

## Name of Institute: Indus Institute of Technology & Engineering Name of Faculty: Ms. Madhvi Bera

# Course code: CE0717 Course name: Compiler Design

Pre-requisites: System Software and basic concept of translator Credit points: 3 Offered Semester: 7th

## Course Coordinator (weeks 01 - 15)

Full Name: Ms. Madhvi A. Bera Department with siting location: Department of Computer Engineering (4th Floor Faculty Room, Bhanvar Building) Email: madhvibera.ce@indusuni.ac.in Consultation times: 03:00 pm to 04:30 pm

### Course Lecturer (weeks 01 - 15)

Full name: Ms. Madhvi A. Bera Department with siting location: Department of Computer Engineering (4th Floor Faculty Room, Bhanvar Building) Email: madhvibera.ce@indusuni.ac.in Consultation times: 03:00 pm to 04:30 pm

Students will be contacted throughout the Session via Mail with important information relating to this Course.

### **Course Objectives**

By participating in and understanding all facets of this Course a student will:

- 1) To provide a thorough understanding of the internals of Compiler Design.
- 2) To provide the knowledge of the concepts and different phases of compilation with compile time error handling.
- 3) To provide the knowledge about design of lexical analyzer, top down and bottom-up parsers.
- 4) To provide the knowledge about optimization techniques to intermediate code and generate machine code for high level language program.

### Course Outcomes (CO)

After successful completion of the course:

- 1) Explain the concepts and different phases of compilation with compile time error handling.
- 2) Represent language tokens using regular expressions, context free grammar and finite automata and design lexical analyzer for a language.



- 3) Compare top down with bottom-up parsers, and develop appropriate parser to produce parse tree representation of the input.
- 4) Generate intermediate code for statements in high level language.
- 5) Design syntax directed translation schemes for a given context free grammar.
- 6) Apply optimization techniques to intermediate code and generate machine code for high level language program.

#### **Course Outline**

Lexical Analyzer, Parsing, Error-recovery, Intermediate code generation, Code optimization and generation

#### **Method of delivery**

- 1. Chalk & Talk
- 2. PPT presentation

#### **Study time**

Lecture: 3 hours per week Reading Time :5 Hours

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | -   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO2 | -   | -   | 3   | 2   | 3   | -   | -   | -   | -   | -    | -    | 3    |
| CO3 | -   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO4 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO5 | 3   | -   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO6 | 3   | -   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |

# **CO-PO Mapping (PO: Program Outcomes)**



### Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)



Figure 1: Blooms Taxonomy



Figure 2: Knowledge retention



Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

| General Graduate Qualities                                                                                                                                                                                                                                                                                           | Specific Department of<br>Graduate Capabilities    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Informed<br>Have a sound knowledge of an area of<br>study or profession and understand its<br>current issues, locally and internationally.<br>Know how to apply this knowledge.<br>Understand how an area of study has<br>developed and how it relates to other areas.                                               | 1 Professional knowledge, grounding<br>& awareness |
| Independent learners<br>Engage with new ideas and ways of thinking<br>and critically analyze issues. Seek to extend<br>knowledge through ongoing research,<br>enquiry and reflection. Find and evaluate<br>information, using a variety of sources and<br>technologies. Acknowledge the work and<br>ideas of others. | 2 Information literacy, gathering & processing     |
| <b>Problem solvers</b><br>Take on challenges and opportunities. Apply<br>creative, logical and critical thinking skills to<br>respond effectively. Make and implement<br>decisions. Be flexible, thorough, innovative<br>and aim for high standards.                                                                 | 4 Problem solving skills                           |
| Effective communicators                                                                                                                                                                                                                                                                                              | 5 Written communication                            |
| Articulate ideas and convey them effectively<br>using a range of media. Work collaboratively<br>and engage with people in different settings.<br>Recognize how culture can shape<br>communication.                                                                                                                   | 6 Oral communication<br>7 Teamwork                 |
| <b>Responsible</b><br>Understand how decisions can affect others<br>and make ethically informed choices.<br>Appreciate and respect diversity. Act with<br>integrity as part of local, national, global and<br>professional communities.                                                                              | 10 Sustainability, societal & environmental impact |

# Lecture/tutorial times

| Lecture | Thursday | 10.00 am – 11.00 am | Online/Room |
|---------|----------|---------------------|-------------|
| Lecture | Thursday | 11.10 am – 12.20 pm | Online/Room |
| Lecture | Friday   | 09.00 am – 10.00 am | Online/Room |
|         |          |                     |             |



#### **Attendance Requirements**

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

#### Text books

- 1. "System Programming and Operating System" By D M Dhamdhere, Tata McGraw Hill.
- 2. Compiler Design by Alfred V. Aho, Ravi Sethi, Jeffery D. Ullman, Pearson Publication

#### **Reference Books:**

- 1. "System Programming" by Donovan, Tata McGraw Hill
- 2. "Compilers -Principles and Practice" by Parag H. Dave and Himanshu B. Dave, Pearson Education

### Additional Materials

- 1. www.cse.iitd.ernet.in/~sak/courses/cdp/slides.pdf http://iitmweb.iitm.ac.in/phase2/downloads/106108113/
- 2. http://nptel.ac.in/courses/106108052/
- 3. www.coursera.org/course/compilers
- 4. www.wikipedia.org/wiki/Compiler
- 5. https://en.wikipedia.org/wiki/Principles\_of\_Compiler\_Design
- 6. https://en.wikipedia.org/wiki/Compiler\_construction

#### **ASSESSMENT GUIDELINES**

Your final course mark will be calculated from the following:

| Assessment (CIE)  | Marks |
|-------------------|-------|
| Mid Semester Exam | 40    |
| Assignment - 1    | 5     |
| Assignment – 2    | 5     |
| Attendance >80%   | 5     |
| Quiz              | 5     |
| End Semester Exam | 40    |



### SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

#### Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

#### Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

#### Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

#### **Retention of Written Work**

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

#### **University and Faculty Policies**

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

**Plagiarism** - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

#### Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)



# **Course schedule (subject to change)**

•

|  | Week #  | Topic & contents                                                                                                                                                                                                                                     | CO Addressed | Teaching<br>Learning<br>Activity (TLA) |  |  |  |  |
|--|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|--|--|--|--|
|  | Weeks 1 | Overview of the Translation Process,<br>A Simple Compiler, Difference<br>between interpreter, assembler and<br>compiler. Overview and use of linker<br>and loader, types of Compiler,<br>Analysis of the Source Program, The<br>Phases of a Compiler | CO1, CO2     | Chalk & Board/<br>PPT                  |  |  |  |  |
|  | Weeks 2 | Cousins of the Compiler, The<br>Grouping of Phases, Lexical Analysis,<br>Hard Coding and Automatic<br>Generation Lexical Analyzers, Front-<br>end and Back-end of compiler, pass<br>structure                                                        | CO2, CO3     | Chalk & Board/<br>PPT                  |  |  |  |  |
|  | Week 3  | Introduction to Lexical Analyzer, Input<br>Buffering, Specification of Tokens,<br>Recognition of Tokens                                                                                                                                              | CO2, CO3     | Chalk & Board/<br>PPT                  |  |  |  |  |
|  | Week 4  | A Language for Specifying Lexical<br>Analyzers, Finite Automata From a<br>Regular Expression, Design of a<br>Lexical Analyzer Generator,<br>Optimization of DFA                                                                                      | CO3          | Chalk & Board/<br>PPT                  |  |  |  |  |
|  | Week 5  | Top Down and Bottom up ParsingAlgorithms, Top-Down Parsing,Bottom-Up Parsing, Operator-Precedence Parsing                                                                                                                                            | CO3          | Chalk & Board/<br>PPT                  |  |  |  |  |
|  |         |                                                                                                                                                                                                                                                      |              |                                        |  |  |  |  |
|  | Week 6  | LR Parsers, Using Ambiguous<br>Grammars, Parser Generators,<br>Automatic Generation of Parsers.                                                                                                                                                      | CO2, CO3     | Assignment - 1                         |  |  |  |  |
|  | Week 7  | Syntax-Directed Definitions,<br>Construction of Syntax Trees, Bottom-<br>Up Evaluation of S-Attributed<br>Definitions, L-Attributed Definitions,<br>syntax directed definitions and<br>translation schemes                                           | CO4          | Chalk &<br>Board/PPT                   |  |  |  |  |
|  | Week 8  | Error Detection & Recovery, Ad-Hoc<br>and Systematic Methods                                                                                                                                                                                         | CO4, CO6     | Chalk & Board/<br>PPT                  |  |  |  |  |
|  | Week 9  | Different Intermediate Forms, Syntax<br>Directed Translation Mechanisms And<br>Attributed Mechanisms And<br>Attributed Definition.                                                                                                                   | <i>CO4</i>   | Chalk & Board/<br>PPT                  |  |  |  |  |

|         |                                                                                                                                                              |          | ज्ञानेन प्रकाशते जगत्<br>INDUS<br>UNIVERSITY |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|
| Week 10 | Source Language Issues, Storage<br>Organization, Storage-Allocation<br>Strategies, and Access to Non local<br>Names, Parameter Passing,                      | CO4, CO5 | Chalk & Board/<br>PPT                        |
| Week 11 | Symbol Tables, and Language<br>Facilities for Dynamic Storage<br>Allocation, Dynamic Storage<br>Allocation Techniques.                                       | CO5, CO6 | Chalk & Board/<br>PPT                        |
| Week 12 | Global Data Flow Analysis, A Few<br>Selected Optimizations like Command<br>Sub Expression Removal, Loop<br>Invariant Code Motion, Strength<br>Reduction etc  | CO5      | Assignment - 2                               |
| Week 13 | Issues in the Design of a Code<br>Generator, The Target Machine, Run-<br>Time Storage Management, Basic<br>Blocks and Flow Graphs                            | CO5      | Chalk & Board/<br>PPT                        |
| Week 14 | Next-Use Information, A Simple Code<br>Generator, Register Allocation and<br>Assignment, The DAG Representation<br>of Basic Blocks, Peephole<br>Optimization | CO5, CO6 | Chalk & Board/<br>PPT                        |
| Week 15 | GeneratingCodefromDAGs,DynamicProgrammingCode-GenerationAlgorithm,CodeGenerator GeneratorsCode                                                               | CO5, CO6 | Quiz                                         |

![](_page_8_Picture_0.jpeg)

# Program Map for Bachelor of Engineering (CE/CS/IT)

# COMPUTER ENGINEERING DEPARTMENT COURSE DEPENDANCY CHART

![](_page_8_Figure_3.jpeg)