

Name of Institute:Institute of Sciences, Humanities & Liberal Studies (ISHLS) Name of Faculty: Dr. Madhuresh Makavana

Course code: MCH0301 Course name: Chemistry of Natural Products

Pre-requisites: Bachelor of Science in Chemistry

Credit	points:
--------	---------

L	Т	Р	С	
4	0	0	4	

Offered Semester: IV

Course Coordinator (weeks XX - XX)

Full Name: Dr. Madhuresh Makavana Department with siting location: Chemistry Department, ISHLS,

Staff Room, 4th Floor, Bhanvar Building

Telephone: EXT : 3425 Email: madhureshmakavana.gd@indusuni.ac.in Consultation times: 4:15 pm to 5:00 pm (Monday to Friday)

Course Lecturer (weeks xx - XX)

Full Name: Dr. Madhuresh Makavana Department with siting location: Chemistry Department, ISHLS, Staff Room, 4th Floor, Bhanvar Building

Telephone: EXT : 3425 Email: madhureshmakavana.gd@indusuni.ac.in Consultation times: Tuesday 01:30 pm to 05:00 pm

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Outcomes (CO)

After the successful completion of the course, students will be able to; 1) Explain the basics of natural product chemistry, its application and functions [BT2].

2) Discuss the chemistry of vitamins, pigments, chlorophyll and alkaloids [BT1].3) Identify the distribution of selected secondary metabolites their biosynthesis and bioactivity

[BT1].

4) Explain the synthesis of natural products including metabolites [BT2].

5) Analyse the different natural products on the basis of its biological activity [BT4].

6) Identify between the Steroids, Terpenoids and Carotenoids [BT1].

Course Outline

(Key in topics to be dealt)

- ***** Introduction of Natural Products
- * Alkaloids
- Terpenoids and Carotenoids
- * Steroids

Method of delivery (Face to face lectures, , Active Learning Techniques)

Study time

(How many hours per week including class attendance)

CO-PO Mapping (PO: Program Outcomes)

	PO 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2
CO 1	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	-	-	-

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Combining parts to make a

Create new whole Judging the value of information or ideas **Evaluate Breaking down information** into component parts Analyze Applying the facts, rules, concepts, and ideas Apply Understanding what the facts mean Understand Recognizing and recalling facts Remember Figure 1: Blooms Taxonomy average student retention rates Lecturing Reading 10% Audiovisual Demonstration Discussion Practical doing Teach others Figure 2: Knowledge retention

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities		
Informed	1 Professional knowledge,		
Have a sound knowledge of an area	grounding & awareness:- Student's		
of study or profession and	will gain knowledge about chemistry		
understand its current issues, locally	subject in the both areas i.e. theory		
and internationally. Know how to	as well as practical's. Professionally		
apply this knowledge. Understand	students will know how chemistry is		
how an area of study has developed	important in our daily life as well as to		
and how it relates to other areas.	build up any industry. Students will		
	be having knowledge/awareness		

	about chemicals' such as how to use them and how hazardous they are for the environment.
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing:- Student's will be able identify the problems happening in the society as well as in the industry such as water quality, loss due to corrosion, pollutant coming from cement plant etc. with this basic information they will be having ability to gather the possible solutions.
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills: Chemistry education provides students with the tools to solve problems. This means that students should be able to apply the scientific method: define a problem clearly, develop testable hypotheses, design and execute experiments, analyze data using appropriate statistical methods, and draw appropriate conclusions. Students should be able to integrate knowledge across chemical sub disciplines and apply this knowledge to solve problems. In the laboratory, in addition to the characteristics described above, students should understand the fundamental uncertainties in experimental measurements.
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	 5 Written communication:- Students should be able to retrieve specific information from the chemical literature, critically evaluate technical articles, and manage many types of chemical information. Students should develop proficiency with electronic searching of appropriate technical databases, including structure-based searching. 6 Oral communication:- Students should orally able to use communication technology such as computerized presentations as well as software for word processing, chemical-structure drawing, and

	poster preparation and research		
	conferences.		
	7 Teamwork:- Students should be		
	able to Solve scientific problems often		
	involves working in disciplinary and		
	multidisciplinary teams. This is		
	especially true in industry and		
	increasingly in academic settings.		
	Students should learn to work		
	productively with a diverse group of		
	peers in classroom and laboratory		
	activities. Students should be able to		
	lead portions of an activity or be		
	effective followers, as dictated by the situation. Peer- and self-assessment is		
	often an effective way to evaluate		
	student contributions to group		
	activities.		
Responsible	10 Sustainability, societal &		
Understand how decisions can affect	environmental impact: With this		
	course students will know/ aware/		
others and make ethically informed			
choices. Appreciate and respect	learn about the sustainable use of		
diversity. Act with integrity as part	green products, proper management		
of local, national, global and	of renewable energy resources, and		
professional communities.	to find out new energy replacement		
	sources. Students will be socially		
	aware about the sources of pollutant		
	that damages the water, soil, air etc.		
	So they will be having capabilities/		
	knowledge how to tackled/ deal with		
	different types of pollutions.		

Practical work:

(Mention what practical work this Course involves)

N.A.

Lecture/tutorial times

(Give lecture times in the format below)_

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

- Natural Products Chemistry, Vol. I & II K. Nakanishi et al., Academic press publication (1974).
- 2. The Molecules of Nature, J. B. Hendrickson, W. A. Benjamin Inc. (1965).
- 3. Selected Organic Synthesis, Ian Fleming John Wiley (1977).
- Chemistry of Natural Products, N. R. Krishnaswamy, University Press (India) Ltd. (1999).
- 5. Classical Methods in Structure Elucidation of Natural Products, Reinhard W. Hoffmann by Wiley-VHCA.

Text books

- 1. The Chemistry of Natural Products, K. W. Bentley, Vol. I V (Interscience).
- 2. Organic Chemistry, Vol. 2, I. L. Finar, 5th Edition (1994) ELBS Publication.

Additional Materials

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

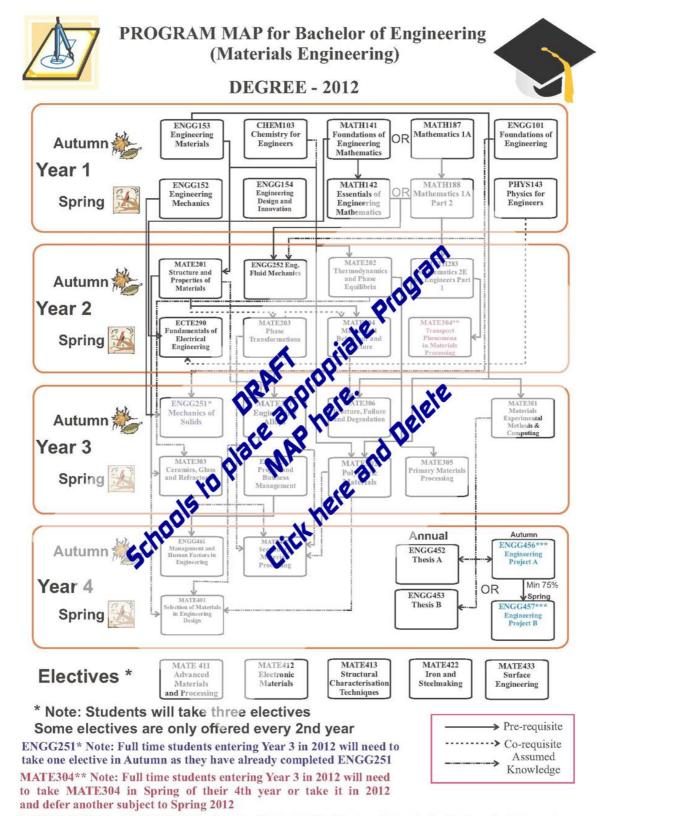
Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)


.

Course schedule(subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Week 1	Unit-I Introduction of Natural Products: Classification, source and methods of isolation of natural products	1	
Week 2	General methods for the structure determination of natural products	1	
Week 3	Vitamins: Structure and synthesis of Vitamin A1, Vitamin B1(Thiamine)	2	
Week 4	Vitamin B (Pyridoxine) and Biotin (Vitamin H). Synthesis of Vitamin C, Vitamin B2 (Riboflavin)	2	
Week 5	Unit-II Alkaloids: Introduction of Opium alkaloids, Structure and synthesis of Morphine, Rearrangement in opium alkaloids	2	
Week 6	synthesis of Reserpine and Tylophorine. Biogenesis of Alkaloids, Structure and synthesis of Cinchonine	3	
Week 7	Structure and synthesis of Tropine, Synthesis of 2- ethylpyridine, tropinic acid	3	
Week 8	Tropinone and tropilidine from tropine, Synthesis of pimelic acid from tropinic acid		
Week 9	Unit-III Terpenoids and Carotenoids: Structure and synthesis of	5	

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
	cicyclic terpenoids Eudesmol and Cadinene		
Week 10	Structure and synthesis of ß- Carotene, synthesis of Caryophyllene and (-) Khusimone		
Week 11	Molecular rearrangement of Caryophyllene and Logifolene	6	
Week 12	Biogenesis of Terpenoids and Carotenoids	6	
Week 13	Unit-IV Steroids: Structure and synthesis of Cholesterol, Steroid Hormones: Introduction	6	
Week 14	Androgens: Synthesis of Testosterone, Oestrogens: Total Synthesis of Oestrone	6	
Week 15	Gestrogens: Synthesis of Progesterone from cholesterol	6	
Week 16	Synthesis of Cortisone, and Chemistry of bile acids, Biogenesis of Steroids	6	

ENGG456***Note: If ENGG456 Engineering Project A (6cp) is done instead of a thesis, a student needs to complete 4 electives and is not eligible for honours

Page 10 of 10