Modern Communication Trends (EC0422) Unit-1
 Principles of Modern Communication System

> B.Tech (Electronics and Communication) Semester-IV

Hardik Prajapati

Communication System

- The study of communication system is divided into two types:
- How communication system works?
- How they perform in the presence of noise.?

Some basic and important parameters

- Source(i/p message)
- Input Transducer
- Transmitter
- Channel
- Receiver
- Output transducer
- Distortion: linear \& nonlinear distortion
- Noise
- Attenuation
- SNR: signal power/noise power
- Bandwidth is defined as the portion of electromagnetic spectrum occupied by a signal
- It may also define as the frequency range over which an information signal is transmitted.
- Bandwidth is the difference between upper \& lower frequency limits of the signal.
- Data Rate: The data rate/ Bit rate is a term to denote the transmission speed, or the number of bits per second transferred.
- In telecommunications, it is common use to express the data rate in bits per seconds (bit/s),
- In data communication, the data rate is often expressed in bytes per second (B/s).
- The term bit rate is a synonym for data transfer rate(or simply data rate)

Signal to Noise ratio(SNR)

Signal to Noise ratio(SNR) is defined as the ratio of signal power to the noise power corrupting the signal.

SNR = average signal power/average noise power
Because many signals have a very wide dynamic range, SNRs are often expressed using the logarithmic decibel scale

$$
\mathrm{SNR}_{\mathrm{dB}}=10 \log _{10}\left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)
$$

Channel Bandwidth

- Channel Bandwidth - the range of signal bandwidths allowed by a communication channel without significant loss of energy (attenuation).
- Channel Capacity or Maximum Data rate the maximum rate (in bps) at which data can be transmitted over a given communication link, or channel or Channel capacity is the maximum no. of binary symbols that can be transmitted per second with a probability of error arbitrarily zero

Channel Bandwidth

- Nyquist's formulae for multi-level signaling for a noiseless channel is

$$
C=2 * B * \log M
$$

- where C is the channel capacity in bits per second, B is the maximum bandwidth allowed by the channel, M is the number of different signaling values or symbols and log is to the base 2.
- For example, assume a noiseless 3-kHz channel.
- If binary signals are used, then $M=2$ and hence maximum channel capacity or achievable data rate is $\mathrm{C}=2$ * 3000 * $\log 2=6000$ bps.
- Similarly, if QPSK is used instead of binary signaling, then M = 4. In that case, the maximum channel capacity is $\mathrm{C}=2$ * $3000 * \log 4=2 * 3000 * 2=12000 \mathrm{bps}$.
- For noisy channel ,Shannon capacity
$C=B \log _{2}(1+S N R)$ bps

Channel Bandwidth

- For example, for a channel with bandwidth of 3 KHz and with a S/N value of 1000, like that of a typical telephone line, the maximum channel capacity is
$C=3000 * \log (1+1000)=30000 \mathrm{bps}$ (approx.)
- Assume that $\mathrm{SNR}_{\mathrm{dB}}=36$ and the channel bandwidth is 2 MHz . Calculate theoretical channel capacity.
- The power of a signal is 10 mW and the power of noise is $1 \mu \mathrm{~W}$; what are the values of SNR and $\mathrm{SNR}_{\mathrm{dB}}$

The signal-to-noise ratio is often given in decibels. Assume that $\mathrm{SNR}_{\mathrm{dB}}=36$ and the channel bandwidth is 2 MHz . The theoretical channel capacity can be calculated as

$$
\begin{gathered}
\hline \mathrm{SNR}_{\mathrm{dB}}=10 \log _{10} \mathrm{SNR} \longrightarrow \mathrm{SNR}=10^{\mathrm{SNR} \mathrm{~dB} / 10} \longrightarrow \mathrm{SNR}=10^{3.6}=3981 \\
C=B \log _{2}(1+\mathrm{SNR})=2 \times 10^{6} \times \log _{2} 3982=24 \mathrm{Mbps}
\end{gathered}
$$

The power of a signal is 10 mW and the power of the noise is $1 \mu W$; what are the values of $S N R$ and $S N R_{d B}$?

Solution
The values of $S N R$ and $S N R_{d B}$ can be calculated as follows:

$$
\begin{gathered}
\mathrm{SNR}=\frac{10,000 \mu \mathrm{~W}}{1 \mathrm{~mW}}=10,000 \\
\mathrm{SNR}_{\mathrm{dB}}=10 \log _{10} 10,000=10 \log _{10} 10^{4}=40
\end{gathered}
$$

Analog and Digital signals

Advantages of Digital over Ana

- Digital signals can be regenerated
- Digital modulators are more power and bandwidth efficient
- Efficient trade-off between power and bandwidth
- Signal compression
- Error detection and correction
- Common signal format for all types of signals
- Technology offers design flexibility and miniaturization through VLSI, DSP etc.

Disadvantages of Digital communication

- Because of analog to digital conversion, the data rate becomes high. Hence more transmission bandwidth is required for Digital communication.
- Digital communication needs synchronization

Regeneration of digital signal

Performance of digital

 systems Digital circuits, being switching circuits, consume less powerDigital circuit behavior is less susceptible to variations in power supply, temperature, ageing and tolerance in component values Behavior of digital systems is easily predictable, hence, systems are more reliable Digital systems are easy to design with many design tools available
Digital circuits are more dense and hence, systems can be compact

Modulation

- Modulation is a way of sending signals of low frequency over long distances without a huge loss of energy by the use of another wave of very high frequency called a rarrier wave.

Figure 2

- To remove Interference
- Antenna Size
- Reduction of Noise
- Reduction in the height of antenna
- Avoids mixing of signals
- Increases the range of communication
- Multiplexing is possible
- Improves quality of reception

Classification of Modulation Methods

Principles of Amplitude Modulation

- A process in which the amplitude of a high frequency carrier signal is varied in proportion to the instantaneous amplitude of the modulating signal
- Obtained by multiplying carrier (high frequency) with the modulating signal (low frequency) using a mixer, multiplier or modulator

(a) Sinusoidal Modulating Wave

(b) Resulting AM Signal

Amplitude Modulation Theory

- Assume a sinusoidal modulating signal

Modulating signal $v_{m}(t)=V_{m} \cos \left(2 p f_{m} t\right)$
Carrier signal

$$
v_{c}(t)=V_{c} \sin \left(2 p f_{c} t\right)
$$

Modulated signal $\quad v_{a m}(t)=v_{m}(t) v_{c}(t)$

$$
\begin{aligned}
& =V_{m} \cos \left(2 p f_{m} t\right) V_{c} \sin \left(2 p f_{c} t\right) \\
& =V_{m} V_{c} \cos \left(2 p f_{m} t\right) \sin \left(2 p f_{c} t\right) \\
& =\frac{V_{m} V_{c}}{2}\left[\sin \left(2 p\left(f_{c}+f_{m}\right) t\right)+\sin \left(2 p\left(f_{c}-f_{m}\right) t\right)\right]
\end{aligned}
$$

- The modulating signal shows two frequency components around the carrier frequency, separated by the modulating signal frequency

$$
\left(f_{c}+f_{m}\right) \text { and }\left(f_{c}-f_{m}\right)
$$

Amplitude Modulation Waveform

AM Spectrum with single frequency modulation

Frequency

Frequency

AM Spectrum with a modulation band

Modulation Index

- Also known as coefficient of modulation, describes the depth of modulation

$$
m=E_{m} / E_{c}
$$

where $m=$ modulation index
$E_{m}=$ peak amplitudeof the modulating signal
$E_{c}=$ peak amplitudeof the unmodulated carrier

$$
\begin{aligned}
& \text { Percentage modulation } \\
& \mathrm{M}=\left(E_{m} / E_{c}\right)^{\prime} 100 \%=m^{\prime} 100 \%
\end{aligned}
$$

Modulation coefficient, E_{m}, and E_{c}

AM - Percentage Modulation

Sideband Amplitudes

$$
\begin{aligned}
& E_{m}=\frac{1}{2}\left(V_{\max }-V_{\min }\right) \\
& E_{c}=\frac{1}{2}\left(V_{\max }+V_{\min }\right) \\
& m=\frac{\frac{1}{2}\left(V_{\max }-V_{\min }\right)}{\frac{1}{2}\left(V_{\max }+V_{\min }\right)}=\frac{\left(V_{\max }-V_{\min }\right)}{\left.V_{\max }+V_{\min }\right)} \\
& E_{m}=E_{u s f}+E_{l s f} \\
& E_{u s f}=E_{l s f}=E_{m} / 2=\frac{1}{4}\left(V_{\max }-V_{\min }\right)
\end{aligned}
$$

The sidebands have half the modulating signal amplitude

Percent modulation of $\mathrm{ar}_{\text {b }}$ AM DSBFC envelope
 (a) modulating signal; (b) unmodulated carrier; (c' 50\% modulated wave; (d) 100\% modulated wave

(d)

AM Voltage distribution

When a carrier $v_{c}(t)=E_{c} \sin \left(2 p f_{c} t\right)$ is modulated by $E_{m} \sin \left(2 p f_{m} t\right)$ Peak amplitude of modulated carrier is

$$
\begin{aligned}
& E_{a m}=E_{c}+E_{m} \sin \left(2 p f_{m} t\right) \\
& v_{a m}(t)=\left[E_{c}+E_{m} \sin \left(2 p f_{m} t\right)\right] \sin \left(2 p f_{c} t\right) \\
&=\left[E_{c}+m E_{c} \sin \left(2 p f_{m} t\right)\right] \sin \left(2 p f_{c} t\right) \\
&=[1+\underbrace{\left.m \sin \left(2 p f_{m} t\right)\right] E_{c} \sin \left(2 p f_{c} t\right)}_{\text {modulating signal }} \\
&\left.=E_{c} \sin \left(2 p f_{c} t\right)+m \sin \left(2 p f_{m} t\right) f_{m} t\right) E_{c} \sin \left(2 p f_{c} t\right) \\
&=E_{c} \sin \left(2 p f_{c} t\right)+m E_{c}\left[\sin \left(2 p f_{c} t\right) \sin \left(2 p f_{m} t\right)\right] \\
&=E_{c} \sin \left(2 p f_{c} t\right)+\frac{m E_{c}}{2} \cos \left[2 p\left(f_{c}-f_{m}\right) t\right]-\frac{m E_{c}}{2} \cos \left[2 p\left(f_{c}+f_{m}\right) t\right] \\
& \text { Carrier } \quad \text { Lower side frequency } \\
& \text { Upper side frequency }
\end{aligned}
$$

Voltage spectrum for an AM DSBFC
 wave

Power Spectrum of AM-DSB

Power in the carrier across 1° resistance is $P_{c}=\left(E_{c} / \sqrt{2}\right)^{2}=\frac{E_{c}^{2}}{2}$ Power in the upper and lower sidebands across 1° resistance is

Total power in the modulated signal across 1° resistance is

$$
\begin{aligned}
& P_{t}=P_{c}+P_{u s b}+P_{s b}=\frac{E_{c}^{2}}{2}+\frac{m^{2} E_{c}^{2}}{8}+\frac{m^{2} E_{c}^{2}}{8} \\
& =\frac{E_{c}^{2}}{2}+\frac{m^{2} E_{c}^{2}}{4}=\frac{E_{c}^{2}}{2} \underset{\subset}{\subset}+\frac{m^{2}}{2} \stackrel{\infty}{\vdots} \\
& =P_{c} \xlongequal{\subsetneq}+\frac{m^{2}}{2} \stackrel{\circ}{\vdots}
\end{aligned}
$$

AM-DSB: Voltage and Power Spectra

Freq

Sideband Amplitudes

$E_{m}=\frac{1}{2}\left(V_{\max }-V_{\text {min }}\right)$
$E_{c}=\frac{1}{2}\left(V_{\max }+V_{\min }\right)$
$\left.m=\frac{\frac{1}{2}\left(V_{\text {max }}-V_{\text {min }}\right)}{\frac{1}{2}\left(V_{\text {max }}+V_{\text {min }}\right)}=\frac{\left(V_{\text {max }}-V_{\text {min }}\right)}{V_{\text {max }}+V_{\text {min }}}\right)$
$E_{m}=E_{u s f}+E_{l s f}$

$$
E_{u s f}=E_{l s f}=E_{m} / 2=\frac{1}{4}\left(V_{\max }-V_{\min }\right)
$$

Amplitude Modulation

- The tuned circuit of the oscillator in a simple AM transmitter employs a $40 \mu \mathrm{H}$ coil \& 12 nF capacitor. If the oscillator output is modulated by audio frequency of 5 KHz , what are the lower and upper sideband frequencies and the bandwidth required to transmit the AM wave? (235K, 225K, 10 KHz)
- Calculate the modulation index \& percentage modulation if instantaneous voltages of modulating signal and carrier are $40 \operatorname{sinw}_{\mathrm{m}} \mathrm{t}$ \& 50sinw t t (80\%)

For AM wave,
Maximum amplitude,

$$
A_{\max }=10 \mathrm{~V}
$$

Minimum amplitude,

$$
A_{\min }=2 \mathrm{~V}
$$

\therefore Modulation index,

$$
\begin{aligned}
\mu & =\frac{A_{\max }-A_{\min }}{A_{\max }+A_{\min }} \\
\mu & =\frac{10-2}{10+2}=\frac{8}{12}=\frac{2}{3} \\
\mu & =\frac{2}{3}
\end{aligned}
$$

If the modulation index (μ) is greater than 1 , the carrier wave is said to be over modulate and distortion will occur during reception as negative peak of modulating signal will be missing. Therefore, μ is kept less than one.

- An audio frequency signal $10 \sin 2 \pi * 500 t$ is used to amplitude modulate a carrier of 50 $\sin 2 \pi^{*} 10^{5} t$. Calculate
(i) Modulation Index (20\%)
(ii) Sideband frequencies ($100,99 \mathrm{~K}$)
(iii)Amplitude of each sideband frequencies (5V)
(iv)Bandwidth required (1K)
- A broadcast transmitter radiates 20 kw when the modulation percentage is 75. calculate carrier power \& carrier current if total power delivered to the load of 600Ω.
- Calculate total modulation index if the carrier wave is amplitude modulated by three modulating signals with modulation indices 0.6, $0.3 \& 0.4$ respectively. (0.78)
- The antenna current of an AM transmitter is 8 A if only the carrier is sent, but it increases to 8.93 A, if the carrier is modulated by a single sinusoidal wave. Determine the percentage modulation. Also find the antenna current if the percentage of modulation changes to 0.8 (Ans: $m=70 \%, I=9.19 \mathrm{~A}$)
- A carrier wave is represented by the expression Vc $=10$ sin ωt. Draw the waveform of an AM wave for $m=0.5$

When frequency \& phase of the carrier is varied by the modulating signal, then it is called angle modulation.

There are two types of angle modulation
(1) Frequency Modulation (2) Phase modulation

$$
m(t)=V_{c} \cos \left[W_{c} t+q(t)\right]
$$

where $m(t)=$ Angle modulated signal

$$
V_{c}=\text { Peak amplitude of carrier (volts) }
$$

$$
W_{c}=\text { Radian frequency of carrier }=2 p f_{c}
$$

$q(t)=$ Instantaneous phase deviation

When frequency of the carrier varies as per amplitude variations of modulating signal, then it is called frequency modulation.

When phase of the carrier varies as per amplitude variations of modulating signal, then it is called phase modulation.

NOTE: in both the cases amplitude of the modulated carrier remains constant

$$
m(t)=V_{c} \cos \left[w_{c} t+q(t)\right]
$$

If $v_{m}(t)$ is the instataneo us amplitude of a modulating signal, the angle modulation is expressed as
$\theta(t) \triangleq v_{m}(t)$

AM and FM
MAAAAAAAAAAAAAAAAAAS

PM and FM

PM and FM Waveforms with a message signal

FM and P PM

For phase modulation $\theta(t)=k_{p} v_{m}(t)$

$$
\begin{aligned}
m(t)_{p m} & =V_{c} \cos \left[w_{c} t+q(t)\right] \\
& =V_{c} \cos \left[w_{c} t+k_{p} v_{m}(t)\right] \\
& =V_{c} \cos \left[w_{c} t+k_{p} V_{m} \cos \left(w_{m} t\right)\right]
\end{aligned}
$$

For frequency modulation $\theta(t)=k_{f} \bigodot_{m}(t) d t$

$$
\begin{aligned}
& m(t)_{p m}=V_{c} \cos \left[w_{c} t+q(t)\right] \\
&=V_{c} \cos \left[w_{c} t+k_{f} \bigodot_{m}(t) d t\right] \\
&=V_{c} \cos \left[w_{c} t+k_{f} \bigodot_{m} \cos \left(w_{m} t\right) d t\right] \\
&=V_{c} \cos \stackrel{\not \supset}{\underline{L}} w_{c} t+\frac{k_{f} V_{m}}{w_{m}} \sin \left(w_{m} t\right) \vdots \\
& \vdots
\end{aligned}
$$

Phase deviation \& modulation index (PM)

$$
\begin{aligned}
m(t)_{p m} & =V_{c} \cos \left[W_{c} t+k_{p} V_{m} \cos \left(W_{m} t\right)\right] \\
& =V_{c} \cos \left[W_{c} t+m_{p} \cos \left(W_{m} t\right)\right]
\end{aligned}
$$

where $m_{p}=k_{p} V_{m}=\Delta \theta=$ modulation index =peak phase deviation (radians)
$k_{p}=$ deviation sensitivity (radians per volt)
$V_{m}=$ peak amplitude of modulating signal (volts)

The amount by which the carrier frequency is varied from its unmodulated value, called deviation, is made proportional to the instantaneous amplitude of modulating voltage

Modulation index in FM

$$
\begin{aligned}
& m(t)_{f m}=V_{c} \cos \left[w_{c} t+q(t)\right]=V_{c} \cos \left\lfloor w_{c} t+k_{f} \odot_{m}(t) d t\right\rfloor \\
& =V_{c} \cos \left[W_{c} t+k_{f} \oiint_{m} \cos \left(W_{m} t\right) d t\right]=V_{c} \cos \underset{\underset{D}{\perp} W_{c} t+\frac{k_{f} V_{m}}{W_{m}} \sin \left(W_{m} t\right) \vdots}{\vdots} \\
& =V_{c} \cos \left[W_{c} t+m_{f} \sin \left(W_{m} t\right)\right]
\end{aligned}
$$

where $m_{f}=\frac{k_{f} V_{m}}{w_{m}}=$ modulation index

$$
k_{f}=\text { deviation sensitivit } y(H z / v o l t)
$$

$V_{m}=$ peak amplitude of modulating signal (volts)
$\omega_{m}=$ radian frequency (radians/s econd)

If deviation sensityvit y is expressed in $\mathrm{Hz} /$ volt

$$
m_{f}=\frac{k_{f} V_{m}}{f_{m}}=\frac{-f}{f_{m}}
$$

Carson's rule for FM Bandwidth

$$
B=2\left(-f+f_{m}\right)=2 f_{m}\left(1+-f / f_{m}\right)=2 f_{m}(1+m) \mathrm{Hz}
$$

where
$-f=$ peak frequency deviation (Hz)
$f_{m}=$ highest modulating signal frequency (Hz) $m=$ modulation index $=-f / f_{m}$

Disadvantages of FM compared to

 AM- The BW requirement of $F M$ is much larger than AM.
- The FM transmitting and receiving equipments are more complex and costly.
- its area of reception is limited only to LOS, this this is much lower than area covered by AM.

Sr.

No.
FM

PM

$1 \quad m(t)=V_{c} \cos \left[W_{c} t+m_{f} \cos \left(W_{m} t\right)\right] \quad m(t)=V_{c} \cos \left[W_{c} t+m_{p} \cos \left(W_{m} t\right)\right]$
2 Frequency deviation is Phase deviation is proportional proportional to to modulating voltage modulating voltage
3 Associated with the Associated with the change in change in carrier phase, there is some change in frequency, there is some phase change
4 Mf is proportional to the Mf is proportional only to modulation voltage as modulating voltage well as the modulating frequency fm
5 It is possible to receive FM on a PM receiver

It is possible to receive PM on a FM receiver

Sr. No.	FM	PM
6	Noise immunity is better than AM \& PM	Noise immunity is better than AM but worst than FM
$\mathbf{7}$	Signal to noise ratio is better than that of PM	Signal to noise ratio is inferior to that in FM
$\mathbf{8}$	FM is widely used	PM is used in some mobile systems
$\mathbf{9}$	Amplitude of FM wave is Constant	Amplitude of the PM wave is Constant
$\mathbf{1 0}$	The frequency deviation is proportional to the modulating voltage only	The frequency deviation is proportional to both the modulating voltage \& Modulating Frequency

Sr. No.	AM	FM
$\mathbf{1}$	Amplitude of carrier is varied according to amplitude of modulating signal	Frequency of the carrier is varied according to amplitude of the modulating signal
$\mathbf{2}$	AM has poor fidelity due to narrow bandwidth	Since the BW is large, fidelity is better
$\mathbf{3}$	Noise interference is more	It is minimum
$\mathbf{4}$	Adjacent interference is present	It is avoided due to wide frequency spectrum
5	Less efficient as most of the power is in carrier.	All the transmitted power is useful

Sr. No.	AM	FM
$\mathbf{6}$	AM broadcast operates in MF \& HF range	 UHF
$\mathbf{7}$	In AM only carrier and two sidebands are present	Infinite number of sidebands are present
$\mathbf{8}$	The transmitter equipment is simple	The transmitter equipment is Complex
$\mathbf{9}$	Transmitted power varies according to modulation index	It remains constant irrespective of MI
$\mathbf{1 0}$	Depth of modulation have limitation, it can not be increased above 1	Depth of modulation have no limitation, it can be increased by increasing frequency deviation.

Mpdulation: Amplitude-Shift Keying

ASK encodes digital data by modulating the carrier's amplitude between two or more levels. Suppose a signal with amplitude 1 represents a binary 0 and a signal with amplitude 2 represents a binary 1. AM is more sensitive to noise than other modulation techniques $=>$ AM is not widely used in data transmission

A period is the amount of time before a wave repeats itself.

Modulation: Frequency-Shift Keying FSK)

Encodes digital data by modulating the carrier's frequency between two or more values. For example, a binary 0 would be one frequency (or group of frequencies) and a binary 1 would be some other frequency (or group of frequencies). FSK is less susceptible to corruption than ASK. Many modems use FSK to convert digital data to analogue signals.

Mpdulation: Phase-Shift Keying (PSK) Phase-shift keying encodes digital data by shifting the phase of

Or called BPSK, uses two phases to represent 0 \& 1

