Bluepri nt

 Reading

A. ALPHABET OF

LINES ${ }_{\text {Universal language for designers, engineers, } \& \text { production }}$ personnel.

- Uses lines, numbers, symbols and illustrations.

Different Blueprint Forms:
-Drawings for fabrication (Standardized symbols for mechanical, welding,
construction, electrical wiring and assembly).
-Sketches (Illustrate an idea, technical principle or function).
Lines are made in definite standard forms: (all have specific meaning)

- Thickness of a line (thick or thin)
- Solid
- Broken
- Dashed

A. ALPHABET OF

 LINES

A. ALPHABET OF

LI

1. Object Lines:
-Thick solid lines - outline all surfaces visible to the eye.
-Form basis for comparing weight and composition of other lines.

A. ALPHABET OF

2. Hidden (invisible) Lines:

- Short, evenly spaced dashes.
- Outline invisible or hidden surfaces.
-Always begin with a dash in contact with line at start except when dash would for

3. Center Lines:

-Alternating long and short, evenly spaced dashes (long dash at each end).
-Short dash where center lines intersect.
-Same weight as invisible lines.

- Indicate central axis of an object or part.
- Indicate rontar noint nf a rirmla or holo

A. ALPHABET OF

4. Phantom Lines:
-Thin lines.

- Indicate alternate positions of parts of an object.
-Shows repeated details or location of absent parts.
- One long and two evenly-spaced short dashes (long dash at each end).

5. Dimension Lines:

- Short, solid lines.
- Indicate distance between two points.
- Arrowheads at each end.
- Broken to insert dimensions.

Prof Bhavik Sonej

A. ALPHABET OF

LINES

6. Extension Lines:
-Short, solid lines used to show limits of dimensions.

- Placed inside or outside the outline of an object.
- Extend from an outline or surface, but do not touch it.
- Same weight as invisible lines.

7. Leaders:

- Indicate part or area to which numbers, notes, or references apply.
- Solid lines.
- Usually terminate in a single arrowhead ${ }_{1 / 2 \text { " }}$

A. ALPHABET OF

8. Break Lines:

- Can be long or short.
-Indicate that part is broken out to clearly show part or area beneath part.
- Also used to reduce size of drawing of long part w/uniform crosssection.
- Short breaks indicated by solid, thick, freehand lines.
-Long breaks indiratad hy colid thin rulod linac hrgken by freehand zigzags.
-Breaks on sha

A. ALPHABET OF

LINES Section (crosshatch)

Lines:

- Distinguish between two parts that meet at a given point.
- Each part lined or hatched in different direction.
- Thin, parallel lines approx 1/16 in. apart at 30, 45 or 60 degrees.

A. ALPHABET OF

LINES.S Section (crosshatch) Lines
(con't. Ailso used to depict specific types of common manufacturing

A. ALPHABET OF

LINFSS Cutting Plane
Lines: Heavy dash followed by two shorter dashes.

- Each end has a short line at right angle to cutting plane line, with arrowheads pointing in direction from which cut surface is viewed.
- Usually labeled with a letter at either end to identify cut surface
- Cut suı

ALPHABET OF LINES

EXEREOFFtice exercise in student

[^0]
ALPHABET OF LINES

2. Draw the following lines:

1. Object line
2. Cutting plane line
3. Short break line
4. Extension and
dimension lines
5. Hidden lines
6. Section line
7. Center line
8.

Long break line
Phantom line
Check your
anspyersaik'soneji

ALPHABET OF LINES

EXERGOFTice exercise in student
3. Identify the ten lineskbook on the drawing below by writing the correct name of each in the

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. Extension Line

B. SYMBOLS AND TERMINOLOGY
 1. Thread Representation:

- True representation difficult because of detail required.
$\stackrel{\text { Schematic }}{ }$
\diamond
Pictorial Three types of conventions or accepted practices.

Simplified Presentation

B. SYMBOLS AND
 TERM. FhPleagkepresentation:

- Descriptive terms to identify specific thread arrangements.
- Diameter-pitch combinations.
\& Coarse
Fine
« Extra Fine
Unified Pitch (8, 12, 16 thread)

a) External Thread
(b) Internal Thread

B. SYMBOLS AND
 TERM. WhPleagkepresentation:

- Different thread specifications:
\& Diameter
« Number of threads per inch
\& Thread Series (National Coarse/Fine/Extra Fine, Square, Acme, Pipe
$\diamond \quad$ Class of Fit (loose to theoretically perfect)

Unless otherwise specified, threads are assumed to be right-handed.

B. SYMBOLS AND

TERM.NOLIOGY

.Sympiglshed Surface" - Any surface requiring removal of material to improve:
Size
\star Geometry
smoothness

- "Finished Surface" - Done by different processes:
planing
milling
* turning
$\stackrel{b}{ }$ broaching
$\stackrel{\text { grinding }}{ }$

B. SYMBOLS AND TERM隹PROGY
 Robestgined into parts to:

\triangleleft Strengthen a shoulder
\star Enhance appearance of a corner
\star Remove sharp edges

- Fillets:
s Allow additional metal in inner intersection
$\diamond \quad$ Rounding out internal corner increases strength
- Rounds (or Radius):
$\star \quad$ Made by rounding off external edge
$\diamond \quad$ Improves appearance
$\star \quad$ Prevents chipping of sharp edges

B. SYMBOLS AND TERMMNQhing

Slatséd as means to secure parts during milling

- Two main types:
\& Tee Slots
$»$ Dovetails

Fits Tee Slot

As on milling machine table

Fits Dovetail

As on lathe cross slide assembly

B. SYMBOLS AND TERMINOLOGY with

B. SYMBOLS AND TERMINOLOGY with blueprints

B. SYMBOLS AND TERMINOLOGY with blueprints

B. SYMBOLS AND TERMHAPLOGY
 Blasksáally located in lower right hand corner of drawing.

- Contains information needed for manufacturing.
- Block format varies from company to company.
- Includes important information without cluttering up drawing.
- Title Blocks often divided into following general sections:
\diamond Company Name and Location
\& Part Name
\diamond Part Number (die number, forging number, etc.)
\diamond Drawing Number

« Assembly Drawing Number
$\stackrel{\text { Drafting Room Record }}{ }$
\& Material Callouts
\& Stock Form and/or size
\& Tolerances
\& Shop Notes
\star Drawing Revisions

B. SYMBOLS AND
 Connecting Rod

B. SYMBOLS AND TERMINBLOGY

B. SYMBOLS AND TERMINOLOGYEY

Types

- Two main types: (Size, Location)
- Fractional Dimensions used on parts not requiring a high degree of accuracy.
\checkmark Usually no smaller than 1/64 of an inch.
- Decimal Dimensions used to indicate high degree of accuracy.
\checkmark Can be as accurate as one ten-thousandth (.0001) of an inch.

$S=$ Size Dimensions
L = Location Dimensions
Prof Bhavik Soneji

B. SYMBOLS AND

Types

- Decimal tolerances range from tenths (.10) to tenthousandths (.0001)
- When degree of accuracy is critical - tolerance becomes tighter.
- Number of decimal places in a dimension determines tolerance decimal places. For example:
\checkmark Dimension "5.10" - Tolerance " $\pm .02$ "
\checkmark Dimension "5.100" - Tolerance " $\pm .002 "$
- Angular dimensions used when straight lines are not horizontal or
vertical.
\checkmark Expressed in degrees (${ }^{0}$), minutes ('), and seconds (")
\checkmark Also expressed in tenths (.01) or hundredths (.01) of a degree

B. SYMBOLS AND TERMIMOLOGGYe
 Blocks

- Used to indicate fractional, decimal, and angular tolomanace

Tolerances Unless Otherwise Specified			
Fractions	Decimals	Angles	
$\pm 1 / 64^{\prime \prime}$	$.00 \pm .02^{\prime \prime}$	$.000^{\prime} .003^{\prime \prime}$	$.0 \pm .02^{\circ}$

- Dimensions add exactness to drawings by expressing:
\checkmark Lengths
\checkmark Widths
\checkmark Heights
\checkmark Angles

C.

VISMALIZATION

 observer.1. Orthographic Projection - Three or more views or perspectives from a different, or distinct 90° angle.
\checkmark Front
$\checkmark \quad$ Top
\checkmark Side
Views are called Orthographic Projection or Multiview Drawing.
2. View Arrangement - Six possible views of any object:
\checkmark Front
\checkmark Back
\checkmark Top
\checkmark Bottom
\checkmark Left Side
$\checkmark \quad$ Right side

C.

VISUALIZATION

2. View

Arrangement
Only dfterence between "third-angle and first-angle" projection is arrangement of views.

International projection symbols distinguish between

Right-Side View

Symbol
First-angle Projection (European)

Front View

Top View

Top View

Front View

Symbol

Right-SideView Third-angle Projection (United States \& Prof Bhavik Soneji Australia)

C.

VISUALIZATION

2. View

Arrangement
Ahird-angle projection of part in a glass bov

C.

VISUALIZATION

2. View

Arrangement into a single plane.

C.

VISUALIZATION

2. View

Arrangement
Drawina

C.

VISUALIZATION

2. View

Arrangement one view.

C.

VISUALIZATION

2. View

Arrangement
Different views can be selected for one part.
Multiple views required to ensure accuracy.

Bart

> Orthographic View

Different parts that could be represented by Orthographic View.

D. SECTIONAL AND AUXILIARY

VIEWS
Complex shapes difficult to depict. Sectional and Auxiliary views provide clearer representation.

1. Sectional

Views
Used to show complicated interior details.
Used to show difference in materials on assembly drawings.

Sectional view obtained by imagining portion of object has been cut aw---

Sectional
View

D. SECTIONAL AND AUXILIARY
 VIEWS Sectional

Views
Cutting Plane Line indicates position of imaginary cut.

Ends of Cutting Plane Line are bent 90° and terminated with arrow heads the section.

Cutting Plane Lines

D. SECTIONAL AND AUXILIARY

VIEYS Sectional
Views
Full Sectional = Cut across entire object, exposes whole inner surface.

Half-Sectional $=$ Places two cutting planes at right angles to each other.

Broken-out or Partial Section = Shows a single, or closely

Section A-A Full sectional

Section A-A Half sectional

Broken out or partial

D. SECTIONAL AND AUXILIARY

VIEYVS Auxiliary

Views
Many parts have surfaces not at right angles to Plane of Projection.
Called sloping or inclining surfaces.

Auxiliary View shows true features of surface.

D. SECTIONAL AND AUXILIARY

VIEWS. Multi-View
Review
Multi-View Projections illustrate a combination of views.
Primary (front) View determines arrangement of all other views.

Top, bottom, left, right and back views are developed by projecting
lines at 90° angle from front view.
Side Views always placed laterally (to the side) of front view.

Sectional Views reveal object's inner details using cutting plane or break lines.

Auxiliary Views show inclined surface or lines in true size/shape.

EXERCISE 1 - VIEWS AND TITLE

EXERCISE 1 - VIEWS AND TITLE

BLOCK

1. What is the name and part number of tieqsastre Pad Blank,
2. How many are requered? 121-59
3. How many views of the part are\&hown?

4. If number 6 represents the top surface, what linetrepresents this surface in the front view?
5. If number 8 represents the surface in the right side view, what line represents this surface in the top view?
6. What line in the top view represents the surface 7 of the frojt view?
7. What line in the right side view represents the front surface of front view?
8. What surface shown does line 10 repfesent?
9. What line of the front view does point 1 Pepresent?
10. What line of the top view does point 2 4epresent?
11. What line of the top view does point 3 reppresent?
12. What kind, or type of line, is Sidel2?

What kind, or type of line, is Right?
What kind, or type of II Escincheld ldoneji

GLOSSAR
 Y

Refer to your Student Manual for review and discussion of the Glossary of Blueprint Reading terms.

[^0]: Section line H. Used in conjunction with extension lines to indicate a linear distance. Check your
 I. ashswserssiateapositions of parts and also the location of parts that

