UNIT-4_COMPRESSIBLE FLOW, DIMENSSIONAL AND MODEL ANALYSIS
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SUBJECT: FLUID MECHANICS
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BASIC EQUATIONS OF COMPRESSIBLE FLOW

¢ equations of the compressible flows are
nuity Equation,
alli’s Equation or Energy Equation,

The bas)
. Conll
Bemo 3
. Momentum Equation,
Equation of state.
| Continuity Equation. This is based on law of conservation of mass which states tha

" er cannot be created nor destroyed. Or in other words, the matter or mass is constant. For one:
m!“‘nsj nal steady flow, the mass per second = pAV
dime!

here P = Mass density, A = Area of cross-section, V = Velocity
! As mass Or mass per second is constant according to law of conservation of mass. Hence
' pAV = Constant,
pifferentiating equation (15.6), dpAV)=0  or PAAV) + AVdp =0
PlAdV + VdA] + AVdp = 0 or  pAdV + pVdA + AVdp =0
4
av A B
A p
Equation (15.7) is also known as continuity equation in differential form.

Bernoulli’s Equation. Bernoulli's equation has been derived for incompressible fluids
in Chapter 6. The same procedure is followed, The flow of a fluid particle along a stream-line in the
direction of § is considered. The resultant force on the fluid particle in the direction of § is equated to
the mass of the fluid particle and its acceleration. As the flow of compressible fluid is steady, the same
Euler’s equation as given by equation ' is obtained as

i S B

ar

Dividing by pAV, we get 0.

j‘£+ VdV + gdZ = 0
p
Integrating the above equation, we get

—+ | VdV+ | gdZ = Constant
(:)p

o j dp +£ + gZ = Constant
p 2
Problem A gas is flowing through a horizontal pipe at a temperature of 4°C. The diameter of

the pipe is 8 cm and at a section 1-1 in this pipe, the pressure is 30.3 N/em® (gauge). The diameter of
the pipe changes from 8 cm to 4 cm at the section 2-2, where pressure is 20.3 Nfem?® ( gauge). Find the
velocities of the gas at these sections assuming an isothermal process. Take R = 287.14 Nm/kg K, and
amospheric pressure = 10 Nfcm®.

Solution. Given :

For the section 1-1,

Temperature, 4, =4°C
Absolu‘te temperature, 7, =4 +273 =277°K
Diameter pipe, D;=8cm=0.08m
- Area of pipe, A ; D?= % (.08)? = 005026 m’
Pressure,

p; =303 N/em? (gauge)
=303 + 10 =40.3 Nfcm® (absolute) = 40.3 x 10* N/m? (abs.)
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For the section 2-2,

Diameter of pipe, Dy=4cm=.04m
Area, A= ; (04)* = 0012565 m?

Pressure., pa =203 + 10 = 30.3 N/em? (abs, ) =303 % 10° N

Gas constant, R = 287.14 N-m/kg°K 'ab’i)

Ratio of specific heat, k=14,

Applying continuity equation at sections (1) and (2), we gel

P Y = paA,V;
= A - Py _ P, X.005026 sl P
Vi pAy py x.0012565 P,

For isothermal process using equation (15.3),

4
-’Zl_ =&0r &:ﬂ: 40‘3)(10

Ara—— =1,
P P2 P2 p 303x10° :

Substituting the value of ::—' = 1.33 in equation (i), we get

l,l=4)<1.33=5.32
Y
V,=532V,

i)
Applymg Bernoulli’s equation at sections 1-1 and 2-2 for isothermal process which is given by

Vv P, Vi
log,p +—L+27 = ——log,p + = +2Z,
pl : % P28 ’ 28
For horizontal pipe, Z,=2,
2 2
P 1 Py
—log.py+ =22 o P+ —=
pg 22 pyg Rele
Vi W2
or log(,p -——log, P SAR I
p.g pag P22 2

But for isothermal process, L = 22

PP

2 2

P Vz VI.

log.p; — = log,p, = -+ _ L

P& = P; 2% 2

2 oAl
" ﬁ—[log ﬂ] = “(532 %) =3 (-+ From (il V2% =%
¢
P& P, 2 2g



=
b

- [ 40.3x 10" ] V2 o
L1 log, 7| =5 0527 -1)=2730 L
0.8 303x%10 2¢ 2¢

P oog 133=2730 Y
P8 2g

P 0285=2730
PE 2

Ppo_ 2730

P 2xa2g5 1 =478V

from equation of state, i.e., from equation (15.2). we have

-s = RT or at section |, . L RT,
)

P
p—' =RT, = 287.14 x 277 = 79537.4
1

Momentum Equations. The momentum per second of a flowing fluid (o o
flun) is equal o the product of mass per second and the velocity of the flow. Mafhemau(?. Ly
momentum per second of a flowing fluid (compressible or incompressible) is cally, he
= pAV x V, where pAV = Mass per second,

The term pAV is constant at every section of flow due to continuity equation, This Means
mentum per second at any section is equal to the product of a constant quantity and the veloéil ! M
also implies that momentum per second is independent of compressible effect Henz;“]
momentum equation for incompressible and compressible fluid is the same. The momentup, e % {
for compressible fluid for any direction may be expressed as, Quatiy

Is

Net force in the direction of § = Rate of change of momentum in the direction of §
= Mass per second [change of velocity|
= pAVIV, - V]
where V, = Final velocity in the direction of S,
V, = Initial velocity in the direction of S.

VELOCITY OF SOUND OR PRESSURE WAVE IN A FLUID

The disturbance in a solid, liquid or gas is transmitted from one point to the other, The velocity with
which the disturbance is transmittéd depends upon the distance between the molecules of the mediun
In case of solids, molecules are closely packed and hence the disturbance is transmitted instantane-
ously. In case of liquids and gases (or fluids) the molé€cules are rélatively apart. The disturbance will be
transmitted from one molecule to the next Molécule. But in case of fluids, there is some distance
between two adjacent molecules. Hence each molecule will have to travel a certain distarice befote i
can transmit the disturbance. Thus the velocity of disturbance in case of fluids will be less than the
velocity of the disturbance in solids.

The distance between the moleculés is related with the density, which in turn depends upon pressur

in case of fluids. Hence the velocity of disturbance depends upon the changes of pressure and density
of the fluid.
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S.No. l Physical —‘er'mntir_\' o l _M‘?."”.'_”‘A’_[A ) ‘ »»r—ﬁ()i"“'",‘,’.""“\\
BarEezsacE? 3 O B | | —
| (b) Geometric [ ' i
4. 1’ Arca . A ? L:
5 1 Volume v L

! (¢) Kinematic Quantities } ?
6. | Velocity | v ! kT
7. | Angular Velocity ' ® ! ,
8. | Acceleration ' a ll =
9. | Angular Acceleration : a ; f‘-
0. | Discharge Q | ET "'
1. | Acceleration due to Gravity g * L[ 2
2| Kinematic Viscosity . v ‘ LT

(d) Dynamic Quantities .

3. Force F | MLT?
4. | Weight W L o
15. Density p { ML
16. | Specific Weight w I ML™T ™
17. | Dynamic Viscosity i ML'T
18. ; Pressure Intensity | P MLT
19. | Modulus of Elasticity ; { E ; ML'T?
2. | Surface Tension ' o ' M7 2
21. Shear Stress ' T J ML'T
22. Work, Energy ' Wor E ! MLT
23. Power ‘ P | ML
24, ' Torque ; T ‘ MLAT
2. | Momentum ‘ M ‘ MLT '

DIMENSIONAL HOMOGENEITY

Dimensional homogeneity means the dimensions of each terms in an equation on both sides are
equal. Thus if the dimensions of each term on both sides of an equation are the same the equation is
known as dimensionally homogeneous equation. The powers of fundamental dimensions (i.e.. L. M, T)
on both sides of the equation will be identical for a dimensionally homogeneous equation. Such

equations are independent of the system of units.

Let us consider the equation, V = /2gH
L

Dimension of L.H.S. =V= = =LT"
. L L -1
Dlme i — y = —_ =4 _——= LT
nsion of R.H.S. = J2gH 7 XL ‘/ T
Dimension of L.H.S. = Dimension of RH.S. = LT

* Equation v = J2gH is dimensionally homogeneous. So it can be used in any system of units.
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METHODS OF DIMENSIONAL ANALYSIS

lf,me Rumber of variable involved in a physical phenomcrfo.n are known,
1anRZble§ can be determined by the following two methods :
2 uﬁ:‘:lgh's method, and

- PUCKingham’s 7.

K d is used for dete

viig, , Rayleigh’s Method. This metho f
. depend : variables only. If the
upon maximum three or four find the expression

- More than four, then it is very difficult 10

then the relation among

rmining the expression for a variable

the number of independent variables
for the dependent variable.

Problem The resisting force R of a Sllpersmli-(‘ pfane ldun‘ng. flight can pe Cong;
dependent upon the length of the aircraft |, velocity V., air wsco..wry M, air density p ang bulk €red o
of air K. Express the functional relationship between these variables and the resisting forc, aly

Solution. The resisting force R depends upon
(i) density, /, (ii) velocity, V,
(ifi) viscosity, |, (iv) density, p,
(v) Bulk modulus, K.
R=AP. V.. p. K "
=)

where A is the non-dimensional constant. o
Substituting the dimensions on both sides of the equation (i),

MLT? =AL* . (LT . (ML'T™)" . (ML7) . (ML)
Equating the powers of M, L, T on both sides,
Power of M, l=c+d+e
Power of L, l=a+b-c-3d-e
Power of T, -2=-b-c-2e
There are five unknowns but equations are only three. Expressing the three unknowns in terms of

two unknowns (il and K).
Express the values of @, b and 4 in terms of ¢ and e.

Solving, d=1-c-e
b=2-c-2e
a=l-b+c+3d+e=1-2-c-2e)+c+3(l-c-e)+¢

=1-2+c+2e+c+3-3c-3e+e=2-c.

Substituting these values in (i), we get
RaA P~ foie o olad i
=AP. V. p(VEpp ) (VE . p*. K

s (CIEY BN
g [pVL) (p_Vf)

s 3] (55 e
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B.uckl.ngham'.s n-Theorem. The Rayleigh's method of dimensional analysis becomes
more labo‘nous if the variables are more than the number of fundamental dimensions (M, L, T). This
difficulty is overcame by using Buckingham’s 7t-theorem, which states, “If there are n variables (inde-
pendent flnd d(?pendent variables) in a physical phenomenon and if these variables contain m funda-
mental dimensions (M, L, T), then the variables are arranged into (n — m) dimensionless terms. Each
term is called m-term”.

I.,et X, X5, X, ..., X, are the variables involved in a physical problem. Let X, be the dependent
variable and X, Xj, ..., X, are the independent variables on which X, depends. Then X is a function of
X, Xj, ..., X, and mathematically it is expressed as

) X] =f(X2, X3, ey Xn) sl ])
Equation (__.1) can also be written as
H&Xy, X, X5, .0, X)) = 0. A 2)

Equation  2) is a dimensionally homogeneous equation. It contains n variables. If there are m
fundamental dimensions then according to Buckingham’s mt-theorem, equation (12.2) can be written in
terms of number of dimensionless groups or T-terms in which number of m-terms is equal to
(n — m). Hence equation (  2) becomes as

Fys Ty sits W) = 0 (.3)

Each of n-terms is dimensionless and is independent of the system. Division or multiplication by a
constant does not change the character of the n-term. Each n-term contains m + 1 variables, where m is
the number of fundamental dimensions and is also called repeating variables. Let in the above case X,
X, ‘and X, are repeating variables if the fundamental dimension m (M, L, T) = 3. Then each nt-term is
written as

n = Xy, Xt - K. X %
;.< ’ 1'. f Cm
Tlv, = x\;{'l" » .\{ ¥ 4\‘; ‘. -X-’,‘ {’

3]

n = Y..“" - - A’ ’l)" T AXI_; PR 1\,” J

Lach equation iy solved by 'llln:mprim-‘.iplu of dimensional homogeneity and values of . by, ¢, e,
are obtained, These values are substituted in equation (¢ 4) and values of ), 5, ..., W, _, arc obtained,
These values of 1's are substituted in equation (1 3). The final equation for the phenomenon g
obtained by expressing any one of the m-terms as i function of others as

o n S0 [T Moy on Wil

or n: = Q,l [nl' n,i' ""nn m' i) )

Method of Selecting Repeating Variables. The number of repeating vanables are
equal 1o the number of fundamental dimensions of the problem. The choice of repeating variables is
poverned by the following considerations

[. As far as possible, the dependent variable should not be selected as repeating variable.

2, 'The repeating variables should be choosen in such i way that one variable contains geometric
property, other variable contains flow property and third variable contains fluid propeny.

Variables with Geometric Property are

() Length, ! i o (iii) Height, H etc.
_Variables with flow property are
(i) Velocity, V (/) Acceleration ele.

Variables with fluid propenty @ () W, (1) p, (i) o ele.

3. The repeating variables selected should not form a dimensionless group.

4. The repeating variables together must have the same number of fundamental dimensions.

5. No two repeating variables should have the sume dimensions,

In most of fluid mechanics problems, the choice of repeating variables may be (D d, v, p G Lv. P
or (i) I, v, por (iv) d, v, jL.
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Procedure for Solving Problems by Buckingham's n-theorem. The procedure
for solving problems by Buckingham's rt-theorem is explained by considering the which
is also solved by the Rayleigh's method. The problem is

The resisting force R of a supersonic plane during flight can be considered as dependent upon the
length of the aircraft [, velocity V, air viscosity J, air density p and bulk modulus of air K. Express the
functional relationship between these variables and the resisting force.,

Solution. Step 1. 'The resisting force R depends upon () 1, (i) V, (i) 1, (iv) p and (v) K. Henee R
is a function of £, V, p, p and K. Mathematically,

R=f(,V p,p K) (1)

or it can be written as f, (R, I, V, i, p, K) = 0 i)

~ Total number of variables, n = 6.

Number of fundamental dimensions, m = 3.

lm is obtained by writing dimensions of ecach variables as R = MLT™, V = LT, p = M
p= ML?, K=ML"T?. Thus as fundamental dimensions in the problem are M, L, T and hence m = 3]

Number of dimensionless n-terms = n~m =6 - 3 = 3.

Thus three mt-terms say g, 7, and 1ty are formed. Hence equation (i) is written as

f| (n]q Ty, M3) = 0. (i)

Step 2. Each mterm = m + 1 variables, where m is equal to 3 and also called repeating variables.
Out of six variables R, [, V, |1, p and K, three variables are 10 be selected as repeating variable. R is @
dependent variable and should not be selected as a repeating variable. Out of the five remaining

Step 3. Each m-term is written as according to equation (
m =14,V p% R
n,=1%.V%2 p2 (i)
my=1%.V> p% K

Step 4. Each mt-term is solved by the principle of dimensional homogeneity. For the first 7t-term, we

have
—

n, = MIOT0 = [4 (LT ™Yo (ML) . MLT™.
Equating the powers of M, L, T on both sides, we get

Power of M, O=c;+1 so=-1
Power of L, O=a;+b;-3¢c,; +1,

ay=-b +3¢;-1=2-3-1=-2
Power of T, 0=-b,-2 S by=-2

Substituting the values of a,, b, and c, in equation (iv),
T, =12.v2. pl.R
R R

TV plEV? ()

or nl
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Similarly for the 2nd 7t-term, we get T, = ML°T° = L . (LT )2 . (ML) . MLT'T,
Equating the powers of M, L, T on both sides

Power of M, O=cy+1, S ep==1
Power of L, 0=ay+b,—3c,—- 1,
a,=—by+3c,+1=1-3+1=-1
Power of T, 0=-b,-1, & by ==1
Substituting the values of a,, b, and ¢, in T, of (iv)
-1 -1 4-1 u
="V .p . pm=—.
n? l oy | | Vo
3rd m-term
i 103 Vb3 pC'; K
or \ L"I8 1% (LT (ML . ML'T
Equating the powers of M, L, T on both sides, we have
Power of M, O=c;+1, & c3=—1
Power of L, 0=ay+b3—3c;—1, a3=—b1+?c~+l -3+1
Power of T, 0=-b-2, s o by=—
Substituting the values of as, b3 and ¢; in T3 term
- 10 " V—2 -1 = __I_{’_.
11':3 - s p k& V2p

step 5. Substituting the values of ©t,, nty and ny in equation (iii), we get

PY (ST ) PR SRS &
\pl"V= IVp Vip pl*V? IVp ' Vp
K
- R = ol*V? -—E—,———— . Ans.
C pIVTo va Vzp}
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DIMENSIONLESS NUMBERS

Dimensionless numbers are those numbers which are obtained by dividing the inertia force by
viscous force or gravity force or pressure force or surface tension force or elastic force. As this is a
ratio of one force to the other force, it will be a dimensionless number. These dimensionless numbers
are also called non-dimensional parameters. The followings are the important dimensionless numbers :

1. Reynold’s number, 2. Froude’s number,
3. Euler’s number, 4. Weber’s number,
5. Mach’s number.
Reynold’s Number (R,). It is defined as the ratio of inertia force of a flowing fluid and

the viscous force of the fluid. The expression for Reynold’s number is obtained as

~ Inertia force (F)

= Mass x Acceleration of flowing fluid

= p X Volume X e1001ty V—O_hlm—e x Velocity
Time
=pxAVxV { Volume per sec = Area X Velocity = A X V}
= pAV? .(12.11)
du
Viscous force (F,) = Shear stress X Area { T=H ;,; . Force=1X Area}

“Z1xA
du 'V
du ., du_V
PRt
By definition, Reynold’s number,
F, pAV?: _ pVL
Re= _i,"— :—] V XA —T
H-7
o WX E Yo b { B _ v = Kinematic viscosity}
(mip) v p

In case of pipe flow, the lincar dimension /. is (aken ns dinmeter, do Hence Reynold™s number fo,

Jipe flow,

Vxd pYd

v no
The Troude’s number is defined as the squate root of the g

ssed oy

R, =
Froude’s Number (F,).
of inertia force of a flowing fluid to the gravity foree, Muathematically, it is expre

. hi
F,= \ﬁ

where F,; from equation (12.11) = pAV?
and F ¢= = Force due to gravily
ass X Acceleration dm (o gravity
——px\/olumcxg pxLxg

—pr“xLxg PXAXLXg

P L7y 7V
“F, pALg

(~+ Volume = L})
(v L*=A=Ara)

L.i,' »\/ Eg
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is defined as the square root of the ratio of the inertia force of a
Euler’s Number (E,). Itis (lclln'cd as l,|.1(4'h(|lldl(-, I‘(.(\t|(: ST
flowing fluid to the pressure force. Mathematically, it is expressed as

-
B,= 2

where F)p = Intensity of pressure X Area = p X A

and F,-=pAV2
o - [pAV =\/v2 _ v
““\pxA \plp Jplp

Weber’s Number (W,). Itis defined as the square root of the ratio of the inertia force
of a flowing fluid to the surface tension force. Mathematically, it is expressed as

&
Weber’s Number, W, = |-

ﬂhere F; = Inertia force = pAV?
and  F; = Surface tension force

= Surface tension per unit length X Length =6 X L

pAV? pxI[*xV? \ (- A=l
We = XL oxL ' '
o

=\/pL><V2_ A 4
o o/pL Jo/pL’

. ' ati the
Mach’s number is defined as the square root of the ratio of
inertia force of a flowing fluid to the elastic force. Mathematically, it is defined as

Mach’s Number (M).

M= [‘ Inertia force j

F,
Y Elastic force _‘\" F,

where F,=pAV?

and  F, = Elastic force = Elastic stress x Area
=KXA=KWE {-- K =Elastic stress
. pAV® jprszZ ~ | y2 ¥
kx’ Y kx* \klp JKip
But LS

= C = Velocity of sound in the fluid

m=2
C
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