CONTROL THEORY

Block Diagram Reduction

Syllabus of Unit-1

Introduction, Open-loop system and its examples, Closed-loop system and its examples, Open-loop vs Closed-loop
Mathematical Modeling
Modeling of Mechanical system, Modeling of Electronic and electrical system, Modeling of Liquidlevel system, Transfer function of system, Modeling in state-space
Block diagram reduction techniques \& signal flow graph

Block Diagram

- Pictorial Representation of functions performed by each component of a system and that of flow of signals.

Single block diagram representation

Block Diagram Representation

A block diagram is a graphical tool can help us to visualize the model of a system and evaluate the mathematical relationships between their elements, using their transfer functions.

The Transfer Function Block

Input $\xrightarrow{\mathrm{R}(\mathrm{s})} \underset{\text { System }}{\substack{ \\\mathrm{G}(\mathrm{s})}} \xrightarrow{\mathrm{C}(\mathrm{s})}$ Output $\quad G(s)=\frac{C(s)}{R(s)}$

The transfer function $G(s)$ is

- defined only for a linear time-invariant system and not for nonlinear systems.
- Is a property of the system and is independent of the input to the system.
- Commutative $G_{1} G_{2}=G_{2} G_{1}$
- Associative $G_{1}+G_{2}=G_{2}+G_{1}$

Components of a system

Signals

Summing junction

Take off Point

Block Diagram Elements

The Summing Point

- Any number of inputs. Only one output

Terminology

Terminology

- Plant: Physical object to be controlled. G2(S)
- Control Element: G1(s) , also called the controller required to generate the appropriate control signal applied to the plant.
- Feedback Element: $\mathrm{H}(\mathrm{S})$ is the component required to establish the functional relationship between the primary feedback signal B (s) and the controlled output C(s).
- Reference Input: $R(s)$ is an external signal applied to a feedback control system in order to command a specified action of the plant.
- The Controlled Output $\mathrm{C}(\mathrm{s})$ is that quantity or condition of the plant which is controlled.

Terminology

- Actuating Signal $\mathrm{E}(\mathrm{s})$, also called the error or control action, is the algebraic sum consisting of the reference input R (s) plus or minus (usually minus) the primary feedback B (s).
- Manipulated Variable $\mathrm{M}(\mathrm{s})$ (control signal) is that quantity or condition which the control elements G1(s) apply to the plant G2(s).
- Disturbance $U(s)$ is an undesired input signal which affects the value of the controlled output $\mathrm{C}(\mathrm{s})$. It may enter the plant by summation with M (s), or via an intermediate point, as shown in the block diagram.

Terminology

- Forward Path is the transmission path from the actuating signal $E(s)$ to the output $C(s)$.
- Feedback Path is the transmission path from the output $C(s)$ to the feedback signal $B(s)$.
- Summing Point: A circle with a cross is the symbol that indicates a summing point. The $(+)$ or (-) sign at each arrowhead indicates whether that signal is to be added or subtracted.

Definitions

- $G(s)=$ Direct transfer function $=$ Forward transfer function.
- H (s) = Feedback transfer function.
- $C(s) / R(s)=$ Closed-loop transfer function = Control ratio

Closed loop transfer function

- the output $C(s)$ and input $R(s)$ are related as

follows $C(s)=G(s) E(s)$
where
$E(s)=R(s)-B(s)=R(s)-H(s) C(s)$
Eliminating $E(s)$ from these equations gives

$$
C(s)=G(s)[R(s)-H(s) C(s)]
$$

This can be written in the form

$$
\begin{array}{r}
{[1+G(s) H(s)] C(s)=G(s) R(s)} \\
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
\end{array}
$$

Block diagram and Simplifications

When manipulating block diagrams, the original relationships, or equations, relating the various variables must remain the same.

Blocks in series or cascaded blocks

- When blocks are connected in series, there must be no loading effect.

Block diagram and Simplifications

- Cascade Connections

Parallel Connections

Blocks in parallel

Parallel Connections

$C(s)=\left[\pm G_{1}(s) \pm G_{2}(s) \pm G_{3}(s)\right] R(s)$

Moving a summing point after a block

Moving a summing point ahead of block

Moving a take of point after a block

Moving a take of point before a block

Block Diagram

Procedure to solve Block diagram reduction problems

Step-1: Reduce the blocks connected in series
Step-2: Reduce the blocks connected in Parallel.
Step-3: Reduce the minor internal feedback loops.
Step-4: as far as possible try to shift take of points towards right and summing points towards left.

Step-5: repeat step-1 to 4 till simple form obtained.
Step-6: obtain closed loop transfer function using standard method.

Example - 1

Example - 2

To reduce the block diagram to simple form.

$$
\frac{C}{R}=\frac{(G 1 G 4 G 2+G 1 G 4 G 3)}{1-G 1 G 4 H 1+G 1 G 4 G 2 H 2+G 1 G 4 G 3 H 2}
$$

Example 3

TF from the Block Diagram

$$
T(s)=\frac{G_{1} G_{2} G_{5}+G_{1} G_{6}}{1-G_{1} G_{3}+G_{1} G_{2} G_{4}}
$$

Block diagram reduction

Figure: 02-26
Copyright © 2008 Pearson Prentice Hall, Inc.

Figure: 02-27
Copyright © 2008 Pearson Prentice Hall, Inc.

(d)

block diagram reduction example

block diagram: reduction example

block diagram: reduction example

block diagram: reduction example

block diagram: reduction example

block diagram: reduction example

block diagram: reduction example

Reduce the Block Diagram. (from Nise: page-242)

First, the three summing junctions can be collapsed into a single summing junction,

Continue.

Second, recognize that the three feedback functions, $H_{1}(s), \mathrm{H}_{2}(s)$, and $H_{3}(s)$, are connected in parallel. They are fed from a common signal source, and their outputs are summed. Alsorecognize that $G_{2}(s)$ and $G_{3}(s)$ are connected in cascade.

Finally, the feedback system is reduced and multiplied by $G_{1}(s)$ to yield the equivalent transfer function shown in Figure

Find the transfer function of the following block diagrams.

Solution:

1. Eliminate loop I

2. Moving pickoff point A behind block $\frac{G_{2}}{1+G_{2} H_{2}}$
$R(s)$

3. Eliminate loop II

$$
\begin{aligned}
& \frac{Y(s)}{R(s)}=\frac{G_{1} G_{2}}{1+G_{2} H_{2}+G_{1} G_{2} H_{3}+G_{1} H_{1}+G_{1} G_{2} H_{1} H_{2}}
\end{aligned}
$$

End

