

Name of Institute: Institute of Technology and Engineering Name of Faculty: Dr. Mitesh J Mungla

Course code: ME0705 Course name: Mechanical Vibration Pre-requisites: Strength of Materials, Dynamics of Machines, Credit points: 4 Offered Semester: 7th

Course coordinator (weeks 12) Full name: Dr. M. J. Mungla Department with sitting location: 1st floor staff room, Bhanwar building Email: miteshmungla.me@indusuni.ac.in Consultation times: 15:30 to 17:00 (Monday to Friday)

Course lecturer (weeks12)

Full name: Prof Akshay Shah Department with sitting location: 3rd Floor staff room, Bhanwar building Email: akshayshah.me@indusuni.ac.in Consultation times: 15:30 to 17:00 (Monday to Friday)

Full name: Prof. Ravi Dabla Department with siting location: Dh-01, 3rd floor, Bhanwar Building <u>Email: ravidabla.me@indusuni.ac.in</u> Consultation times: 15:30 to 17:00 (Monday to Friday)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1) To study basics of vibration.
- 2) To study of single degree of freedom systems- forced undamped and dampedvibrations
- 3) To study of Two degree of freedomsystems.
- 4) To study Multi-Degree of freedom systems and Natural Frequencycalculations.
- 5) To study about continuoussystem.

Course Outcomes (CO)

- 1) Understanding towards the harmonic and periodic motion of body and vibration in mechanical system.
- 2) Able to solve problems related to single and multi-degree of freedom vibratorysystem.
- 3) Understand the damping phenomenon and the effect of damping in vibratory system.
- 4) Able to solve the problems related to continuous system like beams and modeshapes.
- 5) Understand the vibration measuring techniques and devices.

Course Outline

This course contains an introductory part of the vibration field. This course will help the student to understand the harmonic motion in mechanical systems and how to solve the elementary problem related to mechanical vibration.

Student will learn the effect of stiffness and damper on single and multi-degree freedom of system and in a system with continuous distributed mass. Along with that introduction of vibration measurement techniques and device are also included in this course.

Method of delivery

Face to facelectures

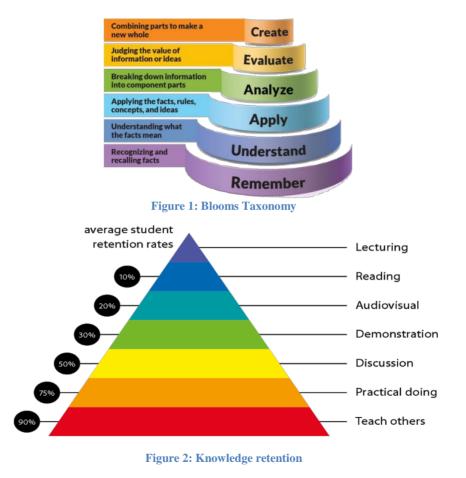
Study time

- 1) Two lectures each of one hours
- 2) One tutorial of two hours
- 3) One lab of two hours

CO-PO Mapping (PO: Program Outcomes)

- **PO1 Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide validconclusions.
- **PO5 Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6 The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7 Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineeringpractice.
- **PO9 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- **PO10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.


CO1 3 3 2 3 - - - 1	-	2
		-
CO2 3 2 2 2 - - - 1	-	2
CO3 3 2 1 1 - - - 2	-	1
CO4 3 3 2 1 - - - 2	-	1
CO5 3 2 3 2 - - - 2	-	1

1-LightlyMapped

2-ModeratelyMapped

3- HighlyMapped

Blooms Taxonomy and Knowledge retention

Graduate Qualities and Capabilities covered

General Graduate Qualities	Specific Department of Mechanical Graduate Capabilities
Informed	1 Professional knowledge, grounding &
Have a sound knowledge of vibration system study	awareness
and management, need to study or profession and	
understand its current issues, locally and	
internationally. Understand how to apply this	
knowledge to ground level. Understand how an	
vibrational system has developed and how it	
relates to otherareas.	
Independent learners	2 Information literacy, gathering &
By case study on vibration lead to develop ideas	processing
and ways of thinking and critically analyze issues.	processing
By providing expert lecture references help in to	
get extend subject knowledge. Find and evaluate	
information, using a variety of sources and	
technologies. Acknowledge the work and ideas of	
others.	
Problem solvers	3 Problem solving skills
Take on challenges and opportunities in industries	5 I TODICIII SOIVIIIg SKIIIS
and organization related to vibration issues by case	
study. By Demonstration of effect of different type	
of vibration help in to understand problem faces in	
industries and try to give solution to resolve	
problems. Apply creative and logical to respond	
effectively. Make and implement decisions.	
Effective communicators	4 Written communication
	5 Oral communication
Report or Assignment writing help in improve written communication. Presentation need to give	
0	6 Teamwork
based on case study or research paper related to	
course. Work collaboratively and engage with	
people for innovative ideas related to subject and presentation. Recognize how culture can shape	
communication. Recognize now culture can shape	
	7 Sustainability, societal &
Responsible Understand and Implements of science of vibration	7 Sustainability, societal & environmental impact
lead to sustainable design approach. Help in	cuvn omnentar mipact
fulfilling in creating a safe structure or machines	
without harmful environment impact.	
without narmini environment impact.	

Practical work:

- 1. To study frequency of simple pendulum.
- 2. To study frequency of compoundpendulum.
- 3. To study frequency of sprig mass system.
- 4. To study frequency of lateral vibration system.
- 5. To study frequency of torsion vibration system (single Rotor).
- 6. To study free damped vibration system.
- 7. To study whirling speed of shaft.

8. To study forced damped vibration system.

9. To study frequency of simple pendulum with considering mass of the rod.

- 10. To study frequency of roller rolls without slip inside the cylinder.
- 11. To study frequency of U tube filled with liquid.

Lecture/tutorial times

Lecture: 1) As per Time table
2)
Lab: 1)
2)
Tutorial: 1)
2)

Details of referencing system to be used in written work

Text books, online sources and NPTEL videos.

Text books

- 1) Mechanical Vibration by Singiresu S. Rao, Pearson Education
- 2) Mechanical Vibrations by G.K. Groover, Nemchand & Bro
- 3) Theory of Vibration With Applications by William Thomson, Marie Dillon Dahleh, Prentice Hall

Additional Materials

Reference books:

- 1) Theory of Vibration with Application by Willium T Thomson, Pearson Education
- 2) Theory and Problems of Mechanical Vibrations by Graham Kelly, Schaum series
- 3) Fundamental of Mechanical Vibrations by Graham Kelly Mcgrawhill

Online course material:

- 1) <u>https://nptel.ac.in/courses/112/103/112103111/</u>
- 2) https://online.stanford.edu/courses/aa242b-mechanical-vibrations
- 3) https://www.coursera.org/learn/fundamentals-waves-vibrations

ASSESSMENT GUIDELINES

- 1) TheoryAssessment:
 - a) CIE theory will contains 60 marks and the distribution of marks will be asfollows:

Distribution	Marks	Remarks
Mid Semester Examination	40	- Based on your performance in the examination
Assignment	10	 Two Assignments (each of 05 marks) Assignment 1- Unit 1 &2 Assignment 2- Unit 3 &4
Presentation	05	 Content of presentation will not be from the syllabus topics but must contain the application of subject Marks will be provided on the basis of content, presentations & communication skills, questionnaires
- Attendance	05	 Bonus for all students having attendance > 80% On prorate basis having attendance < 80%
Total marks	60	

- b) ESE theory will contain 40 marks.
- 2) Practical Assessment:
 - a) CIE practical will contain 60 marks and the distribution of marks will be as follows: Attendance-10 marks
 File Work – 10 marks
 Experiment Performance – 20 marks
 Question Answer/Viva – 20 marks
 - b) ESE practical will contain 40 marks.

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e. internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10% of the maximum mark per calendar day and extra innovative assignments will be provided.

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

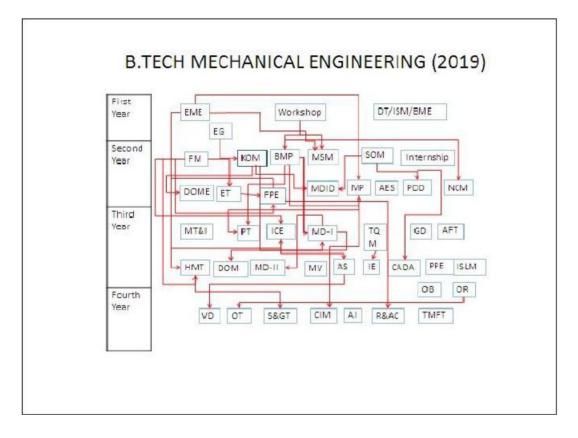
University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)


Course schedule (subject to change)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)	
Weeks 1	Vibration terminology, Harmonic and periodic motions, Beats phenomenon, uses and effects, practical applications and current research trends	1,3	Chalk and talk	
Weeks 2	Free undamped vibrations using Newton's second law, D'Alemberts principles, Energy method,	1,3	Chalk and talk	
	Issue of Assignmen	t 1		
Week 3	Rayleigh's method, free damped vibrations, logarithmic decrement, under damped, over damped and critically damped conditions.	1,3,4	Chalk and talk	
Week 4	Forced harmonic undamped vibration, Damped free Magnification factor, Transmissibility,	2	Chalk and talk	
Week 5	Vibration Isolation, Equivalent viscous damping, Rotor unbalance, Excitation and Stability analysis	2	Chalk and talk	
	Submission of Assignm			
	Issue of Assignmen Mid Semester Examin			
Week 6	Generalized and Principal coordinates, derivation of equations of motion,	2,4	Chalk and talk	
Week 7	Lagrange's equation, Coordinate coupling, Forced Harmonic vibration	2,4	Chalk and talk	
Submission of Assignment 2 & Issue of Assignment 3				
Week 8	Derivation of equations of motion for MDOFs, influence coefficient method,	3,5	Chalk and talk	
Week 9	Properties of undamped and damped vibrating systems: flexibility and stiffness matrices, reciprocity theorem, Modal analysis.	2,3	Chalk and talk	
	Submission of Assignment 3 &			
Issue of Assignment 4				

Week 10	Rayleigh method, Stodala method, Matrix iteration method , Holzer's method and Dunkerley's method, Whirling Speed of shaft.	3,4	Chalk and talk
Week 11	Introduction to continuous systems, lateral vibration of string, transverse vibrations of the beam, Orthogonality of eigenvectors.	2,3	Chalk and talk
Week 12	Vibration measuring instruments, acceleration and frequency measuring instruments, FFT analyzer.	5	Chalk and talk
Schedule of E	Submission of Assignm & Extra lectures for any common difficulties/a		

Program Map

