Unit: 5 VECTOR CALCULUS

1 Vector Function

A vector function is a vector whose magnitude and/or direction depends on values of certain variables. Based on the input variable, we have different types of functions:

1. A vector function \vec{F} of a scalar t written as $\vec{F}=\vec{F}(t)$, where the input variable is t, a scalar. Example: Position of a particle in space with a position vector say \vec{r} dependent on time t and written as $\vec{r}=\vec{r}(t)$.
2. A scalar function $\phi(\vec{r})$ of a vector \vec{r} written as $\phi=\phi(\vec{r})$, where the input variable is \vec{r}, a vector.
Example: Temperature T of a heated body in steady state at any point \vec{r} given by $T=T(\vec{r})$.
3. A vector function \vec{F} of another vector \vec{r} written as $\vec{F}=\vec{F}(\vec{r})$. where the input variable is \vec{r}, a vector.
Example: Linear velocity \vec{V} of a rotating body with position vector \vec{r} and constant angular velocity \vec{w} written as $\vec{V}=\vec{w} \times \vec{r}$.

1.1 Vector Differentiation

For a vector function $\vec{r}=\vec{r}(t)$, the derivative of $\vec{r}(t)$ (if it exists) is defined by:

$$
\frac{d \vec{r}}{d t}=\lim _{\delta t \rightarrow 0} \frac{\vec{r}(t+\delta t)-\vec{r}(t)}{\delta t}
$$

In terms of Cartesian co-ordinates, $\vec{r}(t)$ is differentiable at a point t if and only if all the components of $\vec{r}(t)$ are differentiable at t. Thus, if $\vec{r}(t)=(x(t), y(t), z(t))$ or $x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$, then

$$
\frac{d \vec{r}}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}
$$

where $\hat{i}, \hat{j}, \hat{k}$ are unit vectors in directions of x, y, z axes respectively.

1.2 Higher Order Differentiation

If $\vec{r}(t)$ is a vector function, then $\frac{d \vec{r}}{d t}$ is the first order derivative of \vec{r}.
The second order derivatiave of $\vec{r}(t)$ is given by $\frac{d}{d t}\left(\frac{d \vec{r}}{d t}\right)=\frac{d^{2} \vec{r}}{d t^{2}}$.
Similarly, higher order derivatives of \vec{r} can be obtained.

1.3 Geometrical Interpretation

Geometrically, for a vector function $\vec{r}(t), \frac{d \vec{r}}{d t}$ is a vector along the tangent to the curve at any point P on the curve. If $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$, then the magnitude of the vector along the tangent at point P is given by $\left|\frac{d \vec{r}}{d t}\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}$. If $\left|\frac{d \vec{r}}{d t}\right|=1$, then $\frac{d \vec{r}}{d t}$ is the unit vector along the tangent at point P.

1.4 Velocity and Acceleration

Let the scalar variable t denote time and the vector \vec{r} represent the position vector of a moving particle P relative to origin O.
The velocity vector of the particle at P is given by: $\vec{V}=\frac{d \vec{r}}{d t}$ and its direction is along the tangent at P.
The acceleration vector of the particle at P is given by: $\vec{a}=\frac{d \vec{V}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}$

1.5 Some Useful Results

1. $\frac{d \vec{c}}{d t}=\vec{O}$, when \vec{c} is a constant vector and \vec{O} is a zero vector.
2. $\frac{d}{d t}(\vec{a} \pm \vec{b})=\frac{d \vec{a}}{d t} \pm \frac{d \vec{b}}{d t}$, when \vec{a} and \vec{b} are vector functions of t.
3. $\frac{d \vec{f}}{d t}=\frac{d \vec{f}}{d \phi} \frac{d \phi}{d t}$, when \vec{f} is a vector function of ϕ and ϕ is a scalar function of t.
4. $\frac{d(\phi \vec{V})}{d t}=\phi \frac{d \vec{V}}{d t}+\frac{d \phi}{d t} \vec{V}$, when ϕ is a scalar function of t and \vec{V} is a vector function of t.
5. $\frac{d(\vec{a} \cdot \vec{b})}{d t}=\vec{a} \cdot \frac{d \vec{b}}{d t}+\frac{d \vec{a}}{d t} \cdot \vec{b}$, when \vec{a} and \vec{b} are vector functions of t.
6. $\frac{d(\vec{a} \times \vec{b})}{d t}=\vec{a} \times \frac{d \vec{b}}{d t}+\frac{d \vec{a}}{d t} \times \vec{b}$, when \vec{a} and \vec{b} are vector functions of t.
7. If $\vec{a}, \vec{b}, \vec{c}$ are vector functions of t, then $\frac{d}{d t}[\vec{a} \vec{b} \vec{c}]=\left[\frac{d \vec{a}}{d t} \vec{b} \vec{c}\right]+\left[\vec{a} \frac{d \vec{b}}{d t} \vec{c}\right]+\left[\vec{a} \vec{b} \frac{d \vec{c}}{d t}\right]$
8. $\frac{d}{d t}[\vec{a} \times(\vec{b} \times \vec{c})]=\frac{d \vec{a}}{d t} \times(\vec{b} \times \vec{c})+\vec{a} \times\left(\frac{d \vec{b}}{d t} \times \vec{c}\right)+\vec{a} \times\left(\vec{b} \times \frac{d \vec{c}}{d t}\right)$, if $\vec{a}, \vec{b}, \vec{c}$ are vector functions of t.

1.6 Component of any vector along a given direction

Let \vec{V} be any vector and \vec{a} be a given constant vector. Then the component of \vec{V} in the direction of \vec{a} is given by $\vec{V} \cdot \hat{a}$, where \hat{a} is a unit vector corresponding to \vec{a}.

Recall:

1. If $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ is any vector, then $\hat{v}=\frac{1}{|v|}\left(v_{1}, v_{2}, v_{3}\right)$ is a unit vector in the direction of \vec{v} where $|v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$ is the magnitude of \vec{v}.
2. If $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ are two vectors, then
(a) $\vec{a} \cdot \vec{b}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+a_{3} \cdot b_{3}$ is the dot product or scalar product between \vec{a} and \vec{b}.
(b) $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\hat{i}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\hat{j}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\hat{k}\left(a_{1} b_{2}-a_{2} b_{1}\right)$
is the cross product or vector product of \vec{a} and \vec{b}.
(c) If $\vec{c}=\left(c_{1}, c_{2}, c_{3}\right)$, then $\vec{a} \cdot(\vec{b} \times \vec{c})=[\vec{a} \vec{b} \vec{c}]$ is called the box product and is given by:

$$
[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

3. If \vec{a} and \vec{b} are two vectors, then the angle between them is given by $\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$.
4. If vectors \vec{a} and \vec{b} are perpendicular to each other, then $\vec{a} \cdot \vec{b}=0$.
5. If vectors \vec{a} and \vec{b} are parallel to each other, then $\vec{a}=k \cdot \vec{b}$ for some scalar k.

2 Scalar and Vector Fields

A variable quantity whose value at any point in a region of space depends on the position of the point is called a point function. There are two types of point functions.

1. If to each point (x, y, z) of a region R in space there corresponds a number or a scalar $\phi=$ $\phi(x, y, z)$, then ϕ is called the scalar function or scalar point function. The region R is called the scalar field.
Examples on scalar point function are: (i) temperature distribution in a medium, (ii) density of the body, (iii) distribution of atmospheric pressure in space, etc.
2. If to each point (x, y, z) of a region R in space there corresponds a vector $\vec{V}=\vec{V}(x, y, z)$, then \vec{V} is called the vector function or vector point function. The region R is called the vector field.
Examples on vector point function are: (i) velocity of moving fluid at any time, (ii) electric field density, (iii) magnetic field density, etc.

A vector field which is independent of time is called stationay or steady-state vector field.

2.1 Level Surfaces and vector differential operator

Let a scalar point function $\phi(x, y, z)$ be defined on a certain region R of space. The set of points satisfying $\phi(x, y, z)=k$ for some fixed value of k defines a surface and is called level surface.
For different values of k, different level surfaces will be obtained and no two level surfaces will intersect.
The vector differential operator read as del or nabla is given by

$$
\nabla=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}
$$

∇ operates on scalar functions as well as vector functions.

2.2 Gradient of a Scalar Field

For a given scalar function $\phi(x, y, z)$, the gradient of ϕ written as $\operatorname{grad}(\phi)$ or $\nabla \phi$ is a vector function defined as $\nabla \phi=\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}$.
We note that $\nabla \phi$ is always normal(perpendicular) to the surface $\phi(x, y, z)=c$.
$\hat{n}=\frac{\nabla \phi}{|\nabla \phi|}$ is a unit vector normal to the surface $\phi(x, y, z)=c$.
The gradient of a scalar field ϕ is a vector normal to the surface $\phi(x, y, z)=c$. It is in the direction of maximum rate of change of ϕ.

2.2.1 Directional Derivative

$\nabla \phi \cdot \hat{a}$ is the directional derivative of a scalar function $\phi(x, y, z)$ in the direction of \vec{a}.
This gives the rate of change of ϕ at any point (x, y, z) in the direction of \vec{a}.
$\nabla \phi$ gives the maximum rate of change(directional derivative) of ϕ with magnitude $|\nabla \phi|$.

2.3 Divergence of a Vector Field

For a differentiable vector function $\vec{V}(x, y, z)=V_{1} \hat{i}+V_{2} \hat{j}+V_{3} \hat{k}$, the divergence of \vec{V} written as $\operatorname{div} \vec{V}$ or $\nabla \cdot \vec{V}$ is a scalar function defined as

$$
\nabla \cdot \vec{V}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(V_{1} \hat{i}+V_{2} \hat{j}+V_{3} \hat{k}\right)=\frac{\partial V_{1}}{\partial x}+\frac{\partial V_{2}}{\partial y}+\frac{\partial V_{3}}{\partial z}
$$

The divergence of a \vec{V} gives the rate of change of outward flow of a fluid per unit volume at a given point.

2.3.1 Solenoidal Function

If there is no gain of the fluid anywhere, then $\operatorname{div} \vec{V}=\nabla \cdot \vec{V}=0$.
This is called continuity equation for incompressible fluid or condition of incompressibility.This is also known as law of conservation of mass.

A vector function \vec{V} is said to be a solenoidal function or solenoidal if $d i v \vec{V}=0$.

2.4 Curl of a Vector Field

For a differentiable vector function $\vec{V}(x, y, z)=V_{1} \hat{i}+V_{2} \hat{j}+V_{3} \hat{k}$, the curl or rotation of \vec{V} written as $\operatorname{curl} \vec{V}$ or $\nabla \times \vec{V}$ is a vector function defined as

$$
\nabla \times \vec{V}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
V_{1} & V_{2} & V_{3}
\end{array}\right|=\hat{i}\left(\frac{\partial V_{3}}{\partial y}-\frac{\partial V_{2}}{\partial z}\right)-\hat{j}\left(\frac{\partial V_{3}}{\partial x}-\frac{\partial V_{1}}{\partial z}\right)+\hat{k}\left(\frac{\partial V_{2}}{\partial x}-\frac{\partial V_{1}}{\partial y}\right)
$$

The angular velocity of rotation of a body at any point is equal to half the curl of the linear velocity at that point.

2.4.1 Irrotational vector and conservative field

If the vector function (field) \vec{F} is that due to a moving fluid, then the field tend to rotate in the region if $\operatorname{curl} \vec{F} \neq \overrightarrow{0}$. The region where $\operatorname{curl} \vec{F}=\overrightarrow{0}$ will have no rotation and the field is called an irrotational field.
Thus, \vec{F} is said to be irrotational if $\nabla \times \vec{F}=\overrightarrow{0}$. In this case, there exists a scalar function ϕ called scalar potential such that $\nabla \phi=\vec{F}$. The field \vec{F} is called conservative vector field.

3 Properties of Gradient, Divergence and Curl

3.1 Properties of gradient, divergence and curl

Let \vec{u}, \vec{v} be two vector functions and ϕ, ψ be two scalar functions. Then,

1. $\operatorname{grad}(\phi \pm \psi)=\operatorname{grad}(\phi) \pm \operatorname{grad}(\psi)$ or $\nabla(\phi \pm \psi)=\nabla \phi \pm \nabla \psi$,
2. $\operatorname{div}(\vec{u} \pm \vec{v})=\operatorname{div}(\vec{u}) \pm \operatorname{div}(\vec{v})$ or $\nabla \cdot(\vec{u} \pm \vec{v})=\nabla \cdot \vec{u} \pm \nabla \cdot \vec{v}$,
3. curl $(\vec{u} \pm \vec{v})=\operatorname{curl} \vec{u} \pm \operatorname{curl} \vec{v}$ or $\nabla \times(\vec{u} \pm \vec{v})=\nabla \times \vec{u} \pm \nabla \times \vec{v}$,
4. $\operatorname{grad}(\phi \psi)=\phi \operatorname{grad}(\psi)+\psi \operatorname{grad}(\phi)$ or $\nabla(\phi \psi)=\phi \nabla \psi+\psi \nabla \phi$,
5. $\operatorname{grad}\left(\frac{\phi}{\psi}\right)=\frac{\psi \operatorname{grad}(\phi)-\phi \operatorname{grad}(\psi)}{\psi^{2}}$ or $\nabla\left(\frac{\phi}{\psi}\right)=\frac{\psi \nabla \phi-\phi \nabla \psi}{\psi^{2}}$, where $\psi \neq 0$.
6. $\operatorname{div}(\phi \vec{u})=\phi \operatorname{div}(\vec{u})+\operatorname{grad}(\phi) \cdot \vec{u}$ or $\nabla \cdot(\phi \vec{u})=\phi \nabla \cdot \vec{u}+\nabla \phi \cdot \vec{u}$.
7. $\operatorname{div}(\vec{u} \times \vec{v})=(\operatorname{curl} \vec{u}) \cdot \vec{v}-\vec{u} \cdot(\operatorname{curl} \vec{v})$ or $\nabla \cdot(\vec{u} \times \vec{v})=(\nabla \times \vec{u}) \cdot \vec{v}-\vec{u} \cdot(\nabla \times \vec{v})$
8. curl $(\phi \vec{u})=(\operatorname{grad} \phi) \times \vec{u}+\phi \operatorname{curl} \vec{u}$ or $\nabla \times(\phi \vec{u})=(\nabla \phi) \times \vec{u}+\phi(\nabla \times \vec{u})$,
9. curl $(\vec{u} \times \vec{v})=(\operatorname{div} \vec{v}) \vec{u}-(\operatorname{div} \vec{u}) \vec{v}+(\vec{v} \cdot \nabla) \vec{u}-(\vec{u} \cdot \nabla) \vec{v}$
10. grad $(\vec{u} \cdot \vec{v})=\vec{u} \times \operatorname{curl} \vec{v}+\vec{v} \times \operatorname{curl} \vec{u}+(\vec{u} \cdot \nabla) \vec{v}+(\vec{v} \cdot \nabla) \vec{u}$

3.2 The Laplacian Operator ∇^{2}

The operator $\nabla \cdot \nabla=\nabla^{2}$ read as del square is defined as $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ and is called the Laplacian Operator.

If ϕ is a scalar function, then $\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$

3.3 Laplace's Equation and Harmonic function

For a function $f, \nabla^{2} f=0$ is called the Laplace's Equation. A function satisfying Laplace's equation is called Harmonic Function.

3.4 Properties involving Laplacian operator

Let ϕ be a scalar function and \vec{u} be a vector function. Then,

1. $\operatorname{div}(\operatorname{grad} \phi)=\nabla \cdot(\nabla \phi)=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\nabla^{2} \phi$
2. $(\nabla \cdot \nabla) \vec{u}=\nabla^{2} \vec{u}$
3. $\operatorname{grad}(\operatorname{div} \vec{u})=\nabla(\nabla \cdot \vec{u})$
4. curl $(\operatorname{grad} \phi)=\nabla \times \nabla \phi=\overrightarrow{0}$
5. div $(\operatorname{curl} \vec{u})=\nabla \cdot(\nabla \times \vec{u})=0$
6. curl curl $\vec{u}=\nabla \times(\nabla \times \vec{u})=\nabla(\nabla \cdot \vec{u})-\nabla^{2} \vec{u}$

4 Line Integral

Any integral which is evaluated along a curve is called Line Integral.

1. If $f(x, y, z)$ is a scalar field defined on a smooth curve C from A to B , then the line integral of f along curve C can be defined as:
(a) $\int_{A}^{B} f(x, y, z) d s=\int_{A}^{B} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$,

$$
\text { when } x=x(t) ; y=y(t) ; z=z(t)
$$

(b) $\int_{A}^{B} f(x, y, z) d \vec{r}=\int_{A}^{B} f(x, y, z) \hat{i} d x+f(x, y, z) \hat{j} d y+f(x, y, z) \hat{k} d z$, ${ }^{A}$ as $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \Longrightarrow d \vec{r}=\hat{i} d x+\hat{j} d y+\hat{k} d z$
2. If $\vec{F}(x, y, z)$ is a vector field defined on a smooth curve C from A to B , then the line integral of \vec{F} along curve C can be defined as:
(a) $\int_{A}^{B} \vec{F} \cdot d \vec{r}=\int_{A}^{B}\left(f_{1} d x+f_{2} d y+f_{3} d z\right)$, where $\vec{F}=f_{1} \hat{i}+f_{2} \hat{j}+f_{3} \hat{k}$
(b) $\int_{A}^{B} \vec{F} \times d \vec{r}=\int_{A}^{B}\left(f_{1} \hat{i}+f_{2} \hat{j}+f_{3} \hat{k}\right) \times(\hat{i} d x+\hat{j} d y+\hat{k} d z)$

Note: When path of integration is a closed path C, the integral sign is denoted by \int_{C} or \oint_{C}.

4.1 Application of Line Integral

1. The work done by a force \vec{F} along a curve C is given by $\int_{C} \vec{F} \cdot d \vec{r}$.
2. The circulation of the velocity \vec{v} of a fluid particle along a closed curve C is given by: $\oint_{C} \vec{v} \cdot d \vec{r}$.

4.2 Line Integrals Independent Of Path

Theorem 4.1. The necessary and sufficient condition that the line integral $\int_{A}^{B} \vec{F} \cdot d \vec{r}$ be independent of the path is that \vec{F} is the gradient of some scalar function ϕ.

In this case, $\int_{A}^{B} \vec{F} \cdot d \vec{r}=\int_{A}^{B} d \phi=[\phi]_{A}^{B}=\phi_{B}-\phi_{A}$
Corollary 4.2. If $\vec{F}=\nabla \phi$, then curl $\vec{F}=\operatorname{curl} \operatorname{grad} \phi=\overrightarrow{0}$.
Corollary 4.3. If $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path, then $\oint_{C} \vec{F} \cdot d \vec{r}=0$ along any closed curve C.
Corollary 4.4. Let $\vec{F}=F_{1} \hat{i}+F_{2} \hat{j}$, then $\int_{C}\left(F_{1} d x+F_{2} d y\right)$ is independent of its path if $\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}$.

5 Green's Theorem in Plane

Theorem 5.1. If $M(x, y)$ and $N(x, y), \frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous everywhere in a region R of $X Y$ - plane bounded by a closed curve C, then $\oint_{C}(M d x+N d y)=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$, where C is traversed in anti-clockwise direction.

5.1 Green's Theorem in Vector Form

Let $\vec{F}=M \hat{i}+N \hat{j}$ and $\vec{r}=x \hat{i}+y \hat{j}$, then $\vec{F} \cdot d \vec{r}=M d x+N d y$ and $\nabla \times \vec{F}=\hat{k}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$
Thus, $(\nabla \times \vec{F}) \cdot \hat{k}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}$
Thus in vector form, Green's theorem can be written as:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot d \vec{A}
$$

where $d \vec{A}=d A \hat{k}=\hat{k} d x d y$

5.2 Area of a plane region R bounded by a simple closed curve

The area of a region R bounded by a simple closed curve C is given by:

$$
\iint_{R} d x d y=\frac{1}{2} \oint_{C}[-y d x+x d y]
$$

In polar form, the area is given by: $\frac{1}{2} \int_{C} r^{2} d \theta$, where $x=r \cos \theta$ and $y=r \sin \theta$

6 Parametric Equations of some known curves

Name of curve	Equation of curve	counter-clockwise	clockwise
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$x=a \cos t, y=b \sin t$,	$x=a \cos t, y=-b \sin t$,
	$x^{2}+y^{2}=a^{2}$	$x=a \cos t, y=a \sin t$, $0 \leq a \cos t, y=-a \sin t$, Circle$x^{2}=t \leq 2 \pi$	$0 \leq t \leq 2 \pi$

- Parametric equation of a line segment joining $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$ is given by: $x=(1-t) x_{1}+t x_{2} ; y=(1-t) y_{1}+t y_{2} ; z=(1-t) z_{1}+t z_{2} ; 0 \leq t \leq 1$

$7 \quad$ Surface Integral

The integral which can be evaluated over a surface is called surface integral.
Let \vec{F} be a continuous vector function defined over a surface S. Let \hat{n} be a unit normal vector to the surface at any point P on a small area δS drawn outward if the surface is closed or always towards the same side of the surface if open. The surface integral of \vec{F} over S is defined by

$$
\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{S} \vec{F} \cdot d \vec{s}
$$

7.1 Evaluation of Surface Integral

A surface integral is evaluated by reducing it into a double integral by projecting the given surface S onto one the co-ordinate planes.
If the projection of $\delta s, D_{1}$ is taken over $X Y-$ plane, then $d s=\frac{d x d y}{|\hat{n} \cdot \hat{k}|}$.
If the projection of $\delta s, D_{2}$ is taken over $Y Z-$ plane, then $d s=\frac{d y d z}{|\hat{n} \cdot \hat{i}|}$.
If the projection of $\delta s, D_{3}$ is taken over $Z X-$ plane, then $d s=\frac{d x d z}{|\hat{n} \cdot \hat{j}|}$.
Thus, we have:

$$
\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{D_{1}} \vec{F} \cdot \hat{n} \frac{d x d y}{|\hat{n} \cdot \hat{k}|}=\iint_{D_{2}} \vec{F} \cdot \hat{n} \frac{d y d z}{|\hat{n} \cdot \hat{i}|}=\iint_{D_{3}} \vec{F} \cdot \hat{n} \frac{d x d z}{|\hat{n} \cdot \hat{j}|}
$$

7.2 Other types of Surface Integrals

Other types of Surface integrals are given by:

1. $\iint_{S} \phi d \vec{s}$
2. $\iint_{S} \vec{F} \times \hat{n} d \vec{s}$
3. $\iint_{S} \phi \cdot \hat{n} d \vec{s}$

7.3 Surface area of a curved surface

Let S be a surface represented by $f(x, y, z)=c$. Then the unit normal to the surface S is given by:

$$
\hat{n}=\frac{\nabla f}{|\nabla f|}=\frac{f_{x} \hat{i}+f_{y} \hat{j}+f_{z} \hat{k}}{\sqrt{f_{x}^{2}+f_{y}^{2}+f_{z}^{2}}}
$$

If D is the projection of S onto the $X Y$ - plane, then the surface area of S is given by:

$$
\iint_{S} d S=\iint_{D} \frac{d x d y}{|\hat{n} \cdot \hat{k}|}=\iint_{D} \frac{\sqrt{f_{x}^{2}+f_{y}^{2}+f_{z}^{2}}}{\left|f_{z}\right|} d x d y
$$

7.4 Flux

The flux of \vec{F} along the surface S is given by: $\int_{S} \vec{F} \cdot \hat{n} d S$.
Here $\vec{F}=\rho \vec{V}$, where ρ and \vec{V} are respectively the density and the velocity of the fluid flowing across a surface S. The flux of \vec{F} gives the total quantity of the fluid flowing in unit time through the surface S in positive direction. \hat{n} is the unit outward normal to the surface S.

8 Volume Integral

The integral which can be evaluated over a volume is called a volume integral.
Let a volume V be bounded by a closed surface S in space. The volume integral can be defined as:

1. $\iiint_{V} \phi(x, y, z) d \vec{V}$ for a scalar field ϕ defined on V;
2. $\iiint_{V} \vec{F}(x, y, z) d \vec{V}$ for a vector field \vec{F} defined on V.

9 Stoke's Theorem

If \vec{F} is a continuous differentiable function defined on an open surface S bounded by a closed curve C, then

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \hat{n} d s
$$

where C is traversed in anticlockwise direction and \hat{n} is the outward drawn unit normal vector to the surface S.

10 Gauss Divergence Theorem

If \vec{F} is a continuous differentiable function defined over a volume V bounded by a closed surface S, then

$$
\iint_{S} \vec{F} \cdot \hat{n} d s=\iiint_{V} \nabla \cdot \vec{F} d V
$$

where \hat{n} is the outward drawn unit normal vector to the surface S.

11 Parametric Equations of some known curves

Name of curve	Equation of curve	counter-clockwise	clockwise
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$x=a \cos t, y=b \sin t$,	$x=a \cos t, y=-b \sin t$,
		$0 \leq t \leq 2 \pi$	$0 \leq t \leq 2 \pi$
Circle	$x^{2}+y^{2}=a^{2}$	$x=a \cos t, y=a \sin t$,	$x=a \cos t, y=-a \sin t$,
		$0 \leq t \leq 2 \pi$	$0 \leq t \leq 2 \pi$

- Parametric equation of a line segment joining $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$ is given by: $x=(1-t) x_{1}+t x_{2} ; y=(1-t) y_{1}+t y_{2} ; z=(1-t) z_{1}+t z_{2} ; 0 \leq t \leq 1$

12 Some useful Results

1. $\iint_{R} f(x, y) d y d x=\iint_{D} g(u, v)|J| d u d v$, when x, y are functions of u, v and $J=\frac{\partial(x, y)}{\partial(u, v)}$.
2. $\iiint_{V_{1}} f(x, y, z) d z d y d x=\iiint_{V_{2}} g(u, v, w)|J| d u d v d w$, when x, y, z are functions of u, v, w and $J=\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
3. $\iint f(x, y) d y d x=\iint f(r \cos \theta, r \sin \theta) r d r d \theta$, when x, y are converted into polar co-ordinates by $x=r \cos \theta ; y=r \sin \theta$ as $J=r$.
4. $\iiint_{R} f(x, y, z) d x d y d z=\iiint_{D} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z$, when the Cartesian co-ordinates are changed into cylindrical co-ordinates under the relation $x=r \cos \theta, y=r \sin \theta, z=z$.
5. $\iiint_{R} f(x, y, z) d x d y d z=\iiint_{D} f(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta) r^{2} \sin \theta d r d \theta d \phi$, when the Cartesian co-ordinates are changed into spherical co-ordinates under the relation $x=r \sin \theta \cos \phi$, $y=r \sin \theta \sin \phi, z=r \cos \theta$.
