M guvodetry (££701)

Now to place 87 we will use quadratic probing.

Doty U_)C._\\!HZ/ pé"“ [—C’F“/U‘)

0] 90
LEFT (1) ¢ diE
'3
et e o 2 AL ooy
fLMJ—ﬂTcnc_— s sl
=1 : LZ: VY Cofen
o E ein e
2 Cheaten) yagy oI5
9

\ 49 / (M Urveade
.) e (D C/) ’l
\ﬂg..a.s..z

(87 + 0)%10 = 7 3 PN)y

(87 + 1)%10 = 8 ... but already occupied

(87 +22)%10 =1 .., already occupied
(87 + 32)%10 = 6

~N ¢,

It is observed that if we want to

place all th i
size of divisor (m) should be twice ¢ necessary elements in the hash table the

as large as tota] number of elements.

_ /
TECHNICAL PUBLICATIONS™. an up thrust for knowledge

Sudilieu Wit udli1SCq

Hashing

A s e ettt 20

Hashi"g

plé) 2 :
oY .. technique M which a second hagh function is applied to the key

. .hf‘shingccllfs' By applying the second hash function we will get the number

[.on collision to i
e o 1t of collision to insert.
X ol ihe poU

B m
a ro X
g oné ._nortant TU
& wo imP
|
h‘m’ o . evaluate to Z€ro.
e

n
i qust qure that all cells can be probed.
1 ke

les to be followed for the second function :

yfust ma o e used for double hashing is
) la

H1(key) = key mbd tablesize

M - (key mod M)

H,(key) =

me number smaller than the size of the table.

e Mis 3 P2
' following elements to be placed in the hash table of size 10.
sider the 1©

o, 85,22, 17,49, 55 A
.'ﬁally nsert the elements using the formula for H; (key).
hu

pert 37, 90, 45, 22.

0| 90
Hy(37) =37 % 10 =7 1
Hy(90) = 90 % 10 = 0 21z
Hq(45) = 45 % 10 = 5 i
Hi(22) =22 % 10 =2 4
Hy(49) = 49 % 10 = 9 3| 4
6
7L
8______._—-
[\ 91 49
o,
ity i to be inserted then
Hi17) - B7 % 10 = 7
ikey) M - (key % M)
§ T e an i st OrkIONE® S nined Wit Lal 11SCe

Data Structures 8-28

HD.‘Jh,-'nq

37

mm\qmm&mm-o

49

Fig. 8.5.5

Here M is a prime number smaller than the size of the table. Prime number smaller
than table size 10 is 7.

Hence M
H,(17)

That means we have to insert the element 17 at 4 places from 37. In short we have to

take 4 jumps. Therefore the 17 will be placed at index 1.

Now to insert number 55,
H,(55) 55%10=5
H,(55) = 7_—(55%7) =7~ 6‘ =1

7
7-(17%7) =7 -3 =4

]

... collision

That means we have to take one

jump from index 5 to place 55. Finally the hash
table will be -

01 90

———

—
.
~3

—

T B - S < T S N
_—
&

/

TECHNICAL PUBLICATIONS"- An up thrust for knowledge

Sudlleu witl udirfScse

» s 2 technique in which the table ig

\

-
d m'«.‘ — _

L ‘ ' ———

adratic probing ang —
ol @ . ouble hagpjne e Haahin
ﬁ‘.ﬁ-‘ pashing requires another | :
\J{o\' o hash function required

et . .
o 1S MOIc
I hﬂbhlng ¢ Cornplex to

: imple
i fast technique than double Pleme

) o\l)

. i
X I‘Ob‘ng
r-.'ﬁ: P

. Rehashing

resized, i, the

ol size of Size of table is doubled
. 0 table is a pri
uired- Prime Number,

:_ﬁ.ﬁhl g

T

. anew table. It is preferable if the ¢
-':Ihmjiwaﬁons in which the rehashing is req

"]

£ ple is completely full,

e _

g quadratic Probing when the table js fijoq ¢
.“rherl insertions fail due to overflow,

I.,u:h situations, we have to transfer entries from ol

-, :] d
_ting their POSIIONS USINg suitable hash functions, table to the new table by

0
Transferring 1
the contents 2

Old table

22

New table

Fig. 8.5.6 Rehashing

(g able size 1s
"Sider we have to insert the elements 37, 90, 55, 22 17, 49 and 87. The table ¢

i i use hash function,

H(kEY) = key mod tablesize

. An up thrust for knowledge

HNICAL PUBLICATIONS” ’
- Scdilieu witnTtcadmSce

- 30
o el —-—-—8 —‘"\«. Hn1h
D‘Q;F R S R \‘-‘nq

. 01 90 X

A7 %10=7
00 % 10 = 0 122111
55 % 10 =5 I
2%10=2
17 % 10 = 7 Collision solved by 5| 55

lincar probing, by
placing it at 8

49%10=9

17
49

6
7| 37
8
9

Now this table is almost full and if we try to insert more elements collisiong wil
occur and eventually further insertions will fail. Hence we will rehash by doubling
table size. The old table size is 10 then we should double this size for new table, thyy
becomes 20. But 20 is not a prime number, we will prefer to make the table size 5 2
And new hash function will be

H(key) = key mod 23

0
37 % 23 = 14 1
90 % 23 = 21 2
55%23=9 3| 49
2 %23=22 4
17 % 23 =17 5
49 %23 =3 6
87 % 23 = 18 7
8
9 55
10
11
12
13
14 37
15
1]
171 17
18l 87
2 —
2190
221 22
—_ -

TECHNICAL PUBLICATIONS--_ AN up thrust for knowledge

Sudllieu witll udliTScq

// » (]
9

is gufficiently large to accommodale new inserlio
(N i nﬂn

|1’" ~
A
h ‘nblL N

lhv l\i“; »y
- \‘.-_I h
¢ _wvides the programmer Abili
‘d,q? pnique hmwd programmer a flexibility to enlarge the table size if
: ‘. tL‘\L. s &
1 d. .
e e doubled with simple hash 4 : .
R , pace gels ple hash function which avoids occurrence of
W
o™

g e kevs 12, 1?: 13, 2, 3, 23, 5 and 15 are inserted into an initially empty
ngth 10 using open addressing with hash function h(k) = k mod 10 and

o ml":’,mg‘ What 18 the resultant hash table ?
W‘P;;ive“ dat
fa;h function i h(k) = k mod 10
: hh able 1en& 10
= i 12 % 10 = 2 0
f 18% 10 =8 1
13% 10 =3 2| 12
2% 10 =2 3| 13
Collision occurs 4| 2
». By linear probing 5| 3
mggi iown and place 2 at 6| 23
3 % 10 = 3 « Collision 7 5
23 % 10 = 3 « Collision gl 18
5% 10 = 5 « Collision 9| 15
15 % 10 = 5 « Collision Hash
Table

o dusions

____;

1 . _ .
What i hashing ?Explain hash clash and its resolving techniques GTU): May-11, Marks 7

s .
Define hash clash, Explain primary clustering, secondary clustering, rehashing, and double
hﬂshmg, GTU : May-11, Marks 7

L Byt
hain- the basic two techniques for CoH:’sfon-resolu!ian in Hashing with example. Also
GTU : May-12, Marks 5

plain pyi
Plain Primary clustering.

\

| TECHNICAL PUBLICATIONS - An up thi

- —

st for knowledge

Sudllieu Wit udl 119Gk

L A —

et 2 2

-
| W it 4

o L BN e et

g a4

Data Stnoctures 9-2

Fila Sfmc!nre

EXE Concepts of Fields, Records and File

A file is a collection of records. Record is nothing but the source of informatiqy, [
typically stored in rows in the file structure, Field is a piece of data which is A550ciateq
with the entire record. It is refered as column.

For example : Assume that we have a file "Student.dat” having the contents o
follows -

Roll No. Name Marks

2 ' Mathew 70
3 ~ Steve - 60

So by observing above file, we can say that this file is a collection of 3 records. These
records can be written in File with the associated fields. such as Roll_No, Name and
Marks. To identify each record, a unique key is associated with it. In above file Rell_Nq
can be thought of as a key. Using a key we can access information from file, We must
choose unique field as a key. This key is called the primary key of file.

m Operations on File

1. Declaration of file Pointer :
Syntax: - FILE *filepointer;
Example : FILE *fp;

FILE is a structure which is defined in “stdio.h”. Each file we open will
have its own FILE structure. The structure contains information like usage of the file, its

size, memory location and so on. The fp is a pointer variable which contains the address
of the structure FILE.

2. Creating a file / Opening a file :
Syntax : filepointer = fopen(“filename”,"mode");

where filename is the name of file you want to create or open

mode can be - read - “r”
write - “w”

append - “a”

Depending on the type of file we want to open/create we use -"rb", “wb”, or just

"o 7o

répéw”, “a”.

e —

TECHNICAL PUBLICATIONS™- An up thrust for knowledge

R l o
Scldilneu will udIImoCe

qrrmrfh‘“""‘ et A

o opens the (e In yopdd maode,

i

I

A 2 '.

Psing aeh 2 file created I8 of no Une i
N

doe .
Y NOE exist, (1 will create 4 ey

iy you ¢
‘ il | ‘ . MNot wrjie oy s
”T,,‘ N npy " allows 1O read from filo gy Well an wrige | I e T
l“‘ L) 4 (A () ' T ’II‘.
PR L WK QA “](‘ h‘ wWrile | '
g w” 0l e mode, 1y the file dogey Aot
Wexdst, it will create a neow
ple i allows you lo wrie contenty 1o (il
sing ¢ read them ag well as modify existi
antent F
\ ’
adrl v opens the file in append mode If the file ¢
. : = N P Hle doeg i -
. Opening file in append mode allown you (o . r]m‘ e 3
aow ' append new content
: nits at the end

| the file.

. 24" allows Lo appe ;
Usl“}s a4 {]'_l_ nd 1] fll(_" I'eq (_\)“H”n;, record :
_) ords, cannot modify existing

"\‘Or S"‘—-‘ -—_--_.—.-_""‘-

[;xaml"c :
fp = fopcn(.”Sludcnl'.dal","w");
; Closing the file :
gyntax : fclose(filepointer);
Example :
fclose(fp); /* closes the file pointed by the fp */
(. Setting the pointer to start of file :
Syntax : rewind(filepointer);

Example : s :
rewind(fp); /* places pointer at the start of the file */

il Witing a character to file :

Syntax: fpute(character, filci)ointcr);
Example ; |

SUPPOSC we have

char ch="a’;
o }
’ W”!e the character to the file, we use \

fputc(ch,fp); ' <

et

mﬁ] If the file is opened in “w” mode, it will overwrite the contents of the entire
Id write the only character we want to write. o write it at the end of the file,

OPL‘I] th ril(_!

e

in “a+” mode.

‘\ TECHNICAL PUBLICA TIONS" - An up thrust for knowlodgo

SldIeu will udlole

File Sfruchm

Data Structuros 9-4 e ———TTT

. R
i o s s et e s it s

6. Reading a character from file :
Syntax @ fete(filepointer);
Example :
char ¢l /* ch is the character where you are going o get the chgy
from file*/
ch = fgete(fp);
7. Writing string to file:
Syntax : fputs(string, filepointer);
Example :
Suppose you have a string AR L
char s[] ="abed"; =
then we write as
fputs(s,fp);

The above operation writes the string “abcd” to the file pointed by fp.

8. Reading string from file:
Syntax: fgets(stringaddress, length, filepointer);
Example : ‘ '
char s[80]; /* declared a string into which we want to read the
string from file */
fgets(s,79,fp); /* Will read the 78, (79-1) characters of string from

file into s */

9. Writing of characters, strings, integers,floats to file :

Syntax:

fprintf(filepointer, “format string”, list of variables);

We are already aware of the printf function, fprintf has the same arguments as that
of printf, addition to which filepointer is added. The variables included in the fprintf are
written to the file. But how can we write the data wi
need to have a scanf function before it and then ca
understand this better by following example.

thout knowing their values, 5o o
n write the data to file. You wil

TECHNICAL PUBLICATIONS™- An up thryst for knowledge

Sudlleu witl udlTSCce

= TECHNICA

e
[,f/. ia &
0/ r{lm ﬁ‘,‘,ﬁ»ﬁ*‘nﬁ"."""”’l‘khi‘*ﬁﬁgt* Fila A lijra
Teuy
Vhhag,

[
N troduaing the fila &+
G “,4 / for h”r 4 h" “lt) "“"”'Hm : H.uun,
LYt Lt pTs (printf LRI i
p ¢lo LA LT L
LT L L AL LT T
{op‘.' e "I‘iin*"“
u’." t(’i()'h' .””"l;llll
de”
!
'. inF ncho!
18
ul (4]
hﬂ Anon ne
'.:ﬂl?d By
r."m()
o P
00
, ’namelzm.
¥
o)
(“Student.dat”,"w");
, = fope L)

;--”“Enter the rollno and name:");
i%d %s" &mo,&mame); /* asking user to enter data */
==H(fp,"%d %s",&mo,&name); /* writing data to file */

£zzelfp);
—b [}

=

rovenal]t

zam,

SIS RS EE A RS K .
rxxx2*End Of Progranl*ﬁt*’tiﬁiﬁttittifﬁttf r/

) Output
“erthe rollno and name:

%

s student.dat

l}‘ R .) - N - G
tading of variables from file :
Simtay;
fscanf(ﬁlepOinter,"format string” list of addresses of variables);

Having similar arguments as that of the fprintf state

t ton =i
tents of the file into the variables speaﬁed-

- G TN ESD%
| PUBLICATIONS - A7 -

ment, the fscani reads

up treust for &

Qcdlilieu will udloCc

l-‘ File Structyy,

Data Structures B _

Example

fscanf(fp,"%d %s",&rmo,&name);

printf(“Read data is: %d %s”,rno,name); 3

' e data we want to entey j;

The fprintf and fscanf statements are useful only when th e

less, or rather they have disadvantage that when the number of GRALLLE

them or reading them becomes clumsy.

11. Writing contents to file through structure :

i i filepointer);
Syntax : fwrite(pointer to struct,sizeof struct,no.of data items,flep)i
‘C’ Program
o T T T -
/**t**tnf-it****Ei*i***&*i*t*y**************t**********f*****

Program for file primitives such as fopen,fwrite.This program writes the string to the file, .

% % kK
ARk R R R R R AR Rk h ko ko whkhkh ok kk ke khkkhdhhkdkhkk /

#include<stdio.h>

#define MAX 20 :

struct stud /* structure declaration */
q ,

int mo;

char name[MAX];

&
/t

The main Function

Input :none

Output:none

7

main()

{ A - i
struct stud s; s
FILE *fp;
clrscr();
s.mo=1; /* fill the structure contents*/
strcpy(s.name,"Sachin");

fp = fopen("Student.dat","w");

if(fo==NULL)

{

printf(“File opening error");

exit(1);

}

fwrite(&s,sizeof(s),1,fp); /* write the

fclose(fp); ts to file*/

TECHNICAL PUBLICATIONS™. ap, UD thrust for knowie
Wiedge

Sudileu Wit udioCe

———

e \ Outpyt hstud' ’ Prbini
N i ent.dat /
'\e:‘hmo‘ E
3 .~ can see from the oy |
s WE € i Put of the Progra
in pinar moae am that fwnte Writes th
o S the data ip th
e
eading contents of file through Structure
3.7 i :
tax fread(pointer to struct,sizeqf Struct, no.of dat
' » NO. a it ilepoi
pample s ﬁlepomter);

1o read the contents written in fjle We can havye:
fread(&s,sizeof(s),l,fp); '

in fread or fwrite function moves the poin
: t inni
e pointer to the begxmung of the next record in
i. Moving the pointer from one record to another :
smtax: fseek(filepointer, offset, whence);
where
offset is difference in bytes between offset and whence position.
whence can be:
)" SEEK_SET move the pointer with reference to beginning of the file.
) SEEK_CUR move the pointer with reference to its current position in file.

Y SEEK_SET move the pointer from end of file.

Bample .
Let us take the example where we have written a record in file. Suppose we

e ¢ .
Oread that record, we have two options :

|
) To use rewind function. 2) To use fseek.

e
‘N Use fseek in following fashion:
Prior to the fclose(fp), we can have

iseek(fp,-sizeof(s), SEEK_CUR);

\ j
. An up thrust for knowledge

] TECHNICAL PUBLICATIONS™
Sledileu will udloCe

Data Structures 9-#

This will place the pointer to

written.Then we can make use of fread(...)

EXT Types of Files

There are three types of file organizations -
1. Sequential file

2. Indexed file

3. Random file

Let us discuss them in detail.

EX¥ sequential Files

the beginning of the
to read that record again.

File St’UCtum

record we have cunen”y

To understand the sequential files, lets start with an example. 'CC.mSider the example
of a tape or rather a cassette where the songs are stored .sequentlally. Wh.enever we
want to play any song from it, we read it sequentially. Storing data s.ef:luenhally is the
simplest form of file, but a tedious one. Reading data to a file or writing data from it
takes a lot of time as the data is not sorted. The data is stored on FCFS basis. Taking
example where we want to retrieve a record which is unfortunately stored at the last
position in the file requires to search the entire file. Hence the time required is very

large in this case.

‘C’ Program

/**i!i***t***

implementatlon of various file operatlons ‘such as create dlsplay. sea.rch and mochﬁcatlon
on student database with USN,Name and marks of three subjects

it***t**t**/

#include<stdio.h>
#include<stdlib.h>
#include <string.h>
#include<conio.h>
struct record
{
int USN;
- char name|[20];
- int marks1,marks2,marks3;
i
struct record r;
FILE *fp;
void main()
{
' int n,choice;
char ch; , ‘
void Create_file(int);

TECHNICAL PUBLICATIONS".

An up thrust for knowledge

SldIeu Wil udlole

opldY -
jep!® nw()~ ile();
\‘,i:l wdlfﬁ, .gearch file()
| ~CO
i " ot Ly Re cords are there in the fila?")

Pl
,(f(" e anh
\ﬂ n d

(Mam Menu)"
-ntf(it C cate a file ?.

ntf B Search a fl_le"):

\p Enter YOUT Choice ");
8V gonoice);
tch(Chmce)

ase 1:Create_file(n);
break;

ase 2:Display_file(n);
break;

case 3:I= *Search_file();

printf("\n USN Name

printf(" %d ~ %s %d

tase &Modify file();
break;
] rase Siexit(0);

mm'f('\n DO Y
n*s;etch()

e(ch—-_—' .

ou want To Continue?");

dc
reate_file(im- n)
inti

f "

for (1 p n(StU.d datll Ila+||)

{ i<n; Pt)

rlntf [}
fy ha(ll\(r)l Enter The name of the student °):

h

TECHNICAL PUBLICATIONS - -

marks1l marks2 marks3\n");

%d %d \n"r.USN,r.name,r.marksl, rmarks2,r.marks3);

. E—_— e ——

An @ thiust Ry AN

Scdllieu witl LdimScs

Data Structures ‘ {);1} _

T Y

5, Exit
Enter Your Choice 2 !
Reading all the records sequentially . |

USN Name marks1 marks? LRSS '
1 aaa 40 50 60 ‘
e bbb 65 66 77 |
! 50 XYZ 55 66 77 %3
| 4 ddd 45 65 7620 ‘ e |
5 “eee 32 43 40 '

1
-
- L L) L™

———— T e T L L LD Ll -
memERaamme-.——— %
- ————— h §

‘Do You want To Continue? g3 : ;],

! Main Menu ; o |

: 1. Create a file it : s i

: 2. Display a file ‘ : Y & ‘
3. Search a file _ ‘ N S S DA S e :;
4. Modify a file : ' L S e '
Enter.-Your Choice 5. il s il S gae

e e |

Advantage of sequential file:
Sequential files are very simple to manage.
Disadvantages of sequential file: -

1. Time required to retrieve any record is more as the entire file is searched.
2. Efficiency is less.

Owing to these drawbacks let us start with other file which will overcome these

drawbacks.

1. Explain the sequential file organization,

2. Write a C program for implementing the sequential file organization.
EXJ indexed Sequential File

Since we are clear with sequential files, le

» Winter-12, Summer-13, 14, Marks 7

sl ts now got to other type which is ‘Indexed
Sequential’ file format. There are many advantages of using an ‘indexed sequential'

over a normal sequential. Firstly, in an indexed Sequential format, we maintain two files
- - 1. Normal sequential file and 2. An sorted index file

What ever is our data we store it in the sequential fie

the id or say the primary key of the sequential file
particular record in the sequential file.

and in the index file we have
along with the offset of that

TECHGAL PUBLICATIONS™. An up thrust for knowledge

- ME— ocdilieu willl udioCe

-s 9-15
et =——
i ise lets take the f — Flle Structurs
L .. precise 1ets take the 0]10\,- e SCEOGE S iyl S
e mote t . Ving Cxample;

10 {0 maintain grossery details

-(\ J

"]'ll]\
W

“Cﬂ'lno'

g ¢ sequent
name price type e quential file we have

(o any item if we were using norm

fer . . al sequeny;
o O 1o find that particular ;) ial file, we
. Hre file 10 " : hi - : l.ar Item detailg, But with the would have to scan
A en ther index file which will n this case contain ¢ indexed sequential we
T and c

avt

itemnO- offset

ample is of students datal
Jther examp . abase the m .
Amt;d e index file will have Roll ofegg. " {1 Will have Roll, Name, Age,

ks

Main file
Roll_ Name Age Marks
Parth 16 | 78
M | Sanket | 20 | 68
13 Yash 15 | 68
0] Lalita |20 55

L 15 |- 4 | Joseph | 17 | 51

Ind file 38 | Anagha | 18 | 88

Roll Offset 82 | Shivani | 15 | 90

12 & 78 | Prashant | 20 90

13 ® 110 Anand 20 00

: 14 * 1 Dinesh 18 35
L .

A 7 Juhi 17 | 48

Y

14 | Rajashri | 16 37
18 Yusuf 16 54
1 15 | Anuradha | 15 64
19 Kavita 20 79

———L __|

Fig. 9.5.1 Index sequential File

fou will be more clear from the following sample figure and sample program.

Here we are storing various functions in function.cpp and structure in includes.h

i PrOgram

‘Ih"'“t*************i*i*******l*i**ii*i***ttit*#*it*********

Plogram for the indexed sequential file,We have assumed the student database for
[be of file organization.

“.* 'R 3.5 8
*************.********i*******i**t*******ttt***i* /

i ¢

l|"

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Qcdilieu will udlnoCc

Dats Structures 9-28

Review Question

1. Write a short note on - Indexed sequential file.
GTU : May:12/ Siimmer<13,

Fllo Sm’c"qu
-

14, Marks 4, Winter-12, Marks 7

EX3l Random File

Random organization is a kind of file organization in which records are storeq at
random locations on the disks.

There are three techniques used in random organization and those are given in
following Fig. 9.6.1.

Random Access
- Organization

\ \ Y
Direct Addressing Directory Lookup Hashing

Fig. 9.6.1 Random access organization

Let us discuss each of them -

1. Direct Addressing

* In direct addressing two types of records are handled: fixed length record and
variable length record.

¢ For storing the fixed length records the disk space is divided into the nodes. These
nodes are large enough to hold individual record.

* Every fixed length record is stored in node number # which is equal to the

primary key value. For example: If a primary key value is 185 then the record
must be present in the node number 185,

For example
100
500
e Record having
1000 1000 EMP_ID = 1000
is present at the
node # 1000

Fig. 9.6.2 Storing of fixed length record

TECHNICAL PUBLICATIONS"- An up thrust for knowledge

Scdileu witll udlITSCse

Filo Striieture

onsider that the records are

. 'l‘ 8 L N

It and searching of (he record xternal- stora je dey

N d fequites o 3 4 ices then

' oeletic ' '
i s A pecord then it requires two digk
ate * ‘
apd - writing the updated data |

ont

sk access, If we want to

access
access, one for reading
b]

ack o the disk
dng the variable length records
aal record is stored in the file at g
scord using the index of the po
hich is present on the disk.

ngth records make the storage man

the record and

1 the disk, the address (
Pecific index, We
Inter, Thig pointer

or sto i
Pointer) of each

can locate the variable
Will point to desired

.

' s o
nd® id
l\]“:‘h r
\‘Ord W

\ le '
\-anabl 5 agement more complex.

.gire“""y Lookup the index for th ;
O s s cheme the 1ndex for the pointers to the records is maintained
' :

, For retrieving the de-sued .record first of all the index for the record address is
carched anC_l then using this record address the actual record js accessed

100 > Record A

500

1000 »| Record B

1500 *| Record C

2000 |

Fig. 9.6.3 Directory lookup

' The drawback of this method is that it requires more disk access than direct

address method.

' Advantage of this method is that effective disk sp
0 direct addressing method.

ace utilization in it as compared

EHiishing .
| Hashing is a technique in which hash key
function and record is placed in the hash ta

is obtained using some suitable hash
ble with the help of this hash key.
ickly searched with the
" Thus i s random organization, the record can be quickly sea
" of hash function being used.

TIONS“- An up thrust for knowledge

ICAL PUBLICA i .
ree oldlilnieu willl bdeCc

1;:.'
i 9-30 Filg g,
! , Ny
Data Structures N"’

able file space is divided into bucketg ang
§

e —

ash table the avail

e For creation of h] o I
« Some file space is left aside (or handling the overflow situation.

is equal to the total number of
e The total number of slots per bucket q ecords "

bucket can hold.

Multi-Key File Organization %

For understanding multiple key access file organization consider the Rol]
record. In the Roll_no record structure, there are 3 fields - value, length angq Pﬂir;::
to the first record. The value field indicates the upper bound value for the R J
For instance : If the roll number of particular student is 437 then it lies between E]no.
500. Note that here upper bound is 500. Hence the record of that student muSt;O
associated with value 500. Similarly if roll_number of particular student is ggg ther e
must be associated with the value 700. The length field denotes total NuUmber (:; |
records. From Fig. 9.7.1 length 2 in the value of 500 means there are 2 recorqs Whose
Roll_no lie between 0 to 500. Similarly length 2 for value 700 means there are)
records who have Roll_no that lie between 500 to 700.

The third field is the pointer or a link field which points to the first recorq. For
instance in Fig. 9.7.1. For value 500 the pointer field points to record BBB ang in the
record BBB there is a field Roll_no link which points to record EEE. Thus there are totg]
2 records BBB and EEE with value 500. |

Rolll_no Index

Value 500 700 900
Length 2 2 1
Pointer
{o first
record |
| 1
Roll_no ‘
link —*1 NULL —1 NULL NULL
| Class | CCC T
| +— = NULL NULL
Sex DDD
AAA CCC NULL NULL
Marks | NULL NULL cce DDD NULL
BBB
EEE DDD AAA cce
Fig. 9.7.1 Multi-list structure
/

TECHN b
CAL PUBLICATIONS". An up thrust for knowledge

Suedlleu witll udISCe

vy for value 700 there

2t are 2 record I
i '['llll"Il v o o I)DI) Ll : {h(‘ 0 > i
.1'1 The recol d Shows the next fecord ()l; er fle]d Points to the first record
g0 ™ o record DDD) "By pointing { tefer M
l L0 lin . B 10 AAA (Refer the
ol | for value 900 there is only ope reco

and ald)
A « for cach key field is Maintain

. de .
o ¢ Fig 9.7.1 of class index. This

gure te]
J‘-‘L“L nd 3 records for tenth stang J

ard. ﬂ‘\e o

jar : first

qant dent stud t :

.I‘F, and Second student is CCC. (Just refer the class field O;I:eczfdﬁflh standard class is

L s W can solve the query "select » from stud. g rd BBB from Fig. 97,1)
Il be BBB and CCC. If we ghge -table where ;

el ‘Vi
."L-“t‘
F 1 class value shows that there are 3

I s th
;f Viarks field denotes the value NULL, Tps alle ;‘?t record. And for record CCC
“ ents are AAA, CCC and DDD. Icates the second class holder

¢

-

| ygvantages

}) The multi-list structure provides satisfactory solution to simple and range queri
for instance : "Select * from dept_table where salary > 10000" i
Such queries can be executed efficiently using multi-list structure.

) Quick access to every individual record is possible.

Nisadvantage

{)Some amount of memory gets consumed in maintaining the link or address
field.

Review Question

1. Explain various multiple key access file organization in brief with advantages and

dfsadvantages of each method. GTU : Winter-13, Marks 7
m Access Methods GTU « Winter-12_I§

d or updated from the file is called
anized in variety of ways. Fig. 9.8.1

The method by which records can be retrieve
“ss method, Records within the file can be org
fows various types by which a file can be organized -

CAL PUBLICATIONS - An up thrust for knowledge

Sudlleu witll udlrnSc:

TECHNI

9-32 Filo Sirye,
Data Structures "
File organization
‘] \i Y
: Random Linked Inverted Cellular
Sequential access or Bt i ati "
ot organization organization partitions
organization| | girect access : 2
Fig. 9.8.1

EEEN Linked Organization

* In linked organization the logical sequence of the records is different than the
physical sequence. In any sequential organization if we are accessing n™ node at
Loc; then (n+1)™ record may be located at (Locj+c) where ¢ is the constant which
represents the length of the record or it may be some inter-record spacing.

In linked organization we can access next logical record by following the
link-value pair. The link-value pair denotes each individual record.

* The typical structure of every record is as follows -

|

‘ Record value Link

Value of Using this

current record address we can
lacote the next
record

Thus records in the linked organization can be stored as follows -

500 2 *1 BBB »| EEE | NULL
7
: w 2 _—=|oop 1 AAA | NULL
I 900 1
i ——|CCC | NULL

Fig. 9.8.2 Roli_No index
EXFA Inverted File Organization

e Inverted files are similar to multi-lists,

—/

TECHNICAL PUBLICATIONS™- An Up thrust for knowledge

SQcdilieud will udloCe

fure) {il‘ft""‘ncc bL‘lWL‘Qn l““]li-liq[a —— —— Fite Slructure
A L . [
R rhe o same key valye

. erted filoq
al les
il l:cpt in individual rccofd Hgkcd logether a]o:;:ISWl,I:E[ih” multi-lists records
Wne . . ' it Yk > WIth i ‘ 3
pn““*ﬂ in the index itself, ! case of Mverted () e h'nk Information
o ket ¢s this link information
le
fof e,arﬂp
437 | BBB
488 | EEE
689 | DDD Fig.9.8.3 (b) Class index
695 | AAA
] \
778 | cce "emale | 838, 00D, cog
Male _-_EEKE'_‘
the , lI_No ind :
at rig. 9:8.3 (2) Roll_No index Fig- 9.8.3 (c) Sex index
ich
First class
EE
e St B
Second class AAA, DDD, cce
—_—
Pass class BBB

Fig. 9.8.3 (d) Marks index

Consider Fig. 9.8.3 (a) of Roll-no index which shows records BBB, EEE, DDD, AAA
z4 CCC. In Fig. 9.8.3 (b) of class index two class are there fifth and tenth and we can
ierve that in the link information is stored in the index itself. Hence for fifth class
words are BBB and CCC. And for tenth class records are EEE, DDD and AAA .

Similarly from sex index Fig. 9.8.3 (c), it is clear that BBB, DDD and CCC are females
2¢ EEE and AAA are males.

* The above index structure is a dense index structure Dense Indexing. The dense
index is a kind of indexing in which record appers for every search key value in

the file.

ot example

' Thus in inverted files the index entries is of variable length. Hence inverted files
structure is more complex than multi-list file structure.

i 2arching ¢ ord from
' F°”0Wing are the two steps that are adopted while searching a recor
— nverted fileg -

TECHNICAL PUBL!CATIONS"- An up thrust for knowladge

m— Qedlilieu will udloCc

we Spructures —

B -

— Index file Master file
T | 1] A RN
Eﬁﬁi::;-—————-'- peB | 101 | d
SR “ges | 17|
FEF :E%%{: 125 |
poD | 301 4r
[eee | 313 <£ %
EEE | 410 4
FFF | 570 '
FEF | 780 |
FEE |00 | &

Fig. 9.8.4 Dense indexing

i) Index of required record is searched first of all.

ii) Then actual record is retrieved.
e In inverted files the index structure is important. The records can be arranged

sequentially, randomly or linked depending on primary key.
* The number of disk accesses required = Number of records being retrieved +
Processing for indexes.

Advantages

1) Inverted files are space saving as compared to other file structures when record
retrieval does not require retrieval does not require retrieval of key fields.

Disadvantages

1) Insertion and deletion of records is complex because it requires the ability to inser
and delete within indexes.

2) Index maintainance is complicated as compared to multi-list.
EXEE cellular Partitions

¢ For reducing the searching time during fj

- dia (@&
secondary memory, le operations, the storage me

magnetic disk, magnetic tape etc.) may be divided into cells.
e The cells can be of two types -

i) Entire disk pack can be a cel|

ii) A cylinder can be a cell.

——— /

TEC By
HNICAL PUBLICATIONS". An up thrust for knowledge

Sudlleu witl udlirSce

N 9-35

|

A list of records can Occupy oi File Structyrs
" et > Cther entiry . —
gylinder ¢ disk pack o

)) U may | 4

i all the records lie on the s Y lie on particylar

. -~ ~
pead the records can be

o 1t cell is nothing but entire
Partitions. Such partitions ane
can be searched in paralle]

disk

e ntages of cellular partitiong
rarious read operatio
1) Variot PEFATIOns can be performeq

.) Pa.[‘a]_le] roy
time. Y In order to
educe the searc:
arcn

) Faster execution of any query.

pisadva ntage

1) If multiPle records lie in the Same cell then read:
consuming process. eading a single cell becomes a tim
e

1. Write a short note on inverted ey il orgmimn

key ﬁlf:‘ orgﬂfliZﬂﬁor1_ GTU - = —
2. Write a short note on Cellular Paftitfous s Winter-12, Marks 7

QQaQ

TECHNICAL PUBLICATIONS ™~ An up thust for knowfedge
Sudlleu witll udinSc:

