¥ 12.1 INTRODUCTION

A graph is another im

portant non-linear datg
linear datg structure that

Graphs are data s
ranging applicationg
analysis of electrical ¢
networks, finding sho
program, statistical g

tructures which have wide-
In real-life like. Airlines,
ircuits, source, destination

rtest routes, flow chart of g
nalysis etc,

Figure 192.1. shows the non-linear datgy
structure called 5 graph '

Fig. 12.1,

12.2 DEFINITION

A graph G consists of a set V, where
called the vertices of G and the set [, whose
members are called the edges. The get of vertices
1s non-empty and the set of edges co_ntains pair of
vertices. If e = (u, v) is an edge with verticeg u
and v, then u and v are said to lie on e and e ig
said to be incident with u and v.

members are

402

Chapter Outline

B Introduction

& Definition

| Terminologies Used

- B Representation of Graph
B Implementation of a Graph

B Operations on Graph

B Traversing a Graph

® Breadth First Search

@ Depth First Search

® Topological Sort

m Strongly Connected Components

® Spanning Tree

8 Minimum Spanning Trees

® Kruskal's Algorithm

B Prim’s Algorithm

® Shortest Paths

| Dijkstra's Algorithm

B Warshall's Algorithm

| Transitive Closure

Scldilieu witl udloCe

B 403

Graphs

ction of two sets V and E, where Vis the vertices v, Uy,

Thus, a graph G is a colle ¢.. This can be represented as

v,_, and E is the collection of edges ¢y, €y ..o
G = (V, E) where, :
V(G) = (Vg Upy voeer v,) or set of vertices

E(G) = (eq, €gy ot e,) or set of edges

. A graph can be of two types :
1. Undirected Graph
2. Directed Graph.

Undirected Graph : If the pair of vertices are unordered
then Graph G is called an undirected graph. That means
if there is an edge between v, and v, then it can be represented
as (v, v,) or (v,, v,) also.

If the Fig. 12.2.

Fig. 12.2.

V(G)= {1,2,3,4,5,6, T}
EG) = {(1,2), (2, 3),3,4), (2,4, 4,5), 5, 6), (7, 5), (1, 5);

That is, this graph 7 nodes and 8 edges.

Directed Graph : If the pair of vertices are ordered
then Graph G is called directed graph. That is, a directed
graph or digraph is a graph which has ordered pair of vertices
(v,, vy) where v, is the tail and v, is the head of the edge. If
the graph is directed then the line segments or arcs have
arrow heads indicating the direction.

Directed graph is often shortend to diagraph.

- V(G)= {1, 2,3, 4,5} ,
EG) = {(, 2), (2, 5), (5, 4), (4, 2), (3, 4), (3, 1)}
This graph has 5 nodes and 6 nodes.

Fig. 12.3.

E 12.3 TERMINOLOGIES USED

1. Weighted Graph : A graph is said to be a weighted graph if all the edger in it are .
labelled with some numbers. It is shown in tl;_e Fig. 12.4 below.

N . T}

Scanned with Camac:

Fig. 12,5,
In Fig. 12,6, there are tw,
4. Adjacent vertices :

there is an edge from
to v, and v

to Uy and

ce :In an und;

(or the nej hbour
ttov, In undirecteq i ;
218 adjacent tg v,

Uy 18 adjacent from v

¥ of) other \%
. 1 Ug) 18 an edge th i
.Inga directed graph if (v1 24 D

€rtex | if

118 adjacep,
1 Ug) is an edge thep v, is adjacen,

o
5
,Qc
.
o
=]

1. In degree.
2. Out degree.

vertex 4 is 2.

7. Simple graph:A graph or dire
edges is called a simple graph,

. d a
8. Multi-graph : A graph which has either a self-loop or paralle] edges or both is calle
multi-graph, '

e . : other
9. Complete graph : A graph is complete graph if each vertex 1s adjacent to every
. vertex in graph or we can say that there ig

graph. An undirected complete graph will contajn n(n —1)/2 edges.

. in the.
an edge between any pair of nodes in

e

Scanned with CamSc:

Graphs

10.

11.

12,

13.
14.

15.

16.

17.
18.

19.

] i

J/)L)/V — 405

Regular graph : A graph is r(';,'ulnr if every node is adjacent to the
same number of nodes.

Here every node is adjacent to 3 nodes.
Planer graph : A graph is planar if it can be drawn in a plane withou
any two edges intersecting. ~
Connected graph : In a graph G, two vertices v, and v, are said tobe . Fig.12.9.
connected if there is a pnth in G from v, to v, or v, to v;. A graph is said REéular graph
to be connected if there is a path from any node of graph to any other
node, i.e., for every pair of distinct vertices in G, there is a path.

ovo ®
e

(a) Connected graph ' (b) Not connected graph

Fig. 12.10. .
L; \

(a) Strongly Connected Graph : A directed graph is sa1d to be strongly e)
connected graph if for every pair of distinct vertices in G, there is a
path.

(b) Weakly Connected Graph : A diagram is called weakly connected
or unilaterally connected if for any pair of nodes u and v, there 1s a <
path from u to v or a path from v to u. If from the diagraph we Fig. 12.11.
remove the directions and the resulting undirected graph is connected
then that diagraph is weakly connected. Figure 12.11 shows a weakly connected

graph.
Cycle : If there is a path containing one or more edges which starts ﬁ'om a vertex and
terminates into the same vertex then the path is called as a cycle. ‘
Acyclic graph:Ifa graph (digraph) does not have any cycle then it is called as acyclic
graph.
Cyclic graph : A graph that has cycles is called a cyclic graph.
n(n-

Maximum edges in graph : In an undirected graph there can be -2— maximum
edges and in a directed graph there can be n(n — 1) maximum edges.‘Wﬁere n is the
total number of vertices in the graph.

Articulation point : If on removing a node from the graph, the graph becomes
disconnected then that node is called the articulation point.

Bridge : If on removing an edge from the graph, the graph becomes disconnected then
that edge is called the bridge.

Biconnected graph : A graph with no articulation points is called a biconnected graph.

124

REPRESENTATION OF GRAPH

Usually, a graph can be represented in many ways. Some of these representations are:

1.

Set representation. ,

Scanned with CamSc:

ol

Data Structures Using C
; e
e 406

9. Sequential Representation
-4e . 3
() Adjacency
(#7) Incidence
3. Link spresentation,
3. Linked repre

Set Representation

In this representation, two sets are maintained, They are :
1. Set of vertices v, and

2. Set of edges E, which is the subset of Vx V.
For the Fig.

V(G) = {‘ly 2’ :.3, 4z 5) 6}
E@) = {d,2),2,3),3,4), @4, 5) (5, 6)}

Fig. 12.12.)

Advantage

1. From the memory point of view it is most efficient method.
Disadvantages

1. This representation does not allow the storing of parallel edgesin a multigraph.
2. Multiplication of the graph is difficult.

Sequential Representation

The graphs can be represented a matrices in sequential representation. There are two
most common matrices. ;

1. Adjacency matrix.
2. Incidence matrix.
Adjacency Matrix Representation

Adjacency matrix is the matrix, which keeps the information of adjacent nodes. In other
words, we can say that this matrix keeps the information that whether this vertex is adjacent
to any other vertex or not.

The general representation of the adjacency matrix shown in the Fig. 12.13

v, Vv, Vi e V] Vi
v, [7]
Vv, :

Vv, i

Vs :
Viberreeeiriiins, ‘a,

v L i

Fig. 12.13.
The entries in this matrix are placed according to the following rule :

a;= 1 if there is an edge from v; to v;

0 otherwise

QldIieu will udl ol

Graphs

— B 407

This adjacency matrix is also called a bit matrix or Boolean matrix because the entries

are either O or 1.
N
)
y

Fig. 12.14.

The corresponding adjaceney matrix for this graph will be:
1 23 4

Let us take a graph.

g
0
1
0

Fig. 12.15.

The corresponding adjacency matrix for this graph will be:
AB CDE
[0 1 0 0]

1
0
1

oS = O

1 0
0 0
1 1

HoOQm ™

el =

0 0-0 0

Note that, the adjacency matrix for an undirected graph is symimetric as the edge (AB)
in E(G) iff the edge (BA) is also in E(G).

The adjacency matrix for a directed graph need not be symmetric.
Note : The space needed to represent a graph using its adjacency matrix is n2 bits.

¢ From the adjacency matrix of an undirected graph, the degree of any vertex i is its row
sum.

e From the adjacency matrix of a directed graph the row sum is the out-degree whlle the
column sum 1s the in-degree.

Scanned with CamScé

Data Structures Using
L el a " VIS ’-——'
‘ 53 :p' e e o .
- — 1if A= AT where AT is the transpoge of A
P e h G anc o4
1 (&»
qx of the grap
inconcy matrix ol tod graph. .
i aimple undirected gra) ; multi-graphs as woll 4s weighted
then graph G118 ,:ﬁx is algo useful t.'o ﬂ"":::ry 1, the entry will be the s
adjacency MALHX s | f the entry 1, the e e n
o mhrn: multi-graph, ""’.""?;'(,O,‘,mp of a weighted graph, the entries in th
et ::‘" two verticos and ":g .‘ ‘between the vertices instead of 0 or 1,
bﬁ::':-‘ are weights of the edges be
matrix are

Lot us take the graph,

e IfA4isanal

8raphs, In
er of edgeg
e adjacency

| Fig. 12.16.
The corresponding adjacency #natrix is: |
e ABCOD
Ao 2 ¢ ¢
Bl4 04 3
cloo o 1]
Dlo o 2 g
EXAMPLE 121

rix, hence G will have 5 vertices say vy,

Draw an edge from v; to U; where a; =1,

The required graph is shown in figure 12.17.

(b) Since AG)isa4 x4 Square matrix, the graph G’ has 4 vertices vy,
required graph ig shown i

Vg, Vg, U, and

Uy, Ug, U, and the
n figure 12.18. 2

\/
4 vzlb

A \ o
A 2 V3 JW

Fig. 12.18.

Vi

V3

Fig. 12.17.

Scldilieu witl udloCe

, Graphs M 409

powers of Adjacency Matrix

If A be an adjacency matrix of a diagraph l,th AP = Y5
[a}] gives the number of paths of length n from v; to v,
where An is the n'" power matrix of A. : e

Consider the graph
Whose adjacency matrix is

Uy Uy Uy vy v

V2 e, * Vs
“lo 11 1 0] Fig. 12.19.
V211 01 0 o
31 1 01 0
Val1 0 1 0 1
U0 0 010
The matrices A2, A% and A* for the graph as follows:
(3 1 2 1 1] (4 5 4 5 1]
1 21 2 0f 5 2 5 2 2
e 21311 A3_55461
“lt1 2180 “l6 2 6 2 3
1 01 0 1] 1 21 2 0]
(14 8 14 9 5]
9 10 9 12 2
- |15 9 16 10 6
At=
112 12 10 15 2
5 2 5 2 2]

Note that a%# = 2. So there are two paths of length 2 from v, to v, i.e., {e,, e5} and {e,,
e,.
Also '02,5 = 3, So there are 3 paths of length 3 from v, to v;,. '

Incidence Matrix

Let G be a graph with n vertlces and e edges then the incidence matrix is a matnx of
order n X e, whose n rows correspond to the n vertices and e columns correspond to the e
edges as follows :

_ |1 ifthe j" edge e ; is incident on i*? vertex v;
u 0 otherwise |

Scanned with CamSc:

410 Bl
Data Structures Using ¢

For example, suppose the graph G is as follows

€g

Fig. 12.20.

The incidence matrix for this graph is
¢; ey €3 €4 €5 % €78

mfp1 110000 0]
vlo 1110110
vs/o0 0 0 11 000
‘wlooo0o00011]
vs{0 0 0 0 1 1 0 0]
Path Matrix , 4
Let G be a simple directed graph with n vertices Uj, Ug, ---+ ,U,- Annxn matrix P= [Pij]
defined as follows Sgt:

);) _ {1 if thereisa path fromuv; tov; |

v 0 otherwise

from v; to v; when

Suppose there is a path from v; to v; then there must be simple path

v; # v; or there must be a cycle from v; to v; when v; = ;.
' f the graph G.

J B
Matrix P is called the path matrix or reachability matrix o
The path matrix P of a given graph G can be obtained from its adjacency matrix by
following steps : ,
e exists an edge from

From the adjacency matrix of A, we can determine whether ther

one vertex to another.
9. Find A" for some possible integer n.
3. Add the matrices A, A2 A3 ... A",
je,B"=A+A%+ ... +A"
4. Now path matrix P can be obtained from B" as foll .
P;=1 if and only if there is a non-zero element ows o -
otherwise P;; = 0. ntin the i, j entry of the matrix B".

1.

Linked Representation
Let G be a directed graph with n vertices. T

has a numbe e : \
er of major drawbacks, First of al) he sequential representation of G in memory
1

it may be difficult to insert and delete nodes

Scanned with CamSc:

— Y/

This is because the size of matrix may need to be changed and the no
in G- dered, so there may be many changes in the matrix. 'y rthermore,
.) H H
be reor O (n) or O (n log, n) then the matrix will be sparge
edges 18 ented in memory by a linked representation.
: res \
15 reIP linked representation, two node structures are uged.
n s
1. For non-weighted graph

des may need to

' if the number of
(will contain many zeros). So, G

INFO | Adj-list |

9. For weighted graph

Weight | INFO | Adj-list

here Adj-list is the adjacency list i.e., the list of vertices which
‘:reeadjacent for the corresponding node.

In the linked representation of graphs, the number of list d.epends

the number of vertices in the graph: The header node in ea-Lch
s intains a list of all adjacent vertices of that node for which
lllfz T;:ader node is. meant. Consider a graph adjacency list
representation of this undirected graph is:

8

Fig. 12.21.
1 ——| 2 ——| 5 /

2 =] 1 —+—| 5 — 3 4 /

3 —| 2 —| 4 /

4 -.—> 2 —t—1| 5 3 /

5 ——+| 24 —t—| 1 - 2 /

Suppose a directed graph.

Fig. 12.22.

the adjacency list representation of this graph.
1 | ——] 2 -l 4 |/
2 |——| 5| /
3 |——1| 6 5| /
4 |——| 2| [
5 |——|4] /
6 | ——|86| /

Scanned with LamoscCe

412 —m

Comparison of various representations :

Data Structures Using C

-"Ré})"‘réé'en't“ati_oh | Advanta"ges

Disadvantages "

1. Set representa-

1. It is the most efficient
tion

method from the memory
point of view.

1. It does not allow storing of
parallel edges.
2. Manipulation has a lot of

difficulities.

2. Matrix represen-

1. Manipulation of the graph
tation

with this representation is

1. Space is wasted.
2. Insertion and deletion operationg

very easy. are not that much easy whep
2. It allows storing of parallel compared to.the linked
edges, representation
3. Linked repre-

L. It is a space-saving method.

sentation 2. It is dynamic in nature.

3. It allows storing of parallel
edges. ‘

4. Insertion, deletion and other

operations arts easy to perform.

‘_\‘
1. Pointer fields are used ag extra

fields in addition to the data
fields. ‘

2. There is no faster way than to
search the entire list for the
presence of the edge.

I 125 IMPLEMENTATION GF A GRAPH

equal to 20, then the b

#define MAX 30
typedef struct node
int vertex;
Struct node *next; |.
}node1;

Now,

nodel *adj [MAX];

and for weighted graph, it becomes

typedef struct node
- int vertex;
int weight ;
struct node *next;
}node 2;

[MAX] ;

node2 *adj

e

SOCdINnea witn udirtoCc

Graphs — o 413

g 12.6 OPERATIONS ON GRAPH

Most of the algorithms developed assumed that the input graph is represented in aili e
list representation.

(a) Creating an empty Graph: |
void createGraph (nodel *adj [] , int num)

{ v =

int i;

for (i=1, i<=num; i++)
adj [i] =NULL;

} - . . . *

To create an empty graph, the entire adjacenéy list contains the NULL value.

(b) Inserting values in a Graph
(i) Non-weighted graph
void input (nodel *adj[], int num)
{
nodel *ptr, *last;
int i, j, k, value,
for (i=1; i<=num; i++)
{D LY "
last = NULL;

'prlntf(“\n Number of Nodes 1n the adjacency list of
node %d:"”, 1i); ~.

scanf (“%d", &k); _
for (j=1; j <=k; j++)

printf (*Enter the node %d:”, j);

-

scanf (“%d”, &Yglue)~

3 ptr = (nodel*) malloc (sizeof (nodel)) ;
09‘ , ptr - vertex = value ; ‘
ptr — next = NULL;
If (adj [i] == NULL)
adj [i] = last = ptx;;ﬁ
else '
{

last — next = ptr;
last = ptr;

-

Scanned with CamSc:

414 — —m_

Data Structures Using C

(ii) Weighted Graph
void inputweighted (node2 * adj[], int n)

{

node2 *ptr, *last;

int i, j, X, value, w;

for (i = 1; i <=n; 1i+4)
{
last=NULL;
printf (“\n No. of nodes in the adjacency list of node
§d:", 1i);
scanf (“%d”,&k) ;
for (3=1; j <=k; j++)
{
printf (“Enter node %d:”, j);
scanf (“%d”, &value);
printf (“Enter weight for edge (%d %d)”,i,value”);
scanf (“%d”, &w); .
ptri(nodez*)_maiioc (sizeof (node2)) ;
ptr — vertex = value;
ptr — weight = w;
. ptr — next‘='NULL;
if (adj[i] == NULL)
- adj [i] = last = pti;
else
e o |
idlageTsy next = ptr;-
. last = ptr; EA :
Ji > e
}
}

}
(c) Printing a Graph

This shows the wayrgraph'inform'a,tion can be outputted
void printgraph (nodel*adj[],int n)

nodel * ptr;
int 1i;
for (i=1, i<=n; i++)

{

ptr = adj[i];

Sca' rnrnea witi udIirnoCc

._'-_—-
Graphs 415

printf (“%d”,i);
while(ptrl=NQLL)

{

printf (*—_ %d”, ptr = vertex)r;
ptr = ptr — next;
} AN T

printf ("\n") ;

}
(d) Deleting a Graph :
This shows a graph removed from memory
void delegraph (nodel *adj(l, int n)

{ "
int i; |
nodel *temp, *ptr;
for (i=1; i<=n; i++)
{
© ptr=adjlil;
while (ptr !=NULL})
-+ -
temp=ptr; -
ptr=ptr — next; E
: free (temp); S
2}
adj[i] = NULL;
} ~
}

I 12.7 TRAVERSING A GRAPH

As we know that traversing is nothing but visiting each node in some systematic approach.
Graph is represented by its nodes and edges, so traversal of each node is the traversing in
graph. There are two graph traversal methods :

1. Breadth First Search [BFS]

2. Depth First Search (DFS) |

In BFS, we use queue for keeping nodes, which will be used for next processing and in
DFS, we use stack, which keeps the node for next processing.

12.7.1 Difference Between Traversal in Graph and Tree

Traversal in graph is different from traversal in tree or list because of the following
reasons:
(@) There is no first node or root node in a graph, hence the traversal can start from any
node.
(b) In tree or list when we start traversing from the first node,

_ all the nodes are tra
but in graph only those nodes will be traversed which are r el

eachable from the starting

Scanned with CamSc:

A

Data Structures Using ¢
-
416 L3 ,

i lect
node. So if we want to traverse all the reachable nodes we again have to select another
i f rsing the ining nodes.
starting node for traversing the remaining _
(c) In tree or list while traversing we never encounter a node more thantznce but “éh]t]f
traversing graph, there may be a possibility that we reach a node more than once. So t

. . . f C
ensure that each node is visited only once we have to keep the status of each node
whether it has been visited or not.

(@) Intree or list we have unique traversals. For example, if we are travel.'slng ﬂ;)e ;,‘ree 1'lln
inorder there can be only one sequence in which nodes are visited. But in graph, for the

same technique of traversal there can be different sequences in which nodes can he
visited.

§ 12.8. BREADTH FIRST SEARCH

This graph traversal technique uses queue for traversing all the ﬁodeg of the graph. In tl}is,
first we take any node as a starting node then we take all the nodes gdjacent to .that starting
node. Similar approach we take for all other adjacent nodes, which are adjacent to the

can be traversed again.

Suppose V,, is our starting node and V1, V,, V; are nodes adjacent to it. Ve Vie Vi are
nodes adjacent to Vi, Vou V,9 are nodes adjacent to V, and V, is adjacent to V3. So we will

traverse V| first and then ail nodes adjacent to Vo e, V7, V,, V5. Then we will traverse all

nodes adjacent to V,, i.e., Vi1» Vig, Vi3 and then we will traverse nodes adjacent to V,, i.e.,
- ;

21> V52 and then nodes adjacent to V3, i.e., V. Traversal will be in following order ;
VoViVa V3 vy, vy, Viz Voy Voy Vi

Let us take a graph and apply BFS to it

Take the node A as the starting node and start the traversal of- -
the given graph. : _

First we traverse node A, then we traverse all adjacent nodes Fig. 12.23.
to node A, i.e, B, D and E. We can traverse these nodes in any
order. Suppose we traverse in B, D, E order, so now traversal is:

A B D E

Now we traverse all nodes adjacent to B, then all the nodes ad
nodes adjacent to E, i.e., C, F we can see that node adjacent to no
already trayersed so we will ignore it and now the traversal 1s:

: A, B D,E,C,F. . »

This was the traversal when we take node A as the starting node.

BFS through Queue

jacent to D then all the
de Bis E and C, but E is

Initially queue is empty and front = - 1 and rear = _ 1.
* Initially visited [i] = false where i=1ton, n ig total number of nodes,

Procedure

> 1. Insert starting node into the queue,
Zz

]

o oQcLdilnieu will udl o

) [e —
Graphs 417

9. Delete front element from the queue and insert all its unvisited neighbours into the
. @eue at the end, and traverse them. Also make the value of visited array true for

these nodes. .
3. Repeat step 2 until the queue is empty.

Let us take node 1 as the starting node for traversal.
Consider the graph G in Fig. 12.24. below:

e —%D.
T g
: Fig. 12.24.

' The linked lisf or adjacency list representation of the graph is follows :

Adjacency list

O
o

Suppose the source vertex is A. Then following steps will illustrate the BFS.

Step 1 : Initially push A (the source vertex) to the queue.
: B N

FRONT
ol 1 2 - 3 4
e

FRONT =0 [
REAR =0 '

REAR LA

Step 2 : Remove the front-element A from the queue (by incrementing FRONT = FRONT

+ 1) and display it. Then push all the neighbouring vertices of A to the queue (by incrementing
REAR = REAR + 1) if it is not in queue. -

FRONT
0 1 l 2 | 4
FRONT=1 | I B
REAR =3 -~ r i
A 4
VIl ; Vv t) REAR
"ILrﬁversed—nedes = A , -
Step 3 : Remove the front element B from the

ighiny, queue and di it then' ; L Y
vertices of B to the queue, if it is not in queye, display it then add the neighbouring

Scanned with CamSc:

- Data Structures Using C
418 — =

FRONT
0 1 2| a3 4
o} D E
FRONT = 2 £,
REAR = 4 1‘

'REAR
Traversed nodes = A, B. :

(St\ep 4 : Remove the front element C \an,d add the neighbouring vertex if it is not present
n the queue, i.e., '

, Vo FRONT
0 1 w2 3le 4 ,
b E e
FRONT = 3 :
REAR = 4 : [

i REAR
Traversed nodes = 4, B, C. '

Step 5 : Again the process is repeated (until FRONT > REAR), i.e., remove the front
element D of the queue and add the neighbouring vertex if it is not present in the queue.

: FRONT
0 5= 20wy 4l
' U B
FRONT=4 RO
REAR=4 -, Tom-o 9 1_; - ——
R A T S s REAR bk, |
Traversed nodes = A, B, C, D. Pl e o,
then, ' : e s
. A FRONT -
RS [E S TR o Dt b el
FRONT =5
REAR =4 1

S~ REAR T .
Traversed nodes = A,'B, C, D',)E, ELREY N ol BB = e
So, A, B, C, D, E is the BFS traversal of the graph. : 2 A @ IS
C Implementation _)
BFS (int v) ’ —_—
{
int i, front, rear;
int que[20];
front=rear=-1;
printf (“%d”,Vv);
visited([v]=true;

rear++;

Scdlleu Wit udl 9L

Graphs

front++;
que [rear]=V;

whle(front<=rear)

{

v=que [front]; /* delete fron queue */

front++:

{

/% Check or adjacent unvisited nodes */
if (adj[v] [1]1==1 && visited[i]==false)

{

}

BFS by. Colourmg Scheme §

printf (“%d”,1);

visited[i]=true;

rear++;

que[rearlsi;

To keep track of the progress, BFS colours each vertex WHITE, GRAY or BLACK, where
vertex WHITE colour indicates that the vertex is undiscovered, vertex with GRAY colour
indicates that the vertex is discovered but not yet processed and the vertex with BLACK

colour indicates that the vertex has been processed. So all the vertlces are lmtlally WHITE
and later on become GRAY and then BLACK.

Thus if (u, v) € E and vertex u-is BLACK, then vertex v is elther GRAY or BLACK, i.e.,
all vertices adjacent to BLACK vertices have been discovered. Gray vertlces may have some

adjacent WHITE vertices.
BFS (G, s)

for each vertex u € V[G] - {s}

do color(u] ¢« WHITE

d[u] ¢ o/* distance from vertex u *x/
nt[u] « NIIL

d(s] «.0
n(s] ¢« NIL
Q «0¢

ENQUEUE (Q, 8)

10. while Q #¢

1
2
3
4
5. color[s] ¢« GRAY
6
7
8
9

11. do u < DEQUEUE (Q)

Scanned with CamSc:

— W
420

Data Structures Using c

P

| 12.
13.
14.
T«
16.
17.
18

EXAMPLE 12.2. Consider the graph G in Fig. 12.26.
first search. Using vertex 3 as the source.

So,
and

Now,

for each v € Adj [ul
do if color(v] = WHITE
olor [v] ¢ Gray

then C
dlv] « dful + 1
nlv] «<U

ENQUEUE (Q, V)

color[u] « Black
Describe the whole process of bready,

Fig. 12.25.

Solution: First, we create adjacency-list representation.

1 |——] 2 4 / {

2 |[——|[s] 1 . :

3 |—t+—| 6 - 51 [/ T
4 |——| 2| /

5 ——; 4 /

6 —| 6 /

Fig. 12,26,

[6,5] 80 color [6] = GRAY
color [5] = GRAY

dl6]=1 d[5]=1

n6l « 3 n[5]« 3

adj[3] =

oldlilieu willl LJ'dIIIStE

- : ~ Fig. 12.27.

Thus vertex 1 cannot be reachable from source. -

E 12.9 DEPTH FIRST SEARCH

The Depth First Search (DFS), as'its name suggest, is to search deeper in the graph, whenever
possible. Given as input graph G = (V, E) and a source vertex S, from where the searching
starts. First we visit the starting node, then we travel through each node along a path,
which begins at S. That is, we- visit a neighbour vertex of S and again a neighbour of a
neighbour of S and so on. DFS also works on both directed as well as (B)

on undirected graphs. A C
DFS uses stack.
Let us take the graph (see Fig. 12.28).)
Suppose node A as the starting node. First, we will traverse node @ e e

A. Then, we will traverse any node adjacent to node A. Suppose we Fig. 12.28.
traverse node B, then traverse node E, which is adjacent to node B, then traverse adjacent

node of E, i.e., node F. Now there is no node adjacent to node F, i.e., dead end. So we will
move backward. Till now the traversal is:

A BEF | _
Now, we reach node E, see if there is any node adjacent to it. There is no such node. So
we will move backward. Now, we reach node B, see if there is any node adjacent to it and not
traversed yet. Here node is C. So we traverse it. Now there is no untraversed node adjacent
to node C. So, we will move backward. On reaching node A we see that node D is adjacent to
it and has not been traversed. So we traverse it. Now there is no untraversed node adjacent

to node D. We can’t move forward and we can’t move backward also, so we will stop. So, the
traversal is:

A B E FC,D.

écanned with CamSc:

Data Structures Using ¢
422 — W

Depth First Search Through Stack STACK, which will be used 1o ..
Depth Search technique uses stack. Take an a;;myBoolean array VISITED, whijc}, i,];

the unvisited neighbours of the node. Take a anot erll have value FALSE if the nog, o

have value TRUE if the node has been visited and w1

not been visited.

Initially stack is empty and TOP =- 1. £ nodes.

Initially VISITED [i] = PALSD wherei=1ton, nis total number o

‘ =
Procedure i

|
1. Push starting node mto the stack. |

2. Pop an element from the stack, if it has not been traversed then traversle it, if it hag | |
already been traversed then just ignore it. After traversing make the value of VlSlterJ
-array true for this node.

)
3. Q.Now push all the unvisited adjacent nodes of the popped element on stack. Pugh the
element even if it is already on the stack.

4. Repeat steps 3 and 4 until stack is empty.

Let us consider a graph.

55 1
__ Fig. 1229, _ O

Suppose the starting’ node for traversal sl |

Step 1: Push node 1 into stack.

Now, TOP = 0 and STACK 1%
Step 2 : POP node 1 from stack and traverse it

So, Traversed node =1 and VISITED [1] = TRUE
Now push all the unvisited adjacent nodes 2, 5, 4
Now

of the popped element on the stack.
" TOP = 2 and - STACK 2, 5, =2,5,4
Traversal = B e i

Step 3 : POP the elemerit node 4 f'rom the stack, traversed it and push all its unvisited
adjacent nodes. There is no adjacent nodes, So, |

Traversed node = 4,
VISITED [4] = TRUE

TOP = 1. STACK < :
Traversal = 1, 4

Traversed node =
VISITED [5] = TRUE

TOP =0 STACK = 2
Traversal = 1,4, 5

Scldilneu will udliioCe

Graphs

—N 423

Step 5 : Pop the element 2 from the stack, traverse it and push all its unvisited adjacent

nodes, i.e., node 3.
" Now,

VISITED(2]

TOP

Traversal

Traversed node =

I

2
TRUE

0 STACK=3
1,4, 5,2

Step 6 : POP the element 3 from the stack, traverse it and push all its unvisited adjacent

nodes. No node is here. s
Now, Traversed node
VISITED(3]

TOP

Traversal

=3

TRUE
~'1 STACK =NULL
1,4,5:2,3

Since the stack is empty, so we will stop our process. The function for DFS is as follows :

C Implementation
DFS (int v)

{

int i, stack[MAX], TOP

int ch;

TOP ++} :
~stack [TOP] = v;
while (TOP>=0)

{

;71, POP, J, k;

POP = stack[TOP] ;
TOP—-; %
if (visited [POP] == false)
printf (“*%d4”,pop);
visited[pop] = true;
)
else
R ~ continue
* . ' for(i=n; i>=1; i--)
_ { .
if (adj [pop] [i] == 1 && visited[i] == false)
{ @ '
top++;
stack [top]=i;
}

 ——— S ——. s 21 . :

Scanned with CamSc:

Data Structureg | ..
y /——/ US'”Q 0
, 432 n

Call DFS (G7).

v; ' ’ ‘ ~ Fig. 12.46.
Thus, strongly connected components are
{rh), 4@, t, 3, {x, 2}, s, v, w)

B 12.12 SPANNING TREE

Let us take a connected graph,

Here all these trees.are spannin
number of nodes. _ |

If graph is not connected, i.e., a graph with n
spanning tree is possible. A graph may haye many
trees are the spanning trees which are obtaineq

€ tree and the number of edges is one less than e

: 0
vertices has edges less than n — 1 thenilIll
Spanning trees, DFS and BFS Spa-nnlY~
by DFS and BFS traversal respect!Ve

. N,
DU-Cﬁ"leu WIL LdITOCc

Graphs

(iii) - (v)

Fig. 12.47.

B 12.13 MINIMUM SPANNING TREES

Given a connected weighted graph G, it is often desired to create a spanning tree T for G
such that the sum of the weights of the tree edges in T'is as small as possible. Such a tree is

called a minimum spanning tree and fepresents the “cheapest” way of connecting all the
nodesin G. '

There are number of techniques for creating a minimum spanning tree for a weighted
graph but the most famous methods are Prim’s and Kruskal algorithm.

E 12.14 KRUSKAL'S ALGORITHM

This algorithm creates a forest of trees. Initially, the forest consists of n single node trees
and no edges. That is, in the method initially we take n distinct trees for all n nodes of the
graph. At each step, we add one (the cheapest one) edge, so that it joins two trees together.
If it forms a cycle, it does simply links two nodes that were already part of a single connected
tree, so that this edge does not included. : :

The steps are as follows :

1. Initially construct a separate tree for each node in a graph.

2. Edges are placed in a prioritg gueue, L.e., we take edges in ascending order. We can use
a heap for the priority queue. : _

3. Until we have added n — 1 edges.

(a) Extract the cheapest edge from the queue.
(b) If it forms a cycle, reject it

else

add it to the forest, ™

4. Whenever we insert an edge, two trees will be
two trees in the forest together so that at the e

In this rr'lethOd, first we examine all the edges oné-hy-one starting from the smallest
edge. To decide whether the selected edge should be included in the spanning tree or not
we will examine the two.nodes connecting the edge. If the two nodes belong to the same tree;

N

joined, i.e..'\évery step will have joined
nd, there will be only one tree."

Scanned with CamSc:

|

’ Da
-—-——-———-1l______ﬂ_______..______,______d__ﬂ-————~————-———— ta Svauuesu.
Sine
0

434
ning tree, gince the two nodes qarq in

this edges WOLlld result in a Cycle_ g, 9 'Q';’rfu.
ydes are in different trees, e, i

des are in the same tree o

: apan
then we will not include the edge 10 the 81

ling

tree, they are already connected and (‘]d’(i ¢ it’s ne

insert an edge in the spanning tres ofl)l - two N0
Now, we will see how 10 decide whether

we need a UNION-FIND gtructure. e lask ata BaFb
To understand the UNION-FIND gtructure, we onof, .

[LBy T
Jvery element of the set belongs to one of the sets ™ i Ifﬂrtltlon. |
(@) Even to more than oné of the sub-sets.
(b) No elemlent oftth: set tbl(;:;gﬁ; o and only one of the sets of & Partition
¢) Every element ol a se) '
f\)partit{011 of a set may be thoughtof as a set of equlﬁagﬁgsstdiisiﬁ:c}] 8ub-sep ¢,
partition contains a set of equivalent elements. For eac b is’ i e one ey,
the representative of that subset. Each element 1n the su e B th’e sub-seotw’ €Quvaley, ,
represented by the representative. When we adc.l 9lemen ' node is it » W arrang, thi,
all the elements point to their representative. Initially, each no etls 168 OWn represen;,,.
As the initial pairs of nodes are joined to form a tree, the representative pointer of o, ; 0
nodes is made to point to the other, which becomes the r.epresentatlve of t}}e tree. gy,
are joined, the representative pointer of the represeptatlve of one of them Is set to Doigs
any element of the other. Let x denote an object, we wish to support the following operatir,;?
1. MAKE -SET (x) creates a new set whose only member (and thus representatis
pointed to by x. : : .
5. FIND-SET (x) returns a pointer to the representative of the set containing .
3. UNION (x, y) unites the dynamic sets that contain x and y, say S, and S, intoanews:
that is the union of these two sets. The representative of the resulting set is some merte
of S, U S,. Since we require the sets in.the collection to be disjoint, we “destroy” seis§.
and S. removing them from the collection.)
MST-KRUSKAL (G, W) '

1. A «6¢.
2. for each vertex v e'_V[G]
do MAKE-SET (v)

[n(lr [h]

rﬂ‘;'r‘? -

3. sort the edges of E into increasing order by weight w.

for each edge (u, v) € E taken in increasing order.
do if FIND-SET (u) # FIND-SET (v)
‘then A « A U {u, v}
UNION (u, v)
5. return A,

EXAMPLE 12.6. Find the minj . g Krushd
algorithm. € minimum spanning tree of the following graph using Brt

Graphs — W 435

Solution: First we initialise the set A to the empty set and create |v| trees, one containing
each vertex with MAKE-SET procedure. Then sort the edges in £ into order by non-decreasing
weight, i.e.,

Edge Weight
(h, 8 Ls
@&,
4
6
7
(c, d) T
(b, ©) 8
(a, h) 8
(d, e) 9 e
N 10 S »)
(b, h) 11.
(")) 14

Now, check for each edge (u, v), whether the end points u and v belong to the same tree.
If they do, then the edge (u, v) cannot be added. Otherwise, the two vertices belong to different
trees and the edge (u, v)-is added to A and the vertices in the two trees are merged in by
UNION procedure. : ‘ :

So, first take (h, g) edge

the (g, /) edge.
| Fig. 12.50,

then (a, b) and (i, g) edges are considered and forest becomes.
— - T m————

Scanned with CamsSc:

| Data Stru .
—'//_____———————— Ctures Usmg .
436 n

7

Fig. 12.51.
Now, edge (h, i). Both h and i vertices are in same set, thus 1t ctl'eates a cycle. g this

edge is discarded.
Then edge (¢,). (b, ¢}, (@, k), (d, €}, (¢, /) are connected and forest becomes.

T.

_ =Y Fig.12.52. |
In (e, f) edge both end point e and fexist in same tree so discarded this edge. Then (b, h)

edge, it also creates a cycle. ; _ .
After that edge (d, f) and the final spanning tree is shown as in dark lines.

8 7
® ;
9
1 2
© ®
. Minimum cost MST

Fig. 12.53.

1 sV

§ 12.15 PRIM’S ALGORITHM

o@her node in spanning tree on the basis¢
0se we start with the node ‘u’ then we have?
h edge has minimum weight. Then we will add
uppose if two nodes u, and u, are in spanuits
then edge, Which has minimum weight will be

that edge and node to the spanning tree, §
| tree and both have edge conngcting to y
: added in spanning tree, .

Scdilieu witll udlnoCe

Graphs v 437

weight edge (u, v) connecting a yertex v ip tho set A to “."’ vertex u outside to set A, Then
vertex u is brought in to A. This process 18 repunth until f.l spanning tree is formed. Like
Kruskal's algorithm, here too, the important fact about MSTs is we always choose the smallogt.
weight edge joining a vertex inside set A to the one outside the set A. The implication of thig
fact is that it adds only edges that are safe for A; therefore when the algorithm terminates,
the edge in set A form a MST.

MST-Prim (G, w, r)

1 for each u € V|[G]

2 do key[u] ¢ee

3 n{u] ¢« NIL

4 keylr] « o

5. Q « VI[G)]

6 while Q #¢ .

7 do u ¢« EXTRACT-MIN (Q)

8 for each v € Adj[u] |

S do if ve Q and w (u, v) < key [v]
10. then nw[u] < u . e
11.

keyv] « w(u, v)

EXAMPLE 12.7. Find the minimum spann'in‘g tree vising Prim’s algorithm for the given
graph.

" [(GBTU, B.Tech., 2011-12)

- % - l// \‘. ‘U

0O

Fig. 12.54.

Solution: First we intialize the priority queue @ and II;ey of each vertex to e except for the
root whose key is 0. Suppose V, vertex is the root.

AG V)] = (V,, V, V) |
Removing V, from the set @ and adds it in the tree.

Now, update the key and = fields of every vertex adjacent to Vl but not in the tree.

key [V,] = e
o(V,V,) =4 ie, o (Vi) V) < key [V,
So, n[Vo]l =V, and key [V,] = 4 ' a
Similarly, key [Vy] = o 7

Scanned with CamSc:

Singc
o(V,,Vy) =6 ie, o(V,V,) <key (Vi) ‘
RV, =V, and key [V, =6
nV,) =V, and key[V,]=2

So,
and

' v7 B ;
- Fig.12.55.
Now, by EXTRACT MIN Q). Remove V, node becuase key [V,

4l =2, which is Minimy,
_ Ad] [V4] = {Vp Vg;‘ V3, -V5, Vs’ V7}
Removing V, from the

set @ and adds it to the set V- @ of vertices in the tree where
1s already there, . : : L
' key, [V2] = 4. : =
©Wa V) =1 0V, V) <key [v, S
So, n[V,] = V;: an% -key Vol =1 s v oy
Similarly, n [V = V, key V] =3 oy ~
, ' T [V7] = V4 key [V7] =7
TV =V, key(vg=4 1
But ©(Vy, V) =8 ang key VAEY: :
OWy V) > key[vy Bl
| So, no change ang V1 is not in the Q e : e Y \
|

ocldlileu willl L/'dlrlSCc

Graphs L 439

'
' Now, By EXTRACT_MIN(®). Remove V, because key (Vo] = 1 which is minimum and
adds it to the set V-Q of vertices in the tree. The elements in tree now {V,, Vy Vol

Adj [V,] = {V}, Vy, Vi)
V,, V, are not in the @ so

@ (Vy Vg =2
key [Vg] = 3
© (Vy, Vg < key [V
So, n(Vy) =V, and key [Vel =2

; “Fig. 12.57. ‘ , |
Now, by EXTRACT_MIN (Q). Remove 1/_%'5 because key [V;] = 2 which is minimum. Now,
' Adj [Vi] = {V,, V,, V} ‘

where V,, V, not in Q. So, . iy
key [V;] =7 and o(V,, V,)=9
@ (Vy, V) > key [V]. No change.
Now, by EXTRACT_MIN (Q). Remove V because key [V] = 4
Adj [Vl = {Vy, V, Vit
®(Vy Vo) =1, key[V,]=5
o (Vg, Vo) < key [V,]

So, ' key[V5] =1 and =« [V5] = Vg
Similarly, () (Vﬁ, V7) =6 key [V7] =7

0 (Vg V) < key [V,] '
So, , key [V;] =6 and n [Val = Vg

Now, Remove V; because key [V;] = 1

Adj [Vy] =V, V,, Vy
No node in Q.

Scanned with CamSc:

—

tree is

Fig. 12.59,

The edges that belong to MST are

Vi, VY, (Vy, V), (V,, V), (V.. v
’ ’ v V) ’), V)
Weight of MST will pe . ©" (& Vo) (

2+1+2+4+1+6 =

VS' V7)

a . .)
algorithm. P “‘““5 tree for the following graph using Prim?

oldlilnieu willl LJ'CIIIIOC‘C

égaphs - 441

Flg. 12.60.

Solution: In Prim’s algorithm, first we initialise the priority queue @ to contain all the
vertices and the key of each vertex to « except for the root, whose key is set to 0. Suppose 0
vertex is the root, i.e., r. By EXTRACT-MIN (@) produre, now u = r and Adj[u] = [5, 1].

Removing u from the set @ and adds it to the set V — @ of vertices in the tree. Now,
update the key and = fields of every vertex v adjacent to u bgt not in the tree.

key[5] = oo
w(0,5) = 10 ie, w(u,v)<key[5]
so, -w[5] = 0 and key[5] =10.
and : key[1] = o '
w(0,1) = 28 ie,; wu,v)<key[5]

S0 - =m[1] =0 and key[i]?ZS.

Fig. 12.61.

Now, by EXTRACT_MIN (@) Remove 5 because key [5] = 10 which is minimum so z = 5
Adj[5] = {4}
w(u, v) < key [v] then key [4] = 25

2

Scanned with CamSc:

Udlid SIFUCtUreS USin
g

Fig. 12.62.
remove 4 because key[4] = 25 which is minimum so u = 4
Adj[4] = {6, 3}
w(u, v) < key [v] then key[6]=24

key [3] = 22
Now remove 3 because key [3]

Now

=22 is minimum sou = 3

i Fig. 12.63.
Adj[3] = {4, 6, 2}
4 ¢ Qkey[6] =24 now becomes key [6] = 18
key [2] = 12 | :
Now, in Q key 2] = 12, key[6]=18, key [1] = 28
By EXTRACT_MIN (Q) Remove 2, because key [2]
Adj[2] = {3, 1}

3¢Q
NOW, " key [1] = 16.

=12 is minimum

Qcdlilieu will udloCc

et ———— 443

By EXTRACT_MIN (@) Remove 1 because key [1] = 16 is minimum
Adj[1] = {0, 6, 2}
(0,2} ¢ Q, key [6] =14,
Now because @ contains only one vertex 6. By EXTRACT_MIN remove it

Fig. 12.65.

Thus, the final spanning tree is

Fig. 12.66.

E 12.16 SHORTEST PATHS
A path from source vertex s to t is shortest path from s to ¢ if there is no path from s to ¢ with
- lower weights.

In a shortest-paths problem, we are given a we1ghted directed graph G = (V, E), with
weight function w : E — R mapping edges to real-valued weights. The weight of path p =<
Piys Wgpneeriee v,,> is the sum of the weights of its constituent edges.

k
wp) = 3 ,w(viy, ;)

i=1

we define the shortest-path weight from u to v by
d(u, v) = min (W(p) : u ~v),
If there is a path from u to v. The shortest paths are not necessarily unique.

(a) Shortest Path for Given Source and Destination :

In order to find a shortest path from a given source to given destination, we discuss
Dijkstra’s shortest-path algorithm.

Scanned with CamSc:

o Using 0
Relaxation

ique kn
The single-source shortest-paths algorithms are b:llsed S}?ea:stcl’:] ?3 hirte(;t?)sshr Clagy o
a method that repeatedly decreases an upper bound on th weight. For each v twelght Uf
each vertex until the upper bound equals the shortcﬂt'P:ll n the weight of 3 g Sy %
We maintain an attribute d[v], which is an upper b?un 0 We initialize the Sh(’rtest Dat
from source s to v. We call d[v] a shortest-path estimate. . Orteg.

t Mtﬁ;
estimates and predecessors by the following procedure.
INITIALIZE-SINGLE-SOURCE . (G, 8)
1. for each vertex v e VI[G]
- 1 do d([v] ¢« oo
3. n{v] « NIL
4. d[s] « o
d[v]: represents the shortest distance of v from the source and
w[v]

* represents the predecessor
shortest-path from source.

After initialisation, n[v]=NILfor allve V, d[v] =0 for v =s, and d[v] = e for Ve

The process of relaxing an edge (u, v) consists of test.ing whethey We can imprqy, n
shortest path to v found so far by going through u and, if so, u_pdatlng d[v] ang R[], \
relaxation step may decrease the value of the shortest-path-estimate d[v] ang update

predecessor field n[v]. The following code performs a relaxation step on edge (u, v)
RELAX (u, v, w)' ' '

of node v, i.e., the node which precedes the given node ip

Vo,
3

1. if AV s dlul +owlus v)
P then d(v] « d[u] . + w(u, v)
% A

_ T Ev] « u
For example, g

.. 4. . _‘I-ie‘re'," dlu] =5
_ o d] =11
w(u,v) =4 |
ie., d[v] > d[u] + w(u, v)
| S 11 >5+4 7
11 > 9
By apply RELAX, we get ' .
4 Le,d[v] =9
: dlu] =5 and wu,v)=4.
: M
Le. :
! u v
‘Relax
4 .
O——0

§ 12.17 DUJKSTRA'S ALGORITHM h

Dijkstra’s algorithm, named after its discgverer, Dutch computer scientist Edsger D ijkst:ea’
is a greedy algorithm that solves the single-source shortest path problem for a dire¢

Sedlleu witl udlTSCe

Graphs

B 445

graph G = (V, E) with non-negative edge weights,
(u,v) e K.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path weights
from the source s have already been determined. That is, for all vertices v e S, we have d[y]
=9(s, v). The algorithm repeatedly selects the vertex u € V- S with the minimum shortest.
path estimate, inserts u into S, and relaxes all edges leaving u. We maintain a priority
queue @ that contains all the verticesin v —s, keyed by their d values. Graph G is represented
by adjacency lists.

DIJKSTRA (G, w, s)

INITIALIZE-SINGLE-SOURCE (G, s)
S « ¢ .

Q « VI[G]

while Q #¢

i.e., we assume that w(u, v) 20 each edge

do u « EXTRACT-MIN (Q)
S « S v {u}

for each vertex v € Adj[ul
do RELAX (u, v, w)

Because Dijkstra’s always chooses the “Iightest” or “closest” vertex in V — S to insert
into set S, we say that it uses a greedy strategy. :

Dijkstra’s algorithm bears some similarity to both breadth-first search and Prim’s
algorithm for computing minimum spanning trees. It is like breadth-first search in that
set S correspond to the set of black vertices in a breadth-first search; just as vertices in S
have their final shortest- path weights, so black vertices in a breadth-first search have their
correct breadth-first distances. Dijkstra’s algorithm is like Prim’s algorithm in that both
algorithms use a priority queue to find the “lightest” vertex outside a given set (the set Sin
Dijkstra’s algorithm and the tree being grown in Prim’s algorithm), insert this vertex into
the set, and adjust the weights of the remaining vertices outside the set accordingly.

EXAMPLE : Consider A as a source vertex.

m N o0 Ul b Ww N+

Initialise :

4
s

Sedllieu witll udl119Cs

e EEREIUUCIUres USing C
| “A” < EXTRACT-MIN (Q):

8
8

Q: A B C D E

0w 0 @ o

10§ - -

! : C"’@-EXTRACT-MIN'(Q).; : }.

SldIeu Wil LudI ol

N 447

Graphs
“E” « EXTRACT-MIN (Q) :

S : (A C E

Relax all edges leaving E :

| , S : {4, C E
“B” EXTRACT-MIN (@) : =

S : {A C E B

Relax all edges leaving B :

S

{A, C, E, B}

B C D E

2] w oD o

10 (3 - -

7 ", ’\5_‘)
E

1 5

7 1

A B E
0 © o «©
10 3 .
7 1 5
7 5y
9

Scanned with CamScE

|

 Data Structures Usin

0 w »n w o

A 10 3 o o
DJ 7 11 5
; it 11

o

(\D 9

{A, C, E, B, D}

.~

‘§ 12.18 WARSHALL'S ALGORITHM

The algorlthm considers the “intermediate” vertices of a shortest path, where an intermediq,,
vertex of a simple path p = <vl, Ugy sises v,,>is any vertex of p other than v,0rv,,thatis any
vertex in the set {vg, Vg, ein v,)

The Floyd Warshall algorlthm is based on the following observation. Let the vertice; ;
Gbe V={1, 2,, n}, and consider a sub-set {1, 2,, k} of vertices for some k. For any p,;
of verticesi,je V, consider all paths from i to j whose intermediate vertices are all dray,
from {1, 2,, k}, and let p be a minimum-weight path from among them. (Path p is simp].
since we assume that G contains no negative-weight cycles). The Floyd-Warshall algorithy
exploits a relationship between path p and shortest paths from i to j with all intermedia:

vertices in the set {1, 2,;, k — 1} The relatlonshlp depends on whether or not % is i
intermediate vertex of path p.

If k is not an intermediate vertex of path p, then all 1ntermed1ate vertices of path pare

intheset{1,2,...,k-1}. Thus a shortest path from vertex i to vertex] with all intermediate
| vertices in the set {1,2,...,.k-1}1is also a shortest path from i to j with all intermediate
1 vertices in the set (1, 2, k)

If k is intermediate vertex of path p, then we break p down into i Py kP

Let di(jk) be the weight of a shortest A]')ath from vertex i to vertex j with all intermediate
vertices in the set {1, 2,, k}.
A recursive definition is given by

.

e wy < if k=0
dy =1 . - =
ij me(di(jk U,df,f 1)+d,(¢"’.°‘1)ifk 21)
(0 ifi=pk
I owy = 1w i,J) fi# jand(i,j)e E
. . * ifi#jand(i,j)e E
| 0., i = o
. 0 e L] . . .‘ .
Thus, T dj 4 w(w),- i+ jand (i, j)e E
| , L= otherwige

Sudllieu witl udlirScse

Let us define the V X Vmatrix
D(m) - (dém))
dl-j("') = thelength of the shortest path from i to j with < m edges.
When m = 0, there is a shortest path from i to j with no edges if and only if i =,
0 ifi=j
di}O) = Wy ifi j,(l:,j)E E
e otherwise
FLOYD-WARSHELL (W)
n « rows (W]
D'® « w
for k &« 1 ton
do for i « 1 to n
do for j « 1 ton :
do df « min (dk-1, qfk-V 4 gfx - 1)

N 0 e W

return D'

Constructing a Shortest Path

There are a variety of different methods for constructing shortest paths in the Floyd-
Warshell algorithm. One way is to compute the matrix D of shortest-path weights and then
construct the predecessor matrix IT from the D matrix. This method can be implemented to

run in O(n3) time. Given predecessor matrix I1, the PRINT-ALL-PAIRS-SHORTEST-PATH
procedure can be used to print the vertices on a given shortest path.

We can compute the predecessor matrix IT just as the Floyd-Warshall algorithm computes
the matrices D(k). Specifically, we compute a sequence of matrices no nm, . .. 0®, where

I1=T11™ and is defined to be the predecessor of vertex j on a shortest path from vertex i with
all intermediate vertices in the set (1, 2,, k). ~ ' '

The recursive formulation of nge). When k=0, a shortest path from i to j has no intermediate
vertices at all. Thus, ‘ :

NIL ifi=jorw; =
1:1(]9) _ { i=jorw;

i ifi=jandwij <o

For k2 1, if we take the path i ~ k ~j, where k #Jj then the predecessor of j we choose is
the same as the predecessor of j we chose on a shortest path from k with all intermediate
vertices in the set (1, 2, , k —1). Otherwise , we choose the same predecessor of j that we

chose on a shortest path from i with all intermediate vertices in the set (1, 2, ..., k — 1).
Formally, for k > 1,

7t(-‘-k_l) if di(jk-l) < d(k-—l) +d(k—1)

) — ij ik kj
jo | k=) e (k-1) o g(k-1) | (k-1)

EXAMPLE 12.9. Apply Floyd-Warshall algorithm for
constructing shortest path. Show the matrix D® that results
each iteration. '

-4

Fig. 12.68.

Scannea witn LamsCce

Sudlleu witll udliiSc:

(&)
=4
.UNM ,.W..Uﬂ,nny.ﬂmlﬂvw?.o@mo}_ommn_u%mwo.n_uwwnlmwowvmrowwmo
F :
=
o
=
-
& S .
@ 2 i - 3
© llosss"soc8 8880888 80888 80888, 38388, 8
B 2 ! ! .
=
]/
-
1
= .
— o ! <SR SR D R - ’
g 8 4 8 8 © +..PnOOOOOOllllllmmmmww______w.mwmmmmmmmm,m
~ |I= : : (. . .
el e~)
T 8 8 ™ o 8 1 v
ki...
g ™ g © 8 8 < |
o S T B
g 8 g 8 = LB : :
§ © & § = 10 d.__nlomwm.u_.mlowzwmmzomm__4mw03mm7.mm0mm5mmm0
—_—) ,
= A
S - 8T 8 8- &
1 = m
n i
Q dL..J12345612345612345.,6123456123456123456
o | o H NN N N NI N D MM MM T E T T T OO 000 O DO WO WO OO ©
z
c
oo = ;
c ~4 R R e e e i B
s = e B e T T e T T e e e e T TR T e S S S
s =
]
(/7]

Graphs

So, the DV matrix is

N R 451

DY 1 2 3 4 5 @
1 |0 o0 00 o =1 o
2 11 0 o 2 0 o
3 |0 2 0 o o -8
4 [-4 o 0 =5 oo
B |0 7 o o 0 oo
6 [0 B 10 o o 0
Similarly, we get
D?|1 2 3 4 5 6 D®|l1 2 3 4 5 &6
1 | 0 o0 o0 o0 -1 oo 1 |0 o0 o0 o -1 oo
2 |1 0 » 2 0 2 [1 0 o 2 0 oo
3|3 2 0 4 2 -8 3138 2 0 4 2 -8
4 |4 o o 0 -5 oo 4 |4 « 0 -5 oo
5 |8 7 © 9 0 o 5 |8 7 © 9 0 oo
6 |6 5 10 7 5 0 6 |6 5 10 7 5 0
D®|1 2 3 4 5 6 D®|12.3°4 5 6
1 [0 o o o -1 = 1 [0 6 « 8 -1
2 -2 0 o 2 -3 2 [-2 0 ©» 2 -3 o
3 /0 2 0 4 -1 -8 3 /o 2 0 4 21 -8
4 |-4 o 0 -5 o 4 |4 2 © 0 -5 oo
5 |5 7 e 9 0 oo 5 (5 7 ©» 9 0 oo
6 |3 5107 2 0 6 13 5107 2 0
and
D11 2 3 4 5 6
1]1]0 6 o 8 -1
2 -2 0 o 2 -3 o
3 -3 0 -1 -6 -8
4:Q22000@-m
515 7 o 9 0 o
6|3 G 10 7 2 o
-

The shortest path from 3 to 1 is
3 2652 -54->1andis-5 units.

Similarly, if we want to find the shortest path from 6 node to 2 node then it is 5 units
[6 — 2] and the shortest path from 4 to 6is =5, i.e., 4 —» 1 — 5.

»

Scanned with CamSc:

