Toxicology - 2

By: Dr. Mayur Savaliya, Lecturer, Clinical Research, IISHLS, Indus University.

What is Toxicology?

- Toxicology is the scientific study of adverse effects that occurs in living organisms due to chemicals.
- it involves observing and reporting symptoms, mechanisms, detection and treatments of toxic substances, in particular relation to the poisoning of humans.

✓ Why study toxicology???

Benefit -risk ratio can be calculated

>Prediction of therapeutic index

Therapeutic index = Maximum tolerated dose

Minimum curative dose

Smaller ratio, better safety of the drug

In Vitro Toxicology

Screening

- Cytotoxicity
- Protein binding
- CYP inhibition/induction
- Membrane permeability
- Metabolic stability
- Interspecies comparison

In Vitro Toxicology Dermal or Ocular Toxicity

- Replace in vivo tests such as Dermal Corrosion, Skin Irritation, Draize Eye Irritancy
- Many tests now available in kit form
- Example: EpiDerm
 - Normal <u>human</u> epidermal keratinocytes
 - Cultured on a permeable polycarbonate membrane
 - Stratified, highly differentiated, model of human epidermis
 - Metabolically and mitotically active cells organized into differentiated layers

In Vitro Toxicology Immunotoxicity

These are, by necessity, functional tests

Examples

- Cytokine release. Assess ability of a chemical to induce release of cytokines/chemokines. Can use cells from various sources, including peripheral blood cells. Many variations of this assay. TGN 1412
- Drug-induced histamine release. Cremophor, polysorbate
 80

In Vitro Toxicology Metabolism and Kinetics

- Assess ability of a chemical to induce metabolism of specific substrates, including the chemical itself
- Information about metabolic pathways by which the chemical can be metabolized
- Information on production of toxic/reactive metabolites
- Interspecies comparisons
 - Can provide information on <u>relevance of a particular animal</u> <u>model from a metabolic standpoint</u>

1.4 Local toxicity

- Required when the new drug is proposed to be used by some special route (other than oral) in humans.
- Applied to an appropriate site (e.g., skin or vaginal mucous membrane) to determine local effects in a suitable species.
- Typical study designs for these studies should include three dose levels and untreated and/ or vehicle control, preferably use of 2 species

C. Local toxicity studies

Required when drug is administered by special route (other than oral) in humans

- Study design:
 - 2 species along with control used
 - Dose dependent on dose escalating studies
 - 3 dose levels

Local toxicity

- Required when route of administration is some special route (other than oral) in humans.
- Applied to an appropriate site (e.g., skin or vaginal mucous membrane) to determine local effects in a suitable species.
- Typical study designs includes three dose levels and untreated and/ or vehicle control, preferably with use of 2 species.

- Dermal toxicity study
- Photo-allergy or dermal photo-toxicity
- Vaginal Toxicity Test
- Rectal Tolerance Test
- Parentral Drugs
- Ocular toxicity studies
- Inhalation

Types of local toxicity studies

Dermal toxicity studies

Dermal photo-toxicity studies

- Rats & Rabbit
- ➤ Local signs (erythema, oedema), histological examination
- ► Guinea pig
- ➤ Used in treatment of leucoderma
- Examination of erythema & oedema formation

Vaginal toxicity studies

- ➤ Rabbit or Dog
- ➤ Observation of swelling, histopathology of vaginal wall

Rectal tolerance studies

- ➤ Rabbit or Dog
- ➤ Signs of pain, blood or mucous, histology examination of rectal mucosa

D. Allergenicity/hypersensitivity toxicology studies

Guinea Pig

Maximization test

Determination of Maximum non irritant or minimum irritant dose

Evaluation of Erythema and oedema

Local lymph node assay

- ➤ Mice of one sex(either male or female)
- Drug treatment given on ear skin
- Auricular lymph node dissection after 5 days
- ➤ Increase in 3h-thymidine used for evaluation

Genotoxicity

- Genotoxic compounds, shall be presumed to be trans-species carcinogens, implying a hazard to humans.
- Such compounds need not be Subjected to longterm carcinogenicity studies.
- However, if such a drug is intended to be administered for chronic illnesses or otherwise over a long period of time - a chronic toxicity study (up to one year) may be necessary to detect early tumorigenic effects.

E. Genotoxicity studies

To detect early tumorigenic effects in cases of chronic illness

In vitro tests:

- Test for gene mutation in Bacteria
- Cytogenetic evaluation of chromosomal damage in mammalian cells

E.g.; Ames's Salmonella Assay detects increased number of aberrations in metaphase chromosomes

- DNA strand breaks, DNA repair or recombination,
 Measurements of DNA adducts
- Chromosome damage in rodent hematopoietic cells E.g.; Micronucleus Assay

* CARCINOGENICITY STUDY

451

PRINCIPLE

451

www.OECD.org

- The test substance is administered daily in graduated doses
- Observed closely for signs of toxicity and for the development of neoplastic lesions.
- Died or are killed animals are necropsied and at the conclusion surviving animals are also killed and necropsied.

ROUTES OF ADMINISTRATION

F. CARCINOGENICITY/ ONCOGENICITY STUDIES

- Life-time Bioassays
- Carcinogenicity studies are performed on:
- Drug used for >6 months or frequent intermittent use for chronic diseases
- Chemical structure of drug indicates carcinogenic potential
- Therapeutic class of drugs which have produced positive carcinogenicity

CONDUCT OF STUDY

- Group sizes of 50 animals/sex at each of 3 dose levels
- Control group is of double size
- Record for onset of tumor development
- Usually carried out for 24 months in rats and 18 months in mice (life span studies)

LD50 represents the individual dose required to kill 50 percent of a population of test animals. It is an index determination of medicine and poison's virulence. lower the LD50 dose, the more toxic the pesticide.

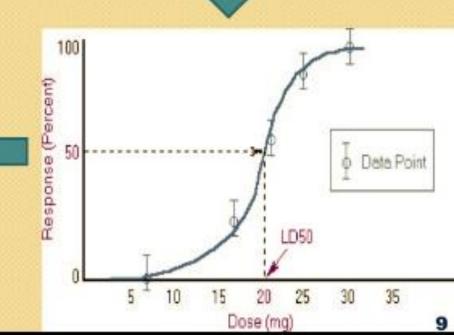
* WHAT IS LC₅₀?

The concentrations of the chemical in air that kills 50% of the test animals during the observation period is the LC₅₀ value. Other durations of exposure (versus the traditional 4 hours) may apply depending on specific laws.

LD50/LC50

What this means

higher LD_s/LC_{ss} = less toxic



lower LD_/LC = more toxic

THANK YOU!!