Computer Engineering Department

Advanced Python Programming(CE0620)

Classes and Object- Oriented
Programming in Python

By
Prof. Bhumi Shah

Python Is Object-Oriented

* Python is a multi-paradigm programming language. It
supports different programming approaches.

e One of the popular approaches to solve a programming
problem is by creating objects: known as Object-Oriented
Programming (OOP).

 An object has two characteristics:
e attributes
e behavior

e for example, an object could represent a person
with properties like a name, age, and address and
behaviors such as walking, talking, breathing, and
running.

e The concept of OOP in Python focuses on
creating reusable code.

* This concept is also known as DRY (Don't
Repeat Yourself).

Class in Python

A class is a blueprint for the object.

We can think of class as a sketch of a "person” with labels.
It contains all the details about the name, age, and
address etc. Based on these descriptions, we can study
about the “person”.

The example for class of person can be :

class person:
pass

class keyword is used to define an empty class person.

From class, we construct instances. An instance is a
specific object created from a particular class.

Object

 An object (instance) is an instantiation of a class.

 When class is defined, only the description for the object is
defined.

e Therefore, no memory or storage is allocated.
e The example for object of “person” class can be:

objl = person()
Here, objl is an object of class person.

Example

class person:
age = 50

pl = person()
print(pl.age)

__Init_ () Function

built-in __init_ () function
the method the _init_ () simulates the constructor of the
class

All classes have a function called _init_ (), which is always
executed when the class is being initiated.

The properties that all person objects must have are
defined in a method called . __init_ ().

Every time a new person object is created, . init () sets
the initial state of the object by assigning the values of the
object’s properties.

It accepts the self-keyword as a first argument which
allows accessing the attributes or method of the class.

When a new class instance is created, the instance is
automatically passed to the self parameterin. init () so
that new attributes can be defined on the object.

Example

class Person:
def _init _(self, name, age):
self.name = name
self.age = age

pl = Person("ABC", 50)

“”"To instantiate objects of this person class,
you need to provide values for the name and
age. If you don’t, then Python raises a
TypeError:”””

print(pl.name)

print(pl.age)

The _init_ () function is
called automatically every
time the class is being used
to create a new object.

eself.name = name
creates an attribute
called name and
assigns to it the value
of the name parameter.

eself.age = age creates
an attribute called age
and assigns to it the
value of the age
parameter.

Example

class Employee:
def _init_ (self, name, id):
self.id = id
self.name = name

def display(self):
print("ID: %d \nName: %s" % (self.id, self.name))
empl = Employee("XYZ"”, 101)
emp2 = Employee("ABC", 102)

empl.display()

emp?2.display()

__Init_ () Function

e Attributes created in . __init_ () are called instance
attributes.

 An instance attribute’s value is specific to a particular
instance of the class. All person objects have a name and
an age, but the values for the name and age attributes will
vary depending on the person instance.

e On the other hand, class attributes are attributes that
have the same value for all class instances. You can define
a class attribute by assigning a value to a variable name
outside of . init ().

Instantiate an Object in Python

 Creating a new object from a class is called instantiating
an object.

 We can instantiate a new person object by typing the
name of the class, followed by opening and closing
parentheses:

o person()
o pl=person()

Instance Methods

e |[nstance methods are functions that are
defined inside a class and can only be called
from an instance of that class.

e like . Init_ (), an instance method’s first
parameter is always self.

class animal:
species = "Canis"

def _init_ (self, name, age):
self.name = name
self.age = age

Instance method
def description(self):
return f"{self.name} is {self.age} years old"

Another instance method
def speak(self, sound):
return f*{self.name} says {sound}"

~str () method

e When we print(pl), it displays message telling you that p1
is a person object at the memory address 0x00aeff70.

 This message can be changed what gets printed by defining
a special instance method called . _str_ ().

class person:
Leave other parts of class as-is

Replace .description() with __ str_ ()
def str_(self):

return f"{self.name} is {self.age} years old"

Note:. init () and._ str () are called dunder methods
because they begin and end with double underscores.

Abstract Data Types and Classes

 The abstract data type is special kind of data
type, whose behavior is defined by a set of
values and set of operations.

* The keyword “Abstract” is used as we can
use these data types, we can perform
different operations

 But how those operations are working that is
totally hidden from the user.

« The ADT is made of primitive data types, but
operation logics are hidden.

Inheritance

The method of inheriting the properties of parent class
into a child class is known as inheritance. It is an OOP
concept.

benefits of inheritance.

 Code reusability- we do not have to write the same code
again and again, we can just inherit the properties we need
in a child class.

e |t represents a real world relationship between parent class
and child class.

e |t is transitive in nature. If a child class inherits properties
from a parent class, then all other sub-classes of the child
class will also inherit the properties of the parent class.

Steps To perform inheritance

1. Create a Parent Class

Any class can be a parent class, so the syntax is the
same as creating any other class

class Parent():

2. Create a Child Class

To create a class that inherits the functionality from
another class, send the parent class as a parameter when
creating the child class

class Child(Parent):

Example

class Parent():
def first(self):
print('Parent’s function')

class Child(Parent):
def second(self):
print('Child’s function')

ob = Child()
ob.first()
ob.second()

~Init_ () in inheritance

The init_ () function is called every time a class is being
used to make an object.

When we add the __init_ () function, the child class will no
longer inherit the parent's __init_ () function.

The child’s class __init_ () function overrides the parent
class’s __init_ () function.

To keep the inheritance of the parent's _init_ () function,
we need to add a call to the parent's init () function

class Parent:
def _init_(self , fname, fage):
self.firsthname = fname
self.age = fage
def view(self):
print(self.firstname , self.age)

class Child(Parent):
def _init_(self , fname , fage):
Parent. init_ (self, fname, fage)
self.lasthame = "ChildClass"
def view(self):

print("child name" , self.firsthame ,"has the ", SE|f_age e
age.") Se|f.|aStname’ ":Testingll)

ob = Child("XYZ" , '32")
ob.view()

Python - Public, Protected, Private
Members

Public Members:accessible from outside the class.

The object of the same class is required to invoke a public
method.

This arrangement of private instance variables and public
methods ensures the principle of data encapsulation.

All members in a Python class are public by default.

Example

class Student:
schoolName = 'XYZ School' # class attribute

def init_(self, name, age):
self.name=name # instance attribute
self.age=age # instance attribute

std = Student("ABC", 25)
std.schoolName

std.name

std.age = 20
std.age

Python - Public, Protected, Private
Members

* Protected Members:pProtected members of a
class are accessible from within the class and are also
available to its sub-classes.

 No other environment is permitted access to it.

 This enables specific resources of the parent class to be
Inherited by the child class.

 Python's convention to make an instance variable
protected is to add a prefix _ (single underscore) to it.

* This effectively prevents it from being accessed unless it is
from within a sub-class.

Example

class Student:
_schoolName = 'XYZ School' # protected class attribute

def init_(self, name, age):
self. name=name # protected instance attribute
self. age=age # protected instance attribute

std = Student("Swati", 25)
std. name

std. name = 'Dipa’
std. name

Python - Public, Protected, Private
Members

 Private Members: Python doesn't have any mechanism
that effectively restricts access to any instance variable or
method.

 Python prescribes a convention of prefixing the name of
the variable/method with a single or double underscore to
emulate the behavior of protected and private access
specifiers.

« The double underscore _ prefixed to a variable makes it
private.

e |t gives a strong suggestion not to touch it from outside
the class.

 Any attempt to do so will result in an AttributeError:

Example

class Student:
__schoolName = 'XYZ School' # private class attribute

def init_(self, name, age):
self. _name=name # private instance attribute
self. age=age # private instance attribute
def display(self): # private method
print('This is private method.')
std = Student("Bill", 25)
std. schoolName
AttributeError: 'Student' object has no attribute ' schoolName'
std. _name
AttributeError: 'Student' object has no attribute ' name'
std. display()
AttributeError: 'Student' object has no attribute ' display'

super() Function

 The super() builtin method used to call the

super claa constructor or methods from the
sub class.

e Allows us to avoid using the base class name
explicitly

 Working with Multiple Inheritance

Syntax:
super(). _init_ ()
super(). _init_ (arguments)

we can also call super class methods
super().functionl()

Example

class A(object):
def init_ (self, AName):
print(AName, ' is Super Class.")

class B(A):
def init_ (self):
print(‘This is Child Class')
super(). __init_ (‘A")

ob=B()

“Object” represents
the base class name
from where all
classes in Python
are derived.lts not
compulsory to write
it.

Types of Inheritance in Python

There are two types of Inheritance:

* Single Inheritance
 Multiple Inheritance
 Multilevel Inheritance

* hierarchical inheritance

Single Inheritance

 When a child class inherits only a single
parent class.

class Parent:
def funcl(self):
print("this is function one")
class Child(Parent):
def func2(self):
print(" this is function 2 ")
ob = Child()
ob.funcl()
ob.func2()

Multiple Inheritance

e When a child class inherits from more than

one parent class.

class Parent:
def funcl(self):
print("this is function 1")
class Parent2:
def func2(self):
print("this is function 2")
class Child(Parent , Parent2):
def func3(self):
print("this is function 3")

ob = Child()
ob.funcl()
ob.func2()
ob.func3()

Problems in Multiple inheritance

class Class1:
def m(self):
print("In Class1")

class Class2(Classl):
def m(self):
print("In Class2")

class Class3(Classl):
def m(self):
print("In Class3")

class Class4(Class2, Class3):
pass

obj = Class4()

obj.m()

Problems in Multiple inheritance

class A(object):
def _init_ (self):
self.a="a"
print(self.a)

class B(object):
def _init_ (self):
self.b="b"
print(self.b)

class C(A,B):
def _init_ (self):
self.c="c"
print(self.c)
super().__init_ ()

ob=C()

class A(object):
def _init_ (self):
self.a="a"
print(self.a)
super(). _init_ ()
class B(object):
def _init_ (self):
self.b="b"
print(self.b)
super().__init_ ()
class C(A,B):
def _init_ (self):
self.c="c"
print(self.c)
super(). _init_ ()
ob=C()

Solution

Object

< N\
N/

MRO-Method Resolution Order

A method is serched first in current class.

e If not there,it will continue the search in
parents claas from left to right fashion,in
depth-first search.

1. search into the child class/sub class before
going for the parent class.

2. In base classes ,it search from left to right
fashion,in depth-first search.

3. It will not visit any class more than once.

Multilevel Inheritance

 When a child class becomes a parent class for another
child class.

class Parent:
def funcl(self):
print("this is function 1")
class Child(Parent):
def func2(self):
print("this is function 2")
class Child2(Child):
def func3("this is function 3")
ob = Child2()
ob.funcl()
ob.func2()
ob.func3()

