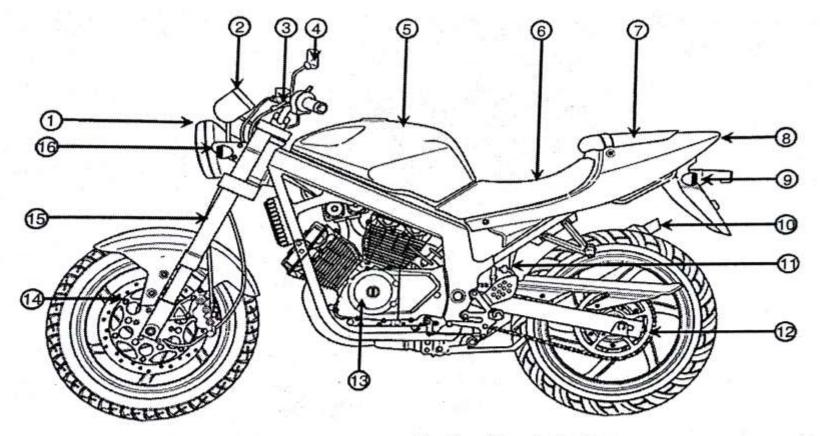
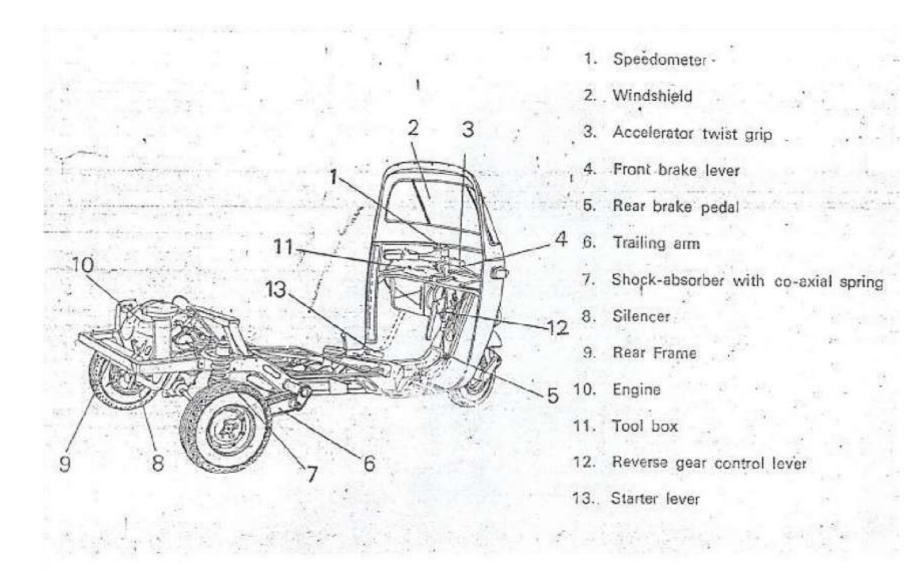

Unit 2 Classification of Internal combustion engines


Layout of Moped

- 1. Head Lamp
- 2. Front Dome
- 3. Front Suspension
- 4. Front Brake
- 5. Rear Brake Lever
- 6. Foot Board
- 7. Exhaust

- 8. Engine Compartment
- 9. Body
- Spare Wheel
- 11. Fuel Tank (Below Seat)
- 12. Seat
- Storage Space
- 14. Front Brake Lever


Layout of Scooter

- 1. Head Lamp
- 2. Instrument Panel
- 3. ORVM
- 4. Clutch Lever
- 5. Fuel Tank
- 6. Seat
- 7. Pillion Seat
- 8. Tail Lamp

- 9. Rear Turn Indicator
- 10. Exhaust
- 11. Rear Suspension
- 12. Chain Drive
- 13. Engine
- 14. Front Brake
- 15. Front Suspension
- 16. Front Turn Indicator

Layout of Motorcycle

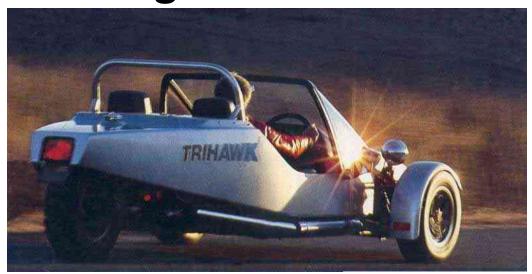
Conventional motorcycle with side-car

Regular side-car for the road

Side-car racers

Single front wheel 3-Wheelers:

Single rear wheel 3-Wheelers



Leaning 3-Wheelers

The 3-Wheelers with two front drivingsteering wheels

- Application
- 2. Basic Engine Design
- 3. Operating Cycle
- 4. Working Cycle
- 5. Valve/Port Design and Location
- 6. Fuel
- 7. Mixture Preparation
- 8. Ignition
- 9. Stratification of Charge
- 10. Combustion Chamber Design
- 11. Method of Load Control
- 12. Cooling

1. Application

```
1.
     Automotive:
                   (i)
                        Car
                    (ii)
                       Truck/Bus
                    (iii) Off-highway
2.
     Locomotive
3.
     Light Aircraft
4.
     Marine: (i) Outboard
              (ii) Inboard
              (iii) Ship
5.
     Power Generation: (i) Portable (Domestic)
                         (ii) Fixed (Peak Power)
6.
     Agricultural: (i)
                       Tractors
                   (ii)
                        Pump sets
7.
      Earthmoving: (i)
                       Dumpers
                    (ii) Tippers
                   (iii) Mining Equipment
8.
      Home Use: (i)
                       Lawnmowers
                     Snow blowers
                 (ii)
                      Tools
                 (iii)
9.
      Others
```

2. Basic Engine Design:

1. Reciprocating (a) Single Cylinder

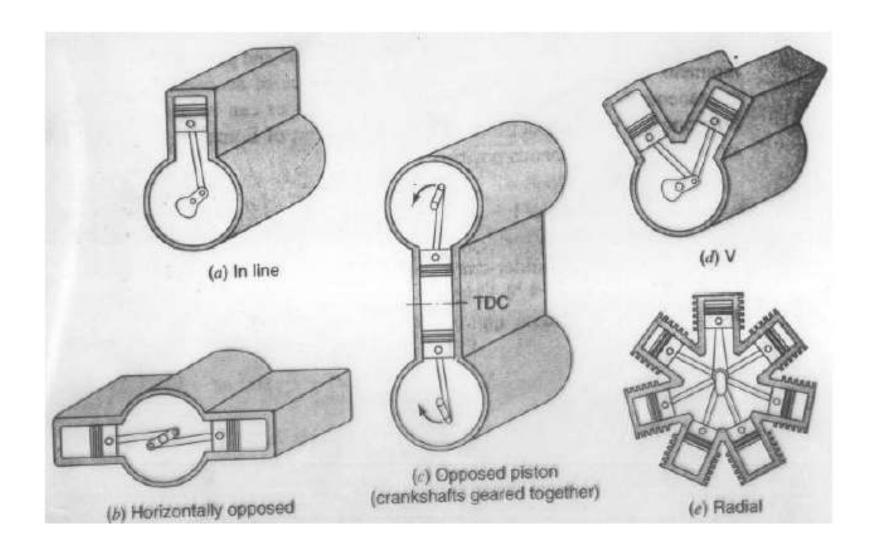
(b) Multi-cylinder (l) In-line

(ii) V

(iii) Radial

(iv) Opposed

Cylinder


(v) Opposed

Piston

2. Rotary: (a) Single Rotor

(b) Multi-rotor

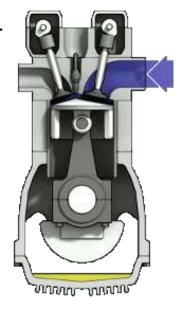
Types of Reciprocating Engines

3. Operating Cycle

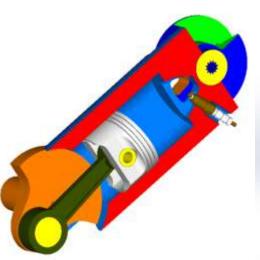
- Otto (For the Conventional SI Engine)
- Atkinson (For Complete Expansion SI Engine)
- Miller (For Early or Late Inlet Valve Closing type SI Engine)
- Diesel (For the Ideal Diesel Engine)
- Dual (For the Actual Diesel Engine)

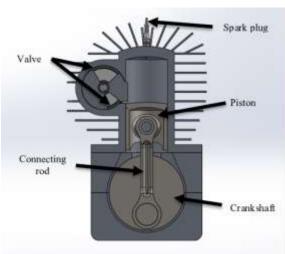
- 4. Working Cycle (Strokes)
- 1. Four Stroke Cycle:(a) Naturally Aspirated
 (b)Supercharged/Turbocharged
- Two Stroke Cycle: (a) Crankcase Scavenged
 (b) Uniflow Scavenged
 - (i) Inlet valve/Exhaust Port
 - (ii) Inlet Port/Exhaust Valve
 - (iii) Inlet and Exhaust Valve

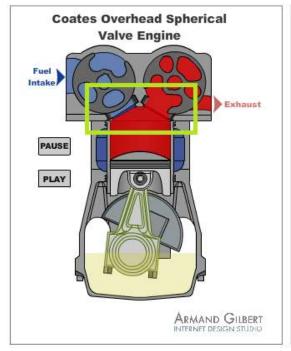
May be Naturally Aspirated Turbocharged

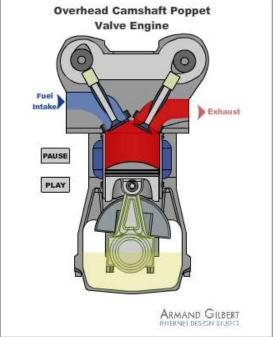

S.no	Turbocharger	Supercharger
1.	Turbocharger is a forced induction system	Super charger is also a forced induction
	that compresses the atmospheric gases	system. It compresses the atmospheric
	and sends it to the engine cylinder.	air and sends it to the engine cylinder.
2.	It uses exhaust gases for its energy.	It is connected to the crankshaft of the engine
		for its energy.
3.	It is not directly connected to the engine.	It is directly connected to the engine through
		belt.
4.	It has smog altering equipment which	It doesn't have wastegate, so the smog emits
	helps in lowering the carbon emission.	from the supercharger.
5.	It spins with a speed upto 150000 rpm.	It spins with a speed upto 50000 rpm.
6.	It is much quieter than supercharger.	It is not so quieter.
7.	It is less reliable.	It is more reliable.
8.	Maintenance is not easy.	Maintenance is easy.
9.	Turbocharger delivers their boost better at	Supercharger can deliver their boost at lower
	high rpm.	rpm.
10.	It is more efficient.	It is less efficient.
11.	The compressed air in turbocharger has	The compressed air in supercharger has less
	high temperature.	temperature.
12.	It requires inter-cooler for the compressed	It may or may not require inter-cooler. But in
	air to lower its temperature.	some types, it requires inter-cooler.
13.	It is more complex.	It is less complex.
1		

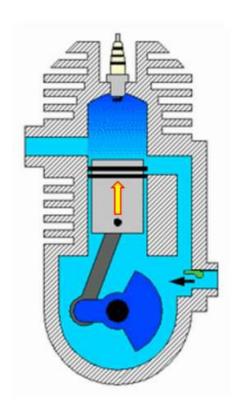
5. (a) Valve/Port Design

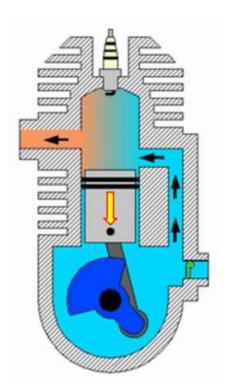

- 1. Poppet Valve
- 2. Rotary Valve
- 3. Reed Valve
- 4. Piston Controlled Porting

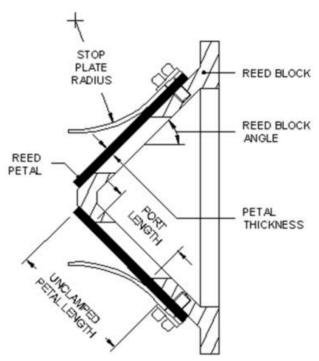

5. (b) Valve Location


- 1. The T-head
- 2. The L-head
- 3. The F-head
- The I-head: (i) Over head Valve (OHV)
 - (ii) Over head Cam (OHC)







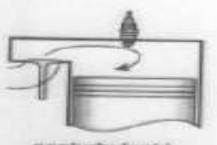


6. Fuel 1.Conventional: (a) Crude oil derived (i) Petrol (ii) Diesel (b) Other sources: (i) Coal (ii) Wood (includes bio-mass) (iii)Tar Sands (iv)Shale 2. Alternate: (a) Petroleum derived (i) CNG (Total Replacement) (ii) LPG (b) Bio-mass Derived (i) Ethanol (ii) Vegetable oils (iii) Producer gas (iv) Biogas (iv) Hydrogen

Partial Replacement: 1. Blending 2. Dual fueling

- 7. Mixture Preparation
- Carburetion perhaps soon to be obsolete.
- 2. Fuel Injection (i) Diesel (ii) Gasoline

- 8. Ignition
- 1. Spark Ignition homogeneous charge
 - (a) Conventional
 - (i) Battery
 - (ii) Magneto
 - (b) Other methods
- 2. Compression Ignition heterogeneous charge (conventional)
- 3. Compression ignition homogeneous charge (hcci)


9. Charge Stratification

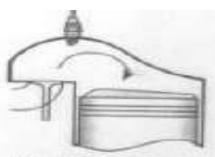
 Homogeneous Charge (Also Premixed charge)

2. Stratified Charge (i) With carburetion (ii) With fuel injection

10. Combustion Chamber Design

- Open Chamber: (i) Disc type
 - (ii) Wedge
 - (iii) Hemispherical
 - (iv) Bowl-in-piston
 - (v) Other design
- 2. Divided Chamber: (For CI): (i) Swirl chamber
 - (ii) Pre-chamber
 - (For SI) (i) CVCC
 - (ii) Other designs

rionturbulent L


nonturbulent T

Honda Stratified charge

Scooped bowl piston

turbulent (wedge) L

hemispherical

MCA jet valve

Sonex pulse burn

- 11. Method of Load Control
- Throttling: (To keep mixture strength constant) Also called Charge Control Used in the Carbureted S.I. Engine
- Fuel Control (To vary the mixture strength according to load)
 Used in the C.I. Engine
- Combination
 Used in the Fuel-injected S.I. Engine.

12. Cooling

1. Direct Air-cooling

2. Indirect Air-cooling (Liquid Cooling)

Low Heat Rejection (Semi-adiabatic) engine.