CHAPTER 2 Nodal Analysis and Mesh Analysis

METHODS OF ANALYSIS

- Introduction
- Nodal analysis
- Nodal analysis with voltage source
- Mesh analysis
- Mesh analysis with current source
- Nodal and mesh analyses by inspection
- Nodal versus mesh analysis

STEPS OF NODAL ANALYSIS

- 1. Choose a reference (ground) node.
- 2. Assign node voltages to the other nodes.
- Apply KCL to each node other than the reference node; express currents in terms of node voltages.
- Solve the resulting system of linear equations for the nodal voltages.

(GROUND) NODE.

Common symbols for indicating a reference node, (a) common ground, (b) ground, (c) chassis.

1. REFERENCE NODE

The reference node is called the *ground* node where V = 0

2. NODE VOLTAGES

V₁, V₂, and V₃ are unknowns for which we solve using KCL

HARDIK PRAJAPATI

VOLTAGES

3. KCL AT NODE 1

3. KCL AT NODE 2

500□ **500** V_2 V_1 V_3 1ko $\frac{V_2 \, \mathbf{0} V_1}{500 \, \mathbf{W}} \cdot \frac{V_2}{1 \, \mathrm{kW}} \cdot \frac{V_2 \, \mathbf{0} V_3}{500 \, \mathrm{W}} \, \mathbf{6} \, \mathbf{0}$

3. KCL AT NODE 3

$\frac{V_3 \, \mathbf{0} V_2}{500 \, \mathbf{W}} \cdot \frac{V_3}{500 \, \mathbf{W}} \mathbf{6} \, I_2$

4. SUMMING CIRCUIT SOLUTION

Solution: $V = 167I_1 + 167I_2$

ANALYSIS

HARDIK PRAJAPATI

NODAL ANALYSIS

$$I_{1} \ 6 \ I_{2} \ . \ i_{1} \ . \ i_{2}$$

$$I_{2} \ . \ i_{2} \ 6 \ i_{3}$$

$$I_{2} \ . \ i_{2} \ 6 \ i_{3}$$

$$I_{2} \ . \ i_{2} \ 6 \ v_{higher} \ 0 \ v_{hower}$$

$$R$$

$$I_{1} \ 6 \ \frac{v_{1} \ 0 \ 0}{R_{1}} \quad \text{or} \quad i_{1} \ 6 \ G_{1} v_{1}$$

$$I_{2} \ 6 \ \frac{v_{1} \ 0 \ v_{2}}{R_{2}} \quad \text{or} \quad i_{2} \ 6 \ G_{2} (v_{1} \ 0 \ v_{2})$$

$$I_{3} \ 6 \ \frac{v_{2} \ 0 \ 0}{R_{3}} \quad \text{or} \quad i_{3} \ 6 \ G_{3} v_{2}$$

HARDIK PRAJAPATI

EXAMPLE

 Calculate the node voltage in the circuit shown in Fig.

• At node 1

$$i_{1} 6 i_{2} \cdot i_{3}$$

$$P 56 \frac{v_{1} 0 v_{2}}{4} \cdot \frac{v_{1} 0 0}{2}$$

• At node 2

EXAMPLE

 Determine the voltage at the nodes in Fig. below

• At node 1,

$$\begin{array}{c} 36i_{1} \cdot i_{x} \\ P \ 36\frac{v_{1} \ 0v_{3}}{4} \cdot \frac{v_{1} \ 0v_{2}}{2} \end{array}$$

• At node 2

$$P \frac{v_1 0 v_2}{2} 6 \frac{v_2 0 v_3}{8} \cdot \frac{v_2 0 0}{4}$$

• At node 3

$$P \frac{v_1 0 v_3}{4} \cdot \frac{v_2 0 v_3}{8} 6 \frac{2(v_1 0 v_2)}{2}$$

SOURCES

- Case 1: The voltage source is connected between a nonreference node and the reference node: The nonreference node voltage is equal to the magnitude of voltage source and the number of unknown nonreference nodes is reduced by one.
- Case 2: The voltage source is connected between two nonreferenced nodes: a generalized node (supernode) is formed.

VOLTAGE SOURCES

HARDIK PRAJAPATI

SUPERMODE

- A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.
- The required two equations for regulating the two nonreference node voltages are obtained by the KCL of the supernode and the relationship of node voltages due to the voltage source.

EXAMPLE

For the circuit shown in Fig., find the node voltages.

2 07 0i10i2 60 $2 07 0 \frac{v_1}{2} 0 \frac{v_2}{4} 60$ $v_1 0 v_2 6 02$

EXAMPLE

Find the node voltages in the circuit below.

• At suopernode 1-2,

$$\frac{\frac{v_{3} 0 v_{2}}{6} \cdot 106 \frac{v_{1} 0 v_{4}}{3} \cdot \frac{v_{1}}{2}}{v_{1} 0 v_{2} 620}$$

• At supernode 3-4,

- Mesh analysis: another procedure for analyzing circuits, applicable to planar circuit.
- A Mesh is a loop which does not contain any other loops within it

(a) A Planar circuit with crossing branches,(b) The same circuit redrawn with no crossing branches.

A nonplanar circuit.

HARDIK PRAJAPATI

- Steps to Determine Mesh Currents:
 - 1. Assign mesh currents $i_1, i_2, ..., i_n$ to the n meshes.
 - Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
 - 3. Solve the resulting *n* simultaneous equations to get the mesh currents.

A circuit with two meshes.

Apply KVL to each mesh. For mesh 1,
0V₁ . R₁i₁ . R₃(i₁ 0 i₂) 60

(R₁ . R₃)i₁ 0 R₃i₂ 6V₁

For mesh 2,

 $\frac{R_2i_2 \cdot V_2 \cdot R_3(i_2 \ 0 \ i_1) \ 6 \ 0}{0 \ R_3i_1 \cdot (R_2 \cdot R_3)i_2 \ 6 \ 0V_2}$

Solve for the mesh currents.

Use *i* for a mesh current and *I* for a branch current. It's evident from Fig. 3.17
 that
 *I*₁ 6 *i*₁, *I*₂ 6 *i*₂, *I*₃ 6 *i*₁ 0 *i*₂

EXAMPLE

 Find the branch current I₁, I₂, and I₃ using mesh analysis.

• For mesh 1,

015. $5i_1$. $10(i_1 0 i_2)$. 1060• For mesh $3i_1 02i_2 61$

6*i*₂ . 4*i*₂ . 10(*i*₂ 0*i*₁) 010 6 0 *i*₁ 6 2*i*₂ 01 • We can find *i*₁ and *i*₂ by substitution method or Cramer's rule. Then, *I*₃ 6 *i*₁ 0 *i*₂

EXAMPLE Use mesh analysis to find the current I₀ in the circuit.

HARDIK PRAJAPATI

Apply KVL to each mesh. For mesh 1, 024. 10(i₁ 0 i₂). 12(i₁ 0 i₃) 60 11i₁ 05i₂ 06i₃ 612 For mesh 2,

 $24i_{2} \cdot 4(i_{2} \circ i_{3}) \cdot 10(i_{2} \circ i_{1}) \circ 0$ 05i_{1} \cdot 19i_{2} \circ 2i_{3} \circ 0

• For mesh 3,

 $4I_0 \cdot 12(i_3 \ 0i_1) \cdot 4(i_3 \ 0i_2) \ 60$ At node A, $I_0 \ 6I_1 \ 0i_2$, $4(i_1 \ 0i_2) \cdot 12(i_3 \ 0i_1) \cdot 4(i_3 \ 0i_2) \ 60$ $0i_1 \ 0i_2 \cdot 2i_3 \ 60$

we can calculus i_1 , i_2 and i_3 by Cramer's rule, and find I_0 .

CURRENT SOURCES

A circuit with a current source.

CURRENT SOURCES

• Case 1

Current source exist only in one mesh

*i*₁ 6 02 A

- One mesh variable is reduced
- Case 2
 - Current source exists between two meshes, a super-mesh is obtained.

CURRENT SOURCES

 a supermesh results when two meshes have a (dependent , independent) current source in common.

HARDIK PRAJAPATI

NODAL VERSUS MESH ANALYSIS

- Both nodal and mesh analyses provide a systematic way of analyzing a complex network.
- The choice of the better method dictated by two factors.
 - First factor : nature of the particular network.
 The key is to select the method that results in the smaller number of equations.
 - Second factor : information required.

SUMMERY

- 1. Nodal analysis: the application of KCL at the nonreference nodes
 - A circuit has fewer node equations
- 2. A supernode: two nonreference nodes
- 3. Mesh analysis: the application of KVL
 - A circuit has fewer mesh equations
- 4. A supermesh: two meshes