Limits of several variables

Functions of two variables: If three variables x, y and z are so related that the value of z depends upon the values of x and y, then z is called a function of two variables x and y. It is denoted by $z=f(x$, $y)$.

Limit: If a function $f(x, y)$ has a limit say ' L ' at a point (a, b) then it is denoted as $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$.

Note:

1. Limit may or may not exist.
2. If a limit exists, it must be unique.

Algebra of Limits: If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ and $\lim _{(x, y) \rightarrow(a, b)} g(x, y)=M$, then

1. $\lim _{(x, y) \rightarrow(a, b)} f(x, y) \pm g(x, y)=L \pm M$
2. $\lim _{(x, y) \rightarrow(a, b)} f(x, y) \cdot g(x, y)=L \cdot M$
3. $\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}$, provided $\mathrm{M} \neq 0$

Partial Derivatives of first order: Let $z=f(x, y)$

1. The derivative of z with respect to x, if it exists when x alone varies and y remains constant is called the partial derivative of z with respect to x.
It is denoted as $\frac{\partial z}{\partial x}$ or $\frac{\partial f}{\partial x}$ or z_{x} or f_{x}.
2. The derivative of z with respect to y, if it exists when y alone varies and x remains constant is called the partial derivative of z with respect to y.
It is denoted as $\frac{\partial z}{\partial y}$ or $\frac{\partial f}{\partial y}$ or z_{y} or f_{y}.
Partial Derivatives of second order: If $z=f(x, y)$, then the partial derivatives of f_{x} and f_{y} gives the second order partial derivatives as follows:
3. $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}$
4. $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y}$
5. $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}$
6. $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}$

Note: $f_{x y}$ and $f_{y x}$ are called mixed partial derivatives and they are equal if the first partials f_{x} and f_{y} are continuous.

Differentiation of a function of a function: If \boldsymbol{u} is a function of \boldsymbol{t} and \boldsymbol{t} is a function of \boldsymbol{x} and \boldsymbol{y}, then $\frac{\partial u}{\partial x}=\frac{d u}{d t} \frac{\partial t}{\partial x}$ and $\frac{\partial u}{\partial y}=\frac{d u}{d t} \frac{\partial t}{\partial y}$.

Homogeneous Function: A function $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is said to be homogeneous of degree \boldsymbol{n} if $f(\lambda x, \lambda y)=\lambda^{n} f(x, y)$.

Similarly a function $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is said to be homogeneous of degree \boldsymbol{n} if $f(\lambda x, \lambda y, \lambda z)=\lambda^{n} f(x, y, z)$.

Euler's Theorem: If $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is a homogeneous function of in variables \boldsymbol{x} and \boldsymbol{y} of degree n, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$.

Similarly, if $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is a homogeneous function in three variables of degree n, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=n u$.

Jacobian: If $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{v}=\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})$, then the Jacobian of \boldsymbol{u} and \boldsymbol{v} with respect to \boldsymbol{x} and \boldsymbol{y} is denoted by $J=\frac{\partial(u, v)}{\partial(x, y)}$ and is defined as
$J=\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right|=\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|$.
If $u=f(x, y, z), v=g(x, y, z)$ and $w=h(x, y, z)$, then the Jacobian of u, v and \boldsymbol{w} with respect to $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} is denoted by $J=\frac{\partial(u, v, w)}{\partial(x, y, z)}$ and is defined as

$$
J=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right|
$$

Properties of Jacobian:

(i) If $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are functions of $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} with $J=\frac{\partial(u, v, w)}{\partial(x, y, z)} \& J^{\prime}=\frac{\partial(x, y, z)}{\partial(u, v, w)}$, then $J J^{\prime}=1$.
(ii) If u, v, w are functions of $r(x, y, z), s(x, y, z)$ and $t(x, y, z)$ then

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}=\frac{\partial(u, v, w)}{\partial(r, s, t)} \times \frac{\partial(r, s, t)}{\partial(x, y, z)}
$$

