
Unit 3_Multivariable Differential Calculus 

Limits of several variables 

Functions of two variables: If three variables x, y and z are so related that the value of z depends 

upon the values of x and y, then z is called a function of two variables x and y. It is denoted by z = f (x, 

y). 

Limit: If a function f (x, y) has a limit say ‘L’ at a point (a, b) then it is denoted as 
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Note: 

1. Limit may or may not exist. 

2. If a limit exists, it must be unique. 

Algebra of Limits: If 
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Partial Derivatives of first order: Let z = f (x, y) 

1. The derivative of z with respect to x, if it exists when x alone varies and y 

remains constant is called the partial derivative of z with respect to x. 

It is denoted as 
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or xz or xf . 

2. The derivative of z with respect to y, if it exists when y alone varies and x 

remains constant is called the partial derivative of z with respect to y. 

It is denoted as 
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or yz or yf . 

Partial Derivatives of second order: If z = f (x, y), then the partial derivatives 

of  xf  and yf  gives the second order partial derivatives as follows: 
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Note: xyf  and yxf  are called mixed partial derivatives and they are equal if the 

first partials xf  and yf  are continuous. 

Differentiation of a function of a function: If u is a function of t and t is a 

function of x and y, then 
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Homogeneous Function: A function u = f (x, y) is said to be homogeneous of 

degree n if ( ) ( )yxfyxf n ,,  = . 

Similarly a function u = f (x, y, z) is said to be homogeneous of degree n if 
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Euler’s Theorem: If u = f (x, y) is a homogeneous function of in variables x and 

y of degree n, then nu
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Similarly, if u = f (x, y, z) is a homogeneous function in three variables of 

degree n, then nu
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Jacobian: If u = f (x, y) and v = g (x, y), then the Jacobian of u and v with 

respect to x and y is denoted by 
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If u = f (x, y, z), v = g (x, y, z) and w = h (x, y, z), then the Jacobian of u, v and 

w with respect to x, y and z is denoted by 
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Properties of Jacobian:  

(i) If u, v, w are functions of x, y and z with 
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(ii) If u, v, w are functions of r(x, y, z), s(x, y, z) and t (x, y, z) then  
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