CIRCUITS & NETWORKS

INTRODUCTION

Electronics and Communication Engineering Department Indus Institute of Technology and Engineering

SYLLABUS

Unit No.	Торіс
1	Introduction Electromotive force, potential, voltage, current, Resistor, capacitor, inductor, Voltage and current sources, Dependent sources, Dot conventions, current directions
2	Network Equations Nodal analysis, Mesh analysis, Source transformation, Analysis of circuit containing dependent sources, Superposition theorem, Substitution Theorem, Compensation theorem, Thevenin's and Norton's theorem, Maximum power transfer theorem

SYLLABUS

Unit No.	Торіс
3	Time domain response of linear
	circuits Mathematical preliminaries, DC response of first order and second order circuits, Initial conditions in the network, Charging and discharging of capacitor, Charging and discharging of inductor, Solution of circuit equations by using Initial Conditions
4	Laplace transform analysis : Circuit
	Applications
	Manipulation of impedance and
	admittance, Equivalent Laplace transform
	of circuit elements, RLC circuit analysis
	using Laplace transform, Switching in RLC ³

SYLLABUS

Unit No.	Торіс
5	Two Port Network Y- Parameter, z-Parameter, h-parameter, ABCD-parameter, Relation between two port parameters, Parallel connection of two network

BOOKS

- Electric Circuits and Networks :- By K. S. Suresh Kumar - Pearson Education
- Linear Circuits Analysis 2nd edition :-By DeCarlo/ Lin – Oxford University Press , (Indian edition)
- 3. Network Analysis :- By M.E Van Valkenburg PHI Publication
- Engineering Circuit Analysis : By W H Hayt, J E Kemmerly, S M Durbin 6th Edition TMH Publication
- 5. Network Analysis & Synthesis By Franklin S KUO Wiley Publication

CHAPTER 1 Introduction

PREPARED BY: HARDIK PRAJAPATI

CHAPTER COVERED IN

Γ

Γ

Electric Charge Current, Voltage, Power and Energy **Circuit Elements** Nodes, Branches, and Loops Kirchhoff's Laws Series Resistors and Voltage Division Parallel Resistors and Current Division **Dot** Convention

ELECTRIC CHARGES

- Electric charge is a physical property of matter that causes it to experience a force when near other electrically charged matter, measured in coulombs (C).
- Electric charge comes in two types, called positive and negative.
- The charge e on one electron is negative and equal in magnitude to
 1.602 10⁻¹⁹ C which is called as electronic charge. The charges that occur in nature are integral multiples₈

- Electrical current is a measure of the amount of electrical charge transferred per unit time.
 i = dq/dt
- The unit of ampere can be derived as 1 A = 1C/s.
- A direct current (dc) is a current that remains constant with time.
- An alternating current (ac) is a current that varies sinusoidally with time. (reverse direction)

The direction of current flow

1 A

(a)

(b)

Positive ions

Negative ions

Example 1

A conductor has a constant current of 5 A.

How many electrons pass a fixed point on the conductor in one minute?

Solution

Total no. of charges pass in 1 min is given by 5 A = (5 C/s)(60 s/min) = 300 C/min

Total no. of electronics pass in 1 min is given

 $\frac{300 \text{ C/min}}{1.602 \times 10^{-19} \text{ C/electron}} = 1.87 \times 10^{21} \text{ electrons/min}$

VOLTAGE

- Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (V).
- Mathematically,

 $v_{ab} = dw/dq$

- w is energy in joules (J) and q is charge in coulomb (C).
- Electric voltage, v_{ab}, is always across the circuit element or between two points in a circuit.
 - v_{ab} | 0 means the potential of a is higher₁₃ than notential of b

POWER AND ENERGY

• Power is the time rate of expending or absorbing energy, measured in watts (W). $p = \frac{dw}{dt} = \frac{dw}{dq} \times \frac{dq}{dt} = vi$

POWER AND ENERGY

The law of conservation of energy

 $\gg p = 0$

- Energy is the capacity to do work, measured in joules (J).
- Mathematical expression

$$w = \bigcup_{0}^{t} pdt = \bigcup_{0}^{t} idt$$

CIRCUIT ELEMENTS

- A dependent source is an active element in which the source quantity is controlled by another voltage or current.
- They have four different types: VCVS, CCVS, VCCS, CCCS. Keep in minds the signs of dependent sources.

CIRCUIT ELEMENTS

Example 2

Obtain the voltage v in the branch shown in Figure 2.1.1P for $i_2 = 1A$.

CIRCUIT ELEMENTS

Solution

Voltage v is the sum of the currentindependent 10-V source and the currentdependent voltage source v_x .

Note that the factor 15 multiplying the control current carries the units Ω .

Therefore, $v = 10 + v_x = 10 + 15(1) = 25 V$

LOOPS BRANCHES AND

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit.
- A network with b branches, n nodes, and l independent loops will satisfy the fundamental themem of network topology:

NODES, BRANCHES AND LOOPS

Example 1

 $a \qquad 5 \Omega \qquad b$ $10 V \qquad 2 \Omega \leq 3 \Omega \leq 2 A$ c

Equivalent circuit

Original circuit

How many branches, nodes and loops are there?

NODES, BRANCHES AND LOOPS

How many branches, nodes and loops are there?

 Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

Mathematically,

N

Example 4

 Determine the current I for the circuit shown in the figure below.

I + 4-(-3)-2 = 0 I = -5AThis indicates that the actual current for I is flowing in the opposite direction.

 Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

Mathematically,

Example 5

 Applying the KVL equation for the circuit of the figure below. Find I.

 $v_a - v_1 - v_b - v_2 - v_3 = 0$ $V_1 = IR_1 \ v_2 = IR_2 \ v_3 = IR_3$ $v_a - v_b = I(R_1 + R_2 + R_3)$

$$I = \frac{v_a - v_b}{R_1 + R_2 + R_3}$$

• Find I and V_{ab} in the circuit.

HW2_Ch2: 7, 9, 11, 17, 21

SERIES RESISTORS AND VOLTAGE DIVISION

- Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current.
- The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances $\mathbb{R}_{pq} = R_1 + R_2 + \times \mathbb{R}_{pq} = \mathbb{R}_p$
- The voltage divider can be expressed as

$$v_n = \frac{R_n}{R_1 + R_2 + \times R_N} v$$

Division

DIVISION

- Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
- The equivalent resistance of a circuit with N resistors $\frac{1}{R_{n}} = p_{R_{1}}^{1} = r_{R_{1}}^{1} = \frac{1}{R_{n}} = \frac{1}{R_{$

• The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be

Parallel Resistors and Current Division

Division

 For the circuit below, i_o =2 A. Calculate i_x and the total power dissipated by the circuit.

Parallel Resistors and Current Division

For the ladder network below, find I and R_{eq}.

WYE-DELTA TRANSFORMATIONS

TRANSFORMATIONS

Calculate I_o in the circuit

APPLICATION PROBLEM

The light bulb is rated 120 V, 0.75 A.
 Calculate V_s to make the light bulb operate at the rated conditions.

DOT CONVENTION

 In circuit analysis, the dot convention is a convention used to denote the polarity of two mutually inductive components,

