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FLOW OF VISCOUS FLUID THROUGH CIRCULAR PIPE

For the flow of viscous fluid through circular pipe, the velocity distribution across a section, the
ratio of maximum velocity to average velocity, the shear stress distribution and drop of pressure for a
given length is to be determined. The flow through the circular pipe will be viscous or laminar, if the
Reynolds number (R,*) is less than 2000. The expression for Reynold number is given by

P
u
where p = Density of fluid flowing through pipe
V = Average velocity of fluid
D = Diameter of pipe and
W = Viscosity of fluid.
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Consider a harizontal pipe of radius R. The viscous fluid is flowing from left to right in the pipe as
shown in Fig. (). Consider a fluid clement of radius r, sliding in a cylindrical fluid element of

radius (v + dr). Let the length of fluid clement be Ax. If *p” is the intensity of pressure on the face AB,
d

then the intensity of pressure on face CD will be (p+ ai)Ax) Then the forces acting on the fluid

=

element are : 5
1. The pressure force, p X 7r” on face AB.

2. The pressurc force, (p + 22 A\') mr® on face CD.
|

3. The shear force, T x 2rAx on the surface of fluid element. As there is no acceleration, hence the
summation of all forces in the direction of flow must be zero i.e.,
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prr — p+a—Ax W —TX2MrxAv=0
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I'he shear stress T across a section varies with 'r’ as a— across a section is constant. Hence shear
X
stress distribution across a section is lincar as shown in Fig. (a).
SHEAR STRESS VELOCITY
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Shear stress and velocity distyibution across a section.

(i) Veloeity Distribution. To obtain the velocity distribution across a section, the value of shear

du . a g
stress T= | d— is substituted in cquation 1
y

: A du : 3
But in the relation 1= d_ v is measured from the pipe wall. Hence

'y

y=R-r and dy=-dr
du du
T=pl—=-U—
—dr dr
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Integrating this above equation w.rl “r’, we zet
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where C is the constant of integration and its value is obtained from the boundary condition that at
r=R,u=10
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Substituting this value of C in equation (9.2), we get
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(i) Ratio of Maximum Velocity to Average Velocity. The velocity is maximum, when r = 0 in
equation Thus maximum velocity, U, is obtained as
(R L —\
' dp dx
The average velocity, u, is obtained by dividing the discharge of the fluid across the section by the
arca of the pipe (tR”). The discharge (Q) across the section is obtained by considering the flow through
a circular ring element of radius r and thickness dr as shown in Fig. - The fluid flowing per

second through this elementary ring
d(Q = velocity at a radius r X area of ring element
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(1ify Drop of Pressure for a given Length (L) of a pipe
From equation B we have
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Integrating the above equation w.r.t. x, we get I_>|
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KT o
S L {~ xy-x =L from Fig. H
Sl D
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(D/2) 2
o, —-p)= 32;:”‘ , where p, — p, is the drop of pressure.
Loss of pressure head = ho P
Pg
pi-py _, 32l
pe " pep?

is called Hagen Poiseuille Formula,
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FLOW OF VISCOUS FLUID BETWEEN TWO PARALLEL PLATES

In this case also, the shear stress distribution, the velocity distribution across a section ; the ratio of
maximum velocity to average velocity and difference of pressure head for a given length of parallel
platcs, arc to be calculated.

by PARALLEL PLATE
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PARALLEL PLATE

Viscons flow bet'ween two parallel plates.

Consider two parallel fixed plates kept at a distance *1" apart as shown in Fig. . A viscous fluid is
flowing between these two plates from left to right. Consider a fluid element of length Ay and thick-
ness Ay at a distance y from the lower fixed plate. If p is the intensity of pressure on the face AB of the

) ; : 9 ;
fluid clement then intensity of pressure on the face CD will be (pi- -;)f- Ax | Let Tis the shear stress
X

acting on the face BC then the shear stress on the face AD will be (‘H%A_v]. If the width of the

element in the direction perpendicular to the paper is unity then the forces acting on the fluid element
are :
1. The pressure force, p X Ay % 1 on face AB.

9
2. The pressure force, (p+ a—p A\) y X | on face CD.

3. The shear force, T % Ax X 1 on face BC.
4. The shear force, (1: + %E Ay) Ax % 1 on face AD.
For steady and uniform ﬂo'w, there is no acceleration and hence the resultant force in the direction
of flow is zero.
pAY x 1 - (p+%m) Ayx 1 -tArx 1+ [t+%Ay] Axx1=0

v

or ap AxAy + 93 AyAx =0
T oy ox
i dap  dt dp ot
Dividing by AxAy, we get = —+— = or —=— 4
e ¥ $ dx dy dx dy e R

(1) Velocity Distribution. To obtain the velocity distribution across a section, the value of shear

o,
stress T= | £2 from Newton's law of viscosity for laminar flow is substituted in equation A
v
E d( du - 0 u
ax Ayl dy dy’
Fu_19
dv®  podx
Integrating the above equation w.r.t y, we get
d dp
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where C) and C, are constants of integration. Their values arc obtained from the two boundary condi-
tionsthatis(aty=0,u=00DNaty=1,u=0,

The substitution of ¥y =1, & = in equation (Y.§) gives
0=0+C %0+ Cyor ;=10
The substitution of ¥ =t ouw=0in equation (9.8) gives
0= la—‘”—+£‘| % t+0
ndx 2

lﬂp $* 1 ap
paxlx; ”p &x

=
Substituting the values of € and C, in equation (9.8)
I = Lﬁ }~1+_v [_Lﬁ[]

2y dr 20 dx
or H=— —i* ﬂ’?‘ [f_‘r‘ = _'I-’:] e
2p drx
dp

In the above equation, 1, I and 1 are constant. [t means # varies with the square of y. Hence
A

equation € is 4 equation of a parabola, Hence velocity distribution across a section of the parallel

plate is parabolic. This velocity distribution is shown in Fig
-,
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(i7) Ratio of Maximum Velocity to Average Velocity, The velocity is maximum, when y = 2.
Substituting this valuc in cquation C | we get

1 dp t (Y
U = — N ——] —
=g - (5]

_loplff £l 1dpr_ 19, @
2 4 2].1 dx 4 8u ox
The average velocity, u. is obtained by dividing the discharge (Q) across the section by the arca of
the section (% 1). And the discharge Q is obtained by considering the rate of flow of fluid through the
strip of thickness dy and integrating it. The rate of flow through strip is
d() = Vclocity at a distance v X Arca of strip

__-l_a_[{\v—v Txdyx1

2 dx

Q=f dQ = '[ —L—[l\—\]d\

0
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Dividing equation (@) by equation (E) | we gat
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(iF) Drop of Pressure head for a given Length. From equation ® |, we have
ORI SR S
12p dx dr t*
Integrating this equation w.r.L x, we get
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(fv) Shear Stress Distribution. It is obtained by substituting H:E1
the value of # from equation (€}  into ol ~¥e
du Fig. 9.8
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REYNOLDS EXPERIMENT

pV xd

The type of flow is determined from the Reynolds number i.e., . This was demonstrated by

0. Reynold in 1883. His apparatus is shown in Fig. 10.1.
DYE CONTAINER

DYE
= VALVE
)
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Reynold apparatus.

The apparatus consists of :
(1) A tank containing water at constant head,
{f7) A small tank containing some dye,
(7ir) A glass tube having a bell-mouthed entrance at one end and a regulating value at other ends.
The water from the tank was allowed to flow through the glass tube. The velocity of flow was varicd
by the regulating valve. A liquid dye having same specific weight as water was introduced into the
glass tube as shown in Fig.

The following observations were made by Reynold : / l?I‘L'iMENT

(1) When the velocity of flow was low, the dye fila- 2z
ment in the glass tube was in the form of a straight line,
This straight linc of dyc filament was parallel to the (a) Laminar flow WAVY
glass tube, which was the case of laminar flow as shown 2~ FILAMENT

mn Fig_ (u). M—

(i) With the increase of velocity of flow, the dye-

iti DIFFUSED
filament was no longer a straight-line but it became a (b) Transition / FILAMENT
wavy one as shown in Fig. {#). This shows that %
flow is no longer laminar.
(fiir) With further increase of velocity of flow. the {c) Turbulent flow
wavy dye-filament broke-up and finally diffused in : .
water as shown in Fig. (¢). This means that the Diterime e of Plamens.

fluid particles of the dyc at this higher velocity are moving in random fashion, which shows the casc
of turbulent flow. Thus in case of turbulent flow the mixing of dye-filament and water is intense and
flow is irregular, random and disorderly.

In case of laminar flow, the loss of pressure head was found to be proportional to the velocity but in
case of turbulent flow, Reynold observed that loss of head is approximately proportional to the square
of velocity. More exactly the loss of head, h/ = V" where n varies from 1.75 to 2.0
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FRICTIONAL LOSS IN PIPE FLOW

When a liguid is flowing through a pipe, the velocity of the liquid layer adjacent to the pipe wall is
rero. The velocity of liquid goes on increasing from the wall and thus velocity gradienggand hence
shear stresses are produced in the whole liquid due to viscosity. This viscous action causes loss of
energy which is usually known as frictional loss.

On the basis of his experiments, William Froude gave the following laws of fluid fraction for
turbulent flow.

The frictional resistance for turbulent flow is :

(1) proportional to V", where n varies from 1.5 to 2.0,

(i) proportional 1o the density of fluid,
(ii7) proportional to the area of surface in contact,
(iv) independent of pressure,

(v) dependent on the nature of the surface in contact.

Expression for Loss of Head Due to Friction in Pipes.

L = length of the pipe between sections 1-1 and 2-2,
d = diameter of pipe,
f” = frictional resistance per unit wetted area per unit velocity,
/iy = loss of head due to friction,
and p,, V, = are values of pressure intensity and velocity at section 2-2.

Uniform horizontal pipe.

Applying Bernoulli’s equations between sections 1-1 and 2-2,
Total head at 1-1 = Total head at 2-2 + loss of head due 1o friction between 1-1 and 2-2

2 2
or ﬂ-lv~V—'+z,l= p3+v—3+zz+h(
pg 28 pg 2
But 2, =z as pipe is horizontal
V, =V, as dia. of pipe is same at 1-1 and 2-2
—&——-—i-&h, or I:,:—E'——ﬂl— A7)
Pg  pPg Pg Pg

But hj is the head lost due to friction and hence intensity of pressure will be reduced in the direction
of flow by frictional resistance.

Now frictional resistance = frictional resistance per unit wetted arca per unit velocity x wetted arca
x velocity®
or Fi=f'XmdLx V? [ wetted area=nd x L, velocity = V = V, = V]

=" XPXLxV [ . md = Perimeter = P] ...(ii)

The forces acting on the fluid between sections 1-1 and 2-2 are :

1. pressure force at section 1-1 =p, X A
where A = Area of pipe

2. pressure force at section 2-2 = p, X A

3. frictional force Fy as shown in Fig. 10.3.

Resolving all forces in the horizontal direction, we have

PA-PA-F =0

P (Py—P)A=F,=f XPXLXV [ = From (ii), F, = f'PLV"
FXPXLXV?
or B &
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Equating the value of (p, = p,). we get

F'XPxLxV?
=
P&y A
or hy= L2 ixv i)
pg A
’ ... P Weued perimeter nd 4
In cquation (i), — = = =—
A Arca E(IZ d
4
= L8 g LV V)
pg d P8 d
Putting L:% where fis known as co-efficient of friction.
p
e 4.f LV? _4af.L.V?
Cquation (iv), becomes as i, = 2% d S 1T 2g
Expression for Co-efficient of Friction in Terms of Shear Stress. The equation
gives the forces acting on a fluid between sections -1 and 2-2 of Fig, in horizontal direction as
PA-pA-F =0
or (p, — p5)A = F, = force due 1o shear stress 1,
= shear stress x surface arca
=TyXndX L
T K o]
or (p.-pg)ch:toxnde {’.’A=Zd'}

Cancelling nd from both sides, we have
d
Py -r2) 1 =T XL

41, x L

or — o) =
T /
m-pa 4F.L.V?

pg dx2g

can be written as /1, =
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