
Computer Engineering Department

Classes and Object- Oriented
Programming in Python

By
Prof. Bhumi Shah

Advanced Python Programming(CE0620)

Python Is Object-Oriented
• Python is a multi-paradigm programming language. It

supports different programming approaches.

• One of the popular approaches to solve a programming
problem is by creating objects: known as Object-Oriented
Programming (OOP).

• An object has two characteristics:
• attributes
• behavior
• for example, an object could represent a person

with properties like a name, age, and address and
behaviors such as walking, talking, breathing, and
running.

• The concept of OOP in Python focuses on
creating reusable code.

• This concept is also known as DRY (Don't
Repeat Yourself).

Class in Python
• A class is a blueprint for the object.

• We can think of class as a sketch of a ”person” with labels.
It contains all the details about the name, age, and
address etc. Based on these descriptions, we can study
about the “person”.

• The example for class of person can be :

class person:
 pass

• class keyword is used to define an empty class person.
• From class, we construct instances. An instance is a

specific object created from a particular class.

Object
• An object (instance) is an instantiation of a class.
• When class is defined, only the description for the object is

defined.
• Therefore, no memory or storage is allocated.
• The example for object of “person” class can be:

obj1 = person()
Here, obj1 is an object of class person.

Example
class person:
 age = 50

p1 = person()
print(p1.age)

 __init__() Function
• built-in __init__() function
• the method the __init__() simulates the constructor of the

class
• All classes have a function called __init__(), which is always

executed when the class is being initiated.
• The properties that all person objects must have are

defined in a method called .__init__().
• Every time a new person object is created, .__init__() sets

the initial state of the object by assigning the values of the
object’s properties.

• It accepts the self-keyword as a first argument which
allows accessing the attributes or method of the class.

• When a new class instance is created, the instance is
automatically passed to the self parameter in .__init__() so
that new attributes can be defined on the object.

Example
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("ABC", 50)
“””To instantiate objects of this person class,
you need to provide values for the name and
age. If you don’t, then Python raises a
TypeError:”””

print(p1.name)
print(p1.age)
The __init__() function is
called automatically every
time the class is being used
to create a new object.

•self.name = name
creates an attribute
called name and
assigns to it the value
of the name parameter.

•self.age = age creates
an attribute called age
and assigns to it the
value of the age
parameter.

Example
class Employee:
 def __init__(self, name, id):
 self.id = id
 self.name = name

 def display(self):
 print("ID: %d \nName: %s" % (self.id, self.name))

emp1 = Employee("XYZ”, 101)
emp2 = Employee("ABC", 102)

emp1.display()

emp2.display()

 __init__() Function
• Attributes created in .__init__() are called instance

attributes.
• An instance attribute’s value is specific to a particular

instance of the class. All person objects have a name and
an age, but the values for the name and age attributes will
vary depending on the person instance.

• On the other hand, class attributes are attributes that
have the same value for all class instances. You can define
a class attribute by assigning a value to a variable name
outside of .__init__().

Instantiate an Object in Python
• Creating a new object from a class is called instantiating

an object.
• We can instantiate a new person object by typing the

name of the class, followed by opening and closing
parentheses:

 person()
 p1=person()

Instance Methods
• Instance methods are functions that are

defined inside a class and can only be called
from an instance of that class.

• like .__init__(), an instance method’s first
parameter is always self.

class animal:
 species = "Canis"

 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Instance method
 def description(self):
 return f"{self.name} is {self.age} years old"

 # Another instance method
 def speak(self, sound):
 return f"{self.name} says {sound}"

.__str__() method
• When we print(p1), it displays message telling you that p1

is a person object at the memory address 0x00aeff70.
• This message can be changed what gets printed by defining

a special instance method called .__str__().

class person:
 # Leave other parts of class as-is

 # Replace .description() with __str__()
 def __str__(self):
 return f"{self.name} is {self.age} years old"

Note: .__init__() and .__str__() are called dunder methods
because they begin and end with double underscores.

Abstract Data Types and Classes
• The abstract data type is special kind of data

type, whose behavior is defined by a set of
values and set of operations.

• The keyword “Abstract” is used as we can
use these data types, we can perform
different operations

• But how those operations are working that is
totally hidden from the user.

• The ADT is made of primitive data types, but
operation logics are hidden.

Inheritance
• The method of inheriting the properties of parent class

into a child class is known as inheritance. It is an OOP
concept.

• benefits of inheritance.

• Code reusability- we do not have to write the same code
again and again, we can just inherit the properties we need
in a child class.

• It represents a real world relationship between parent class
and child class.

• It is transitive in nature. If a child class inherits properties
from a parent class, then all other sub-classes of the child
class will also inherit the properties of the parent class.

Steps To perform inheritance
1. Create a Parent Class

Any class can be a parent class, so the syntax is the
same as creating any other class

class Parent():

2. Create a Child Class
To create a class that inherits the functionality from

another class, send the parent class as a parameter when
creating the child class

class Child(Parent):

Example
class Parent():
 def first(self):
 print('Parent’s function')

class Child(Parent):
 def second(self):
 print('Child’s function')

ob = Child()
ob.first()
ob.second()

 __init__() in inheritance
• The __init__() function is called every time a class is being

used to make an object.

• When we add the __init__() function, the child class will no
longer inherit the parent's __init__() function.

• The child’s class __init__() function overrides the parent
class’s __init__() function.

• To keep the inheritance of the parent's __init__() function,
we need to add a call to the parent's __init__() function

class Parent:
 def __init__(self , fname, fage):
 self.firstname = fname
 self.age = fage
 def view(self):
 print(self.firstname , self.age)

class Child(Parent):
 def __init__(self , fname , fage):
 Parent.__init__(self, fname, fage)
 self.lastname = "ChildClass"
 def view(self):
 print("child name" , self.firstname ,"has the ", self.age , "
age." , self.lastname, ":Testing")
ob = Child("XYZ" , '32')
ob.view()

Python - Public, Protected, Private
Members

• Public Members:accessible from outside the class.
• The object of the same class is required to invoke a public

method.
• This arrangement of private instance variables and public

methods ensures the principle of data encapsulation.
• All members in a Python class are public by default.

Example
class Student:
 schoolName = 'XYZ School' # class attribute

 def __init__(self, name, age):
 self.name=name # instance attribute
 self.age=age # instance attribute

std = Student("ABC", 25)
std.schoolName

std.name

std.age = 20
std.age

Python - Public, Protected, Private
Members

• Protected Members:Protected members of a
class are accessible from within the class and are also
available to its sub-classes.

• No other environment is permitted access to it.
• This enables specific resources of the parent class to be

inherited by the child class.
• Python's convention to make an instance variable

protected is to add a prefix _ (single underscore) to it.
• This effectively prevents it from being accessed unless it is

from within a sub-class.

Example
class Student:
 _schoolName = 'XYZ School' # protected class attribute

 def __init__(self, name, age):
 self._name=name # protected instance attribute
 self._age=age # protected instance attribute

 std = Student("Swati", 25)
std._name

std._name = 'Dipa'
std._name

Python - Public, Protected, Private
Members

• Private Members: Python doesn't have any mechanism
that effectively restricts access to any instance variable or
method.

• Python prescribes a convention of prefixing the name of
the variable/method with a single or double underscore to
emulate the behavior of protected and private access
specifiers.

• The double underscore __ prefixed to a variable makes it
private.

• It gives a strong suggestion not to touch it from outside
the class.

• Any attempt to do so will result in an AttributeError:

Example
class Student:
 __schoolName = 'XYZ School' # private class attribute

 def __init__(self, name, age):
 self.__name=name # private instance attribute
 self.__age=age # private instance attribute
 def __display(self): # private method

 print('This is private method.')
std = Student("Bill", 25)
std.__schoolName
AttributeError: 'Student' object has no attribute '__schoolName'
std.__name
AttributeError: 'Student' object has no attribute '__name'
std.__display()
AttributeError: 'Student' object has no attribute '__display'

super() Function
• The super() builtin method used to call the

super claa constructor or methods from the
sub class.

• Allows us to avoid using the base class name
explicitly

• Working with Multiple Inheritance
Syntax:

super().__init__()
super().__init__(arguments)

we can also call super class methods
super().function1()

Example
class A(object):
 def __init__(self, AName):
 print(AName, ' is Super Class.')

class B(A):
 def __init__(self):
 print('This is Child Class')
 super().__init__('A')

ob=B()

“Object” represents
the base class name
from where all
classes in Python
are derived.Its not
compulsory to write
it.

Types of Inheritance in Python
There are two types of Inheritance:

• Single Inheritance
• Multiple Inheritance
• Multilevel Inheritance
• hierarchical inheritance

Single Inheritance
• When a child class inherits only a single

parent class.

class Parent:
 def func1(self):
 print("this is function one")
class Child(Parent):
 def func2(self):
 print(" this is function 2 ")
ob = Child()
ob.func1()
ob.func2()

Multiple Inheritance
• When a child class inherits from more than

one parent class.
class Parent:
 def func1(self):
 print("this is function 1")
class Parent2:
 def func2(self):
 print("this is function 2")
class Child(Parent , Parent2):
 def func3(self):
 print("this is function 3")

ob = Child()
ob.func1()
ob.func2()
ob.func3()

Problems in Multiple inheritance
class Class1:
 def m(self):
 print("In Class1")

class Class2(Class1):
 def m(self):
 print("In Class2")

class Class3(Class1):
 def m(self):
 print("In Class3")

class Class4(Class2, Class3):
 pass
obj = Class4()
obj.m()

Problems in Multiple inheritance
class A(object):
 def __init__(self):
 self.a="a"
 print(self.a)

class B(object):
 def __init__(self):
 self.b="b"
 print(self.b)

class C(A,B):
 def __init__(self):
 self.c="c"
 print(self.c)
 super().__init__()

ob=C()

Solution
class A(object):
 def __init__(self):
 self.a="a"
 print(self.a)
 super().__init__()
class B(object):
 def __init__(self):
 self.b="b"
 print(self.b)
 super().__init__()
class C(A,B):
 def __init__(self):
 self.c="c"
 print(self.c)
 super().__init__()
ob=C()

Object

A B

C

MRO-Method Resolution Order
• A method is serched first in current class.
• if not there,it will continue the search in

parents claas from left to right fashion,in
depth-first search.

1. search into the child class/sub class before
going for the parent class.
2. in base classes ,it search from left to right
fashion,in depth-first search.
3. It will not visit any class more than once.

Multilevel Inheritance
• When a child class becomes a parent class for another

child class.

class Parent:
 def func1(self):
 print("this is function 1")
class Child(Parent):
 def func2(self):
 print("this is function 2")
class Child2(Child):
 def func3("this is function 3")
ob = Child2()
ob.func1()
ob.func2()
ob.func3()

