Technical

Assignments

1. Design layout of a toilet, Public and Private.
2. Represent structure, sanitary wares, fixtures, tile layout, dimensions and annotations with plan, section and isometric view.
Note: maintain the sequence as mentioned below,
sheet 1 - Private Toilet Plan
Sheet 2 - Isometric views
Sheet 3 - Public Toilet Plan
Sheet 2 - Isometric views
3. Micro Level - Show water supply system and drainage system in the Toilet, both in public and private.
4. Macro Level - Understand the Water supply system and Drainage system - Case study.
5. Macro level - Schematic representation of the water supply and drainage system of the case study.

Building
 Construction \&
 Services

Assignment 1.

1.Design layout of a toilet, Public and Private.

Assignment 2.

2．Represent structure，sanitary wares，fixtures， tile layout，dimensions and annotations with plan， section and isometric view．

3．Micro Level－Show water supply system and drainage system in the Toilet，both in public and private．

\qquad

NOTES	LeGend		Legend	
	（10）Dosemon	dotame	No Vascemon	Comane
	为	1omen		，maman
Al omensons are wmumeres	12 neommen	Soper	c．	cemen
	${ }^{2}$	${ }^{\text {coument }}$	䢒	com
			（in	为

\qquad

Assignment 3.

Understanding the properties and behaviour of the material. Hands on work - Making Physical models with various materials like,

Note:

Building
 Construction \& Services

Overhead Water Tank

Structure

Exercise 1 Joinery Matrix

To classify all the possible connections or joining techniques in the following materials(Brick, Concrete, Steel)

Intent
-Was to explain what are the different combinations possible
-Also how two materials come together to define a junction in away complimenting each others properties(Concrete good in compression used with steel bars which are good in tension
-To understand the structural strength and possibilities of using a material using its maximum strength

Output

-Introduction to types of Structures
-Compression is the only force that can work independently -Discussion on the difference between shallow dome(shell) and filler slab and how they work

Brick Matrix

TIMEER		Wroden oecking is done en stuel fame	Muret iturit hemby Nooden pianka are uted for clasding and mouliting mateial is aled or inilling the wace setwies the columes	
BRICK			Web steel joist rect onsteelimetal embedded in vall with aschor Strel bwama wating on lolick mall and bolked uing angle slate	
CONCRETE			Concrete blodes we used an wall lontween the twe colvmens and the joits an boled through a metal plate Cowcretr blocks are used by wing reinforing thew in mal hatwout the reflowns	 Reintorced concrete is used on the netal jecking
STEEL	Solunns ae weded en mutal pates which are boltec to coscrent bebist somecting so the fromdivion		Exerns profe shueting Arubat riverifine of steal fame	
STEEL	FOUNDATION	FLOOR	WALL	RCOF

Steel Matrix

Exercise 2 Material Matrix

```
To prepare a flow chart
explaining the factors affecting
choice of materials
Intent -
-To first understand factors
affecting the evolution of
structural system and material
For e.g.. Strength, Form,
Weight, Availability of raw
material, Making process etc
Output
\bulletExplaining cause and effect of
change caused during the
evolution of material.
-Circular matrix branching to
explain the sub topics and their
importance in choice of
materials and evolution of
systems
```


Matrix

Exercise 2 Ferro cement
 as

 a Construction Technique-Make a model with $30 \times 30 \mathrm{~cm}$ base with 70% cut-out $1 / 3$ rd or $\frac{1}{2}$ size height
-To tie cotton threads from equidistant holes connecting opposite sides of the cut-out to form a square grid of 1.5×1.5 cm taking height $1 / 3^{\text {rd }}$ or $\frac{1}{2}$ of the diagonal
-To dip the model in pop solution
-To invert the model and check the stability by loading it with 100gsm a4 papers
-To repeat the exercise 3 times

1. Model 1 - Cotton Treads
2.Model 2 - Cotton Thread and Copper wire
2. Model 3 - Cotton thread, copper wire and POP Bandages

Intent

Explaining the strength to thickness ratio of surface active structures and how it is possible to achieve strength in those structures

Output

-Understanding how denser grid can transfer load to diagonally and give strength

Base with 70\% cut out

Half height of the diagonal

Model 1 - Cotton Treads

Model 2 - Cotton Thread and Copper wire

Model 3 - Cotton thread, copper wire and POP Bandages

Fundamental Definition \& Concept

Surveying

Surveying is the art of determining the relative positions of points on, above or beneath the surface of the earth by means of direct and indirect measurements of distance, direction and elevation.
he technique, profession, art and science of determining the terrestrial or three-dimensional positions of points and the distances and angles between them.

Why it is conducted?
establish maps and boundaries for ownership, locations, such as building corners or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

Levelling

evelling is a method of surveying used for determination of the
difference of elevation or levels of various points on the surface of the earth.
The elevation of a point is its vertical distance above or below a reference level, called datum
The most commonly used datum is the mean sea level (M.S.L))

Levelling is required to determine the undulation of the earths surface for topographic mapping.

Why it is conducted?
. Design of highways, railways, canals, sewers.
. Layout of the construction projects,
a. for locating the excavation level
b. for the control of various elevation in buildings, bridges, dams

Survey and Levelling

Surveying

A land surveying professional is called a land surveyor

Elements	Equipments
Geometry	Total Station
Trigonometry	Robotic total station
Regression analysis	Theodolites
Physics	GNSS receiver
Engineering	(Global Navigation Satellite System receivers)
Metrology	Retroreflectors
Programming	3D scanners
languages	Radio
Law	Inclinometer
	Handheld tablets
	Digital levels
	Subsurface locators
	Drones
	GIS
	Surveying Software

History of Surveying

Distinguishing one man's land

In Ancient Egypt after flood-waters would recede, Egyptian surveyors would With relative accuracy resection the Nile measured sections of rope

plumb rule from the book Cassells' Carpentry and Joinery

Table of Surveying, 1728 Cyclopaedia https://en.wikpedia.orgmiwi/sureying

Summery

Plane Surveying
. It is used for relatively small areas. $<250 \mathrm{sq}$. km2 . A curved line on the surface of the earth is considered as mathematically straight.
The direction of the plumb lines at various points are assumed to be parallel to one another.
The spherical angles are consioered as plane angles. The standard of accuracy is lower than that in geodetic surveying.

Ancient Egypt
A rope being used to measure fields. Taken from the Tomb of Menna, TT69.

A map of India showing the Great Trigonometrical Survey, produced in 1870

Geodetic Surveying

```
1. It is used for large areas. > 250 sq. kme
    It is used for establishing. p pecisq. polt of reterece or control
    points.
    .points.
    The direction of the plumb lines at various points are dififeren.
    The earth's mean level is perpendicular to the direction of gravity
    indicated by plumb bob
    The standard of accuracy is very high. Very precise interments
    are used.
```


Documentary recommendation

The Great Trigonometrical Survey I RSTV Life and Culture https://www.youtube.com/watch?v=S6v8PGd0CSc\&t=177s

Survey of India celebrates $\mathbf{2 5 0}$ years of its Glorious history
https://www.youtube.com/watch?v=B8Q7tj1tGZo
Genius of Ancient Technology: Surveyors \& Water. SGD Sacred Geometry Decoded https://www.youtube.com/watch?v=iBR526HDX8g

Surveyor's Tool I A History of Kentucky in 25 Objects I KET https://www.youtube.com/watch?v=Dvh_b19QcXE
History of GSI
https://www.youtube.com/watch?v=VFakz8MmCwg

Primary Division of Surveying

Whether the curvature of the earth is considered
Or
Whether the earth is assumed to be flat plane.

Plane Surveying

The curvature of the earth is neglected and it is assumed to

 be a flat surface.How it is conducted
How it is conducted?
All Distance and horizo
All Distance and horizontal angles are assumed to be projected A horizontal plane plane.
to the vertical plane of reference is selected for the entire surve of the small area.
Less than 250 sq.km or so.

Geodetic Surveying

The curvature of the earth is taken in to consideration, and a very high standard of accuracy is maintained
The earth's majior and
The earth's major and minor axes are computed accurately and spheroid The earths mean sea leve
of gravity at every point is represented by geoid.
Large area.

The imaginary sufface representing mean sea level extending over the entire surface of the earth is represented by spheroid.

he Figure a, shows three point,
A, B and C on the mean surface of the earth.
The line AB, BC and CA are the arch of great circle passing through the centre of he earth.
The great circle is formed by the intersection of a plane passing through the centre of the earth.
Spherical Trigonometry - In geodetic surveying AB, BC and CA are determined from the spherical triangle using spherical trigonometry
Plane Trigonometry - these distances are obtained from the plane triangle using lan trigonometry.

Classification of Surveying

Functional Based
nstrument Used Based

1. Control Surveying
2. City Surveys
3. Topographical Surveys
4. Route Surveying
5. Mine Surveys
6. Hydrographic Surveys
7. Engineering Surveys
8. Astronomic Surveys
9. Satellite Surveys
10. Geological Surveys
11. Construction Surveys 13. Miscellaneous Surveys Archeological Surveys
Military Surveys
General Surveys
12. Chain Surveying
13. Compass surveying
14. Levelling
15. Plane Table surveys
16. Theodolite Surveys
17. Tachometric Surveys
18. Photogrammetric Surveys
19. EDM Surveys discussed yesterday in class
20. Example of Functional Based Survey
21. Instrument based survey
22. Chain Surveying
23. Compass surveyin
24. Levelling
25. Plane Table surveys
26. Theodolite Survey

Explain method of instrumen based survey in detail. Study can be shown through photographs, sketch, diagram video.

Representation of Scale

1. Engineer's Scale
2. Representative fraction
3. Graphical Scale

Indicated by a statement
Indicated by a ratio
Line drawn on the map marking the ground distance
 $?$
\qquad

The graphical scale has the advantage over the numerical scales that the distances on the maps can be determined by actual scaling even when the map has shrunk or has been reproduced to some other scale.

Level Line: The level line is a line in a level surface. As the level surface, the level line is also curved. Every the level surface, the level line is also curved. Every
element of the level line is perpendicular to the direction el gravity. All Points in elevation line are the same

elevation.

Datum Surface or Datum: It is a level surface which is taken as a reference surface for the determination of elevation of various points.

Elevation: It is a vertical distance of the point above or below the datum surface.

Altitude: It is the vertical distance of the point above mean sea level. Therefore, if the datum surface is the mean sea level, the elevation is the same as the altitude.

Difference of elevation: It is the vertical distance of the point between the level surfaces passing through the two pints.

Reduce Level (R.L): The reduced level of a point is its height relative to the datum.lt is the calculated (reduced) height relative to the datum.It is the calculated
height of the point above or below the datum.

Horizontal Plane: It is a plane which is perpendicular to the direction of the gravity.

Horizontal Line: It is a line in a horizontal plane. The horizontal line is, therefore, perpendicular to the vertica line at the plane.

Vertical Plane: It is plane which contains a vertical line at the point.

Vertical Angle: It is the angle measured in a vertica plane. The vertical angle is usually measured with respect

Land Surveying

Triangulation and trilateration

Traverse

Control Surveying

- Establishing a network of Horizontal and Vertical monuments that serve as a reference for other survey projects.

Control Points

- A system of Control stations, must be established to locate the positions of various points, objects or detail on surface of the ea - Points can be of two types

1) Horizontal Control Points

Using the horizontal coordinates to determine positions

2) Vertical Control Points

Use of vertical elevation to determine the positions

Control Surveying

Horizontal Control Surveys

- This control network can provide a reference framework of points for 1) Topographic mapping and large-scale plan production

2) Dimensional control of construction work
3) Deformation surveys for all manner of structures

Techniques Used in Horizontal Control Surveys

Classical Methods

- Traversing
- Triangulatio
- Trilateration

Vertical Control Surveys

- To determine elevation of primary control station
- Primary stations are located by triangulation and
trigonometric leveling
- Secondary vertical control points are done by Ordinary spirit levelling

Techniques Used in Vertical Control Surveys Classical Methods

- Direct Leveling
- Trigonometric Levelling

Trilateration

EVS

Research \& design - Poster

Supply and demand in Bhuj
 |II

Research \& design - Poster

Soil Water Management

Waste Water Management

Solid Waste Management

