UNIT-2_Fluid Kinematics & Fluid dynamics

BRANCH: AUTOMOBILE ENGINEERING

SUBJECT: FLUID MECHANICS

INTRODUCTION

Kinematics is defined as that branch of science which deals with motion of particles without
considering the forces causing the motion. The velocity at any point in a flow field at any time is
studied in this branch of fluid mechanics. Once the velocity is known, then the pressure distribution
and hence forces acting on the fluid can be determined. In this chapter, the methods of determining

velocity and acceleration are discussed.

Steady and Unsteady Flows. Steady flow is defined as that type of flow in which the fluid

characteristics like velocity, pressure, density, etc., at a point do not change with time. Thus for

steady flow, mathematically, we have
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where (xg, v, 2) 18 a fixed point in fluid field.

Unsteady flow is that type of flow, in which the velocity, pressure or density at a point changes with
respect o time. Thus, mathematically. for unsteady flow

(?1) P ,
ot s #0, 3t — # 0 etc.

n

Uniform and Non-uniform Flows. Uniform flow is defined as that type of flow in
which the velocity at any given time does not change with respect to space (i.e., length of direction of
the flow). Mathematically, for uniform flow

(3_"} -0
s [ = constunt

where 9V = Change of velocity
ds = Length of flow in the direction S.
Non-uniform flow is that type of flow in which the velocity at any given time changes with respect
to spacc. Thus, mathematically, for non-uniform flow

[a—V] #0.
()S = constant

Laminar and Turbulent Flows. Laminar flow is defined as that type of flow in which
the fluid particles move along well-defined paths or stream line and all the stream-lines are straight and
parallel. Thus the particles move in laminas or layers gliding smoothly over the adjacent layer. This
type of flow is also called suream-line flow or viscous flow,

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way. Due to the
movement of fluid particles in a zig-zag way, the eddies formation takes place which are responsible

o) " y : ’ . VD
for high energy loss. For a pipe flow, the type of flow is determined by a non-dimensional number—
v

called the Reynold number,
where D = Diameter of pipe

V = Mean velocity of flow in pipe
and v = Kinematic viscosity of fluid.

If the Reynold number is less than 2000, the flow is called laminar. If the Reynold number is more
than 4000, it is called turbulent flow. If the Reynold number lies between 2000 and 4000, the flow may
be laminar or turbulent.

Compressible and Incompressible Flows. Compressible flow is that type of flow in
which the density of the fluid changes from point to point or in other words the density (p) is not
constant for the fluid. Thus, mathematically, for compressible flow

p # Constant

Incompressible flow is that type of flow in which the density 1s constant for the fluid flow. Liquids

are generally incompressible while gases are compressible. Mathematically, for incompressible flow
p = Constant.



Problem A 25 c¢m diameter pipe carries oil of sp. gr. 0.9 at a velocity of 3 m/s. At another
section the diameter is 20 cm. Find the velocity at this section and also mass rate of flow of oil.

Solution. Given :
at section 1, Dy =25cm =0.25m
A == D=1 %0.25* = 0.049 m?
4+ -
Vi=3m/s
at section 2, D,=20cm=02m
s =§ 0.2)* = 00314 m?

V2 = f)
Mass rate of flow of oil = 7

Applying continuity equation at sections 1 and 2.,

A,V, = A)V)
or 0.049 x 3.0 = 0.0314 x V,
ViR 0D, i s
- 0.0314
Mass rate of flow of oil = Mass density X Q =p x A; x V|
Density of oil
Sp. gr. 0‘ 0“ = M
Density of water
Density of oil = Sp. gr. of oil x Density of water
= 09 x 1000 kg/m® = 200ke
o
Mass rate of flow =900 x 0.049 x 3.0 kg/s = 132.23 kg/s. Ans.

CONTINUITY EQUATION IN THREE-DIMENSIONS

Consider a fluid element of lengths dx, dy and dz in the direction of x, y and 7. Let u, v and w are the
inlet velocity components in x, y and z directions respectively. Mass of fluid entering the face ABCD
per second

= p X Velocity in x-direction X Area of ABCD
=pXux(dyxdz)

Then mass of fluid leaving the face EFGH per second = pu dyvdz +% (pu dydz) dx

Gain of mass in x-direction
= Mass through ABCD — Mass through EFGH per second

= pu dvdz - pu dydz - i (pu dydz)dx

ox
=— i (pu dydz) dx
ox 2
d
=-— a— (pu) dx dydz { ' dvdz is constant}
X
Similarly, the net gain of mass in y-direction D 5 i
|
J A {w E dz
= - — (pv) dxdydz
ady ? : Ert'up 7'—_’X
BL-"V dy
and in z-direction == i (pw) dxdydz : dx —»
oz Y Fig. 5.6

Net gain of masses = — i(pu) + 4 (pv)+ 3 (pw) | dxdydz
ox dy 0z

Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit
time in the fluid element must be equal to the rate of increase of mass of fluid in the element. But mass
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dJ
of fluid in the clement is p. dx. dy. dz and its rate of increase with time is— (p dx. dy. dz) or

% .dx dy dz.

Equating the two expressions,

dp  d
_—
dt  ox

or

di

d J dJ s B g
..[E (pu)+ a—y(ps)+a—z(pu )} dxdydz = TR dxdyd;

(pu)+ %[pv) + ai(pw) = 0) [Cancelling dx.dy.dz from both sides] .
: z

Equation  is the continuity equation in cartesian co-ordinates in its most general form. This

equation is applicable to :
(1) Stcady and unsteady flow,
(77) Uniform and non-uniform flow, and
(ii1) Compressible and incompressible fluids.

d
For steady ﬂuw.—a—‘{1 = () and hence equation  becomes as

d 9 d
g(pl‘) +$ (pv) + O_z(pw) =0

If the fluid is incompressible, then p is constant and the above equation becomes as

du o v i ow

S ey 28 00
ox dy oz

Continuity Equation in Cylindrical Polar Co-ordinates. '

The continuity equation in

cylindrical polar co-ordinates (i.e.. r, 0, z co-ordinates) is derived by the procedure given below.

Consider a two-dimensional incompressible flow field. The
two-dimensional polar co-ordinates are » and 8. Consider a fluid
element ABCD between the radii » and r + dr as shown in
Fig. . The angle subtended by the element at the centre is d6.
The components of the velocity V oare «, in the radial direction
and ug in the tangential direction. The sides of the element are
having the lengths as

Side AB = rdB, BC = dr, DC = (r + dr) d0, AD = dbr.

The thickness of the element perpendicular to the plane of
the paper is assumed (© be unity.

Consider the flow in radial direction

Mass of fluid entering the face AB per unit time

= p % Velocity in r-direction X Area

=pxu x(ABx1)

=PpXu X(rddXxX1)=p.u,

Mass of fluid leaving the tace CD per unit time
= p X Velocity X Area

( o
p x| u +
\

du

p x|, +
\ r

=pX|u, Xr+udr+r o

arl .dr) = (CDx 1)
a' dr] X (r + dr)d®

2u-L(Ir+

s N,
,  Up + 550 de u + ==-ar
D,
“y
ot
A ’ Cc
%
u, g
Uy
&
a8 e
o/

(" Area = AB % Thickness = rdB x 1)
. rd®

(= Areca=CD x 1)

[ CD = (r+ dr) d9]

i

Ep (dr)‘] a6

= p[u, Xr+u, X dr+r%.dr] d0

r

[The term containing (dr)” is very small and has been neglected]
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Gain of mass in r-direction per unit time
= (Mass through A - Mass through CD) per unit time

=p.u,. rdd - p[u,. r+u,.dr+r Bau,

.(!r} d6
2

=p. . rd0 - p. u,. r.do - p[u,.dr+ r z;i.dr] 0
r

.dr]. a9

3 | This is written in this form because
u u

=_ p[_'+_'] r.dr.de  (r.dO. dr. 1) is equal to volume of
roor element]

dut
=— .d r
p [u, b

Now consider the flow in B-direction
Gain in mass in G-dircction per unit time
= (Mass through BC — Mass through AD) per unit time
= [p x Velocity through BC x Area — p % Velocity through AD x Area)

a‘lo
=|p.tty.drXl— 4 ——.dB | xdrxl
[p g .dr p(uB 3 J r J

=- p(%uei.de) drx 1 (> Area=drx1)
duy r.d0. dr e Sasds
- pﬁ- e |Multiplying and dividing by r|
r

Total gain in fluid mass per unit time

=i P[ﬁ’- +Q"—'] e i, TR T
K af r
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VELOCITY AND ACCELERATION

Let Vis the resultant velocity at any point in a fluid flow. Let u, v and w are its component in x, y and
z directions. The velocity components are functions of space-co-ordinates and time. Mathematically,
the velocity components are given as
u=filx.v.z, 1
v=f(r, v, 2, 1)
w=Lf{lxy )
and Resultant velocity, V=ui+vj+ wk=Ju*+v* +w?
Letag, a, and a; are the total acceleration in r, y and z directions respectively. Then by the chain
rule of differentiation, we have
_du _Jdudx Odudy du dz du
“at a0 m o

Y

But ﬁ=u.i'v-=v andﬂ =w
dt dr dt

Ll R, 0% 08, A ]

—=U—tV—FW—t—

T oc  dy ;o

— dv v adv dv  av
Similarly, A= — = UtV ot Wt —

4 I_‘

oV
For steady flow, 3_ = (). where V is resultant velocity
1

du Jdv dw
or a—I—O.E—Oanda{—O

Hence acceleration in x, v and z directions becomes

du dit au du
a.=—= V—+Ww—

St v dy dz
dv dv ov dv

ag=—=u_—+v

& o oy o

Acceleration vector A=aji+aj+ak

2 2 a
=Ja‘ +a, +a: .
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Velocity Potential Function. It is defined as a scalar function of space and time such
that s negative derivative with respect o any direction gives the fluid velocity in that direction. It is
defined by ® (Phi). Mathematically, the velocity, potential is defined as ¢ = f'(x, v, 2) for stcady flow
such that
90

u=——

dx

Dy
99
oz

where i, v and w are the components of velocity in x, v and z directions respectively.
The velocity components in cylindrical polar co-ordinates in terms of velocity potential function are
given by

v=

w=

u,.= ()‘b
oo
1 db
Uy =———
7 00
where  u,. = velocity component in radial direction (z.e., in r direction)
and 1ty = velocity component in tangential direction (7.e., in 0 direction)
e : : : . ou  dv  ow
The continuity equation for an incompressible steady flow is B— + a— + a— =:0:
x oy 2z

Substituting the values of u. v and w from equation (5.9), we get

i(_ﬂ},i _% +i[_‘7_) 1)
ox\ oax) ay\ oy) az\ az

a FTEIMF RAM
is a Laplace equation.
a;? a:? = 0.
axr- oy’
Stream Function. It is defined as the scalar function of space and time, such that its partial

derivarive with respect o any direction gives the velocity component at right angles to that direction. It
is denoted by y (Pai) and defined only [or two-dimensional flow. Mathematically, Tor steady flow it is

defined as w = j (x, ¥) such that

dy .
oy
d
and oY
dv
The velocity components in cylindrical polar co-ordinates in terms of stream function are given as
| d
u,.= —ﬂ and ny = oY
r ﬁ ar
where « = radial velocity and ug = tangential velocity
L L . ) . odu dv
The continuity equation for two-dimensional flow is —+ — = i)
dr dy
Substituting the values of ¥ and v from equation
af ay) o a\y) 'y 'y
=—|=="lt—=l==| 2lr===1F =0
ax[ % ] F) [ ) A T
Hence existence of y means a possible case of fluid flow. The flow may be rotational or irrotational.
The rotational component . is given by o = l a—‘—ai .
5 © 2\ax dy

Substituting the values of # and v from equation | the above rotational component, we get

iR -2

Dy
=
ax? * Pis )

For irrotational flow, @, = (). Hence above equation becomes as



EULER’S EQUATION OF MOTION

This is equation of motion in which the forces due to gravity and pressure are taken into considera-
tion. This is derived by considering the motion of a fluid element along a stream-line as :

Consider a stream-line in which flow 1s taking place in s-direction as shown n Fig. Consider a
cylindrical element of cross-section dA and length dy. The forces acting on the cylindrical element are:

1. Pressure force pdA in the direction of flow.

ap ; Ci

2. Pressure force | p+ xds dA opposite to the direction of flow.

3. Weight of clement pgdAds.

Let 0 is the angle between the direction of flow and the line of action of the weight of element.

The resultant force on the fluid element in the direction of s must be equal to the mass of fluid
element x acceleration in the direction s.

ap 3
pdA - | p+ -a—zlx dA — pgdAds cos B
s
= pdAds X a, SO | ) g
where @, 1s the acceleration in the direction of s, ’%{,g
» S
Now a = Z—‘, where v is a function of 5 and 1.

i

deds W _viv I { ds } i
B e e o s i o e 06 o
ds dt  at  ds Ot

dt &
If the flow is steady, & =0 / ‘
bl S K
a = '&
fT s 5
Substituting the value of @ in equation 1 and simplify-
ing the equation, we get pgdAads
9 — o (a) (&)
ds A =R O L AR as Forces on a fluid element.
Dividing by  pdsdA, - ;a_ap_; -~ gcos = %
v
or a—”+gcose+.-—'=0
pds ds
dz

But from Fig. 6.1 (»), we have cos 0 = T
s

L & L ﬂ =0 or d_p + gdz + vdv =10
P

p ds % ds ds
dp

or — +gdz+vdv=0
p

is known as Euler’s equation of motion.

BERNOULLI'S EQUATION FROM EULER’S EQUATION
Bernoulli's equation is obrained by integrating the Euler’s equation of motion
dp
~—+ | gdz + | vdv = constant
Jor et ]

If flow is incompressible, p is constant and

P v
— + g + — = constant
p 2
) v?
or -—+ 7 +— = constant
Pg 24
i
or —+ — + 2 = constant
P 28
is a Bernoulli's equation in which
2 pressure energy per unit weight of fluid or pressure head,
pE

\‘2/23 = kinetic energy per unit weight or kinetic head.
z = potential energy per unit weight or potential head.
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Venturimeter. A venturimeter is a device used for measuring the rate of a flow of a fluid
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flowing through a pipe. [t consists of three parts :
(i) A short converging part, (i7) Throat, and (iif) Diverging part. [t is based on the Principle of
Bernoulli’s equation.
Expression for rate of flow through venturimeter
Consider 4 venturimeter fitted in a horizontal pipe through which a fluid is flowing (say water), as
shown in Fig.
Let d; = ciameter at inlet or at section (1),
p, = pressure at section (1)
v, = velocity of fluid at section (1),

—
@ = area at section (1) = gd,l =T
and dys Py Ve G are corresponding values at section (2),
Applying Bernoulli's cqu;'mon at secuousf 1) and (2), we get il e
i M +3, - R X + 2,
P8 28 Pg 28
As pipe is horizontal, hence 2, = 2,
M P Vs o PP Vi W
P 28 pg 2¢ Pg 28 28
But £i= Py is the difference of pressure heads at sections | and 2 and it is equal t /i or PPy,
P8 P&
Substituting this value of Py =P in the above equation, we get
Ps
2 2
h= V_z - V_|
g 2g
Now applying continuity equation at sections | and 2
w,v,
apwy=a;v; or vy = —=
a4

Substituting this value of v, in equation (6.6)

avs |
2 2 2 2 2 2
Vv, a Vs s Vy | dy =iy
s = — el | |- == —V—

2¢ 2z 2¢g a,2 i 2¢ af
or v,” = 2gh = na, % .
- a

Discharge, 0 =a,v,
a
- S %2
= dy = X ,}?.gh = = = 2¢h
ay —a; a; —a;

Value of ‘h’ given by differential U-tube manometer

Case L. Let the differential manometer contains a liquid which is heavier than the liquid flowing
through the pipe. Let
S, = Sp. gravity of the heavier liquid
S, = Sp. gravity of the liquid flowing through pipe
x = Difference of the heavier liquid column in U-tube

Then h=x 5—” -
3,



Case II. If the differential manometer contains a liquid which is lighter than the liquid flowing
through the pipe, the value of & is given by

h=x -b—'
S

where S, = Sp. gr. of lighter liquid in /-tube
&, = Sp. gr. of fluid flowing through pipe
x = Difference of the lighter liquid columns in U-tube.
Case 1. Inclined Venturimeter with Differential U-tube manometer. The above two cases are
given for a horizontal venturimeter. This case is related to inclined venturimeter having differential
U-tube manometer. Let the differential manometer contains heavier liquid then s given as

h= (ﬂ+z,)—(’,3 +z2] =x [i—l}
pg (74 Sa

Case 1V. Similarly, for inclined venturimeter in which differential manometer contains a liquid
which is lighter than the liquid flowing through the pipe, the value of /i is given as

n=|Biig |- By g | =x L
1 2 s
Pg Pg S

Problem A 30 cm x 15 cm venturimeter is inserted in a vertical pipe carrying water, flowing
in the upward direction. A differential mercury manometer connected io the inlet and throat gives a
reading of 20 cm. Find the discharge. Take C,; = 0.98.

Solution. Given :

Dia. at inlet, d,=30cm
ay = ; (30)* = 706.85 em®
Dia. at throat, dy=15cm
ay= = (15) = 176.7 cm?
4
) 3
hh=x i-l =20 [l—ﬁ— |.0:| =20x 12.6 = 252.0 cm of water
5 10
C, =098
Discharge, Q=C; o T J2gh

Tt
=098 x —0BIXIOT__, 5 081x352
J(70685)* - (176.7)°

- 8606759336 ~ 86067593.36
/4996363 -31222.9 684.4
= 125756 cm™/s = 125.756 lit/s. Ans.
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Orifice Meter or Orifice Pl:te:

Let p, = pressure at section (1),
v, = velocity at section (1),
a, = area of pipe at section (1), and

PIPE ORIFICE METER

®f )
DIRECTION OF FLOW H ving ol
— l

«—DIFFERENTIAL MANOMETER

Fig. 6.12. Orifice meter.

Pas V. ty are corresponding values at section (2). Applying Bernoulli’s equation at sections (1) and

2), we gel
LR R L
pg 2 pe  2g
; =2 oS
r (,I+Z;)—(—2+Z;’)=_:“‘_l
pg P8 g 22
But (—p-'-+7 )—(fl—+zz) = h = Differential head
pg P8
- h=2 M or 2gh=v v}
2g

T vz — -«28!1 + vlz (l)

Now section (2) is at the vena-contracta and a, represents the area at the vena-contracta. If a is
ae area of orifice then, we have

a
C.=—=
a4
there C. = Co-efficient of contraction
ay=ayxC, 1]
By continuity equation, we have
[ ap C,
av,=ay; or vy=—=1y,= 2 ze vy .W(107)
a a4

Substituting the value of v, in equation (i), we get

3 S o )

a,C.vy

vy = Pgh e
“l

2 Z
or vl = 2gh + [”—“] C.2v or vy []- ["—“] cf] = 28k
oy

iy

[+ @y = a,C,. from {if))

V)
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The above expression is simplified by using
(a_] C1
[—J)

Substituting this value of C,_ in equation (iv), we get

'H J'-

_ C‘,a,,,/lgh _ Cya,a ‘/Zgh
1[0 : Juf—u‘f
al

Pitot-tube, It is a device used for measuring the
velocity of flow at any point in a pipe or a channel. It is based on
the principle that if the velocity of flow at a point becomes zero,
the pressure there is increased due to the conversion of the Kinetic
energy into pressure energy. In its simplest form, the pitot-tube
consists of a glass tube, bent at right angles as shown in Fig. 6.13.
The lower end, which is bent through 907 is directed in the up-
stream direction as shown in Fig. The liquid rises up in the
tube due to the conversion of kinetic energy into pressure energy.
The velocity is determined by measuring the rise of liquid in the twbe.
Consider two points (1) and (2) at the same level in such a way that point (2) is just as the inlet of
the pitot-tube and point (1) is far away from the tube.
Let p, intensity of pressure at point (1)
v, = velocity of flow at (1)
1> = pressure at point (2)
1, = velocity at point (2), which is zero
H = depth of tube in the liquid
i = rise of liquid in the tube above the free surface.
Applying Bernoulli’s equation at points (1) and (2), we get

~

o C C,1

L]

gh

|

=4y % Cy

-

ﬁﬁ

—
hlc

Pitot-tube.

ﬂ+-‘i+z,: P +v—3+z,
Pg 28 Pg 22
But z, = z, as points (1) and (2) are on the same line and v, = ().
! L - pressure head at (1) = H
Pg
B pressure head at (2) = (4 + H)
Pg
Substituting these values, we get
Vi v
H+r —=MN+H) . h=— or vy=2gh
2g 2g
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Problem  Find the velociry of the flow af an oil thrangh a pipe, when the difference of merciry
level in a differential L'-tube manometer connected to the two tappings of the pitor-fube iy 100 mm.
Take co-efficient of pitet-tube 0.98 and sp. gr. of ail = 0.8.

Solution. Given :

Diff. of mercury level, x=100 mm=0.1 m
Sp. gr. of oil, §,=038
Sp. gr. of mercury, S, =136
C, =098

. S, 136 .

Diff. of pressure head. f=x|—-1|=.1|—-1| = L6 mof il
S, 0.8

- Velocity of flow = C, «J2gh = 0.98 /2x981x16 =549 m/s. Ans.

Problem A pilgi-siatic tuhbe is used 1o measure the velocity of waler in a pipe. The stagnation
pressure head (s 6 m and static pressure head is 5 m. Calenlate the velocity of flow assuming the co-
efficient of tube equal fo D98,

Solution. Given :

Stagnation pressure head, fi,=6m

Static pressure head, h,=5m
hF=6-35=1m
Velocity of flow, V=C, . 2gh =0.98 /2 x981 X1 = 4.34 m/s. Ans.

Problem A sub-marine moves horizontally in seq and has its axis 15 m below the surface of
water. A piioi-fube properly placed just in froni of the sub-marine and along its axis is connected 1o the
two limbs of a U-tube containing mercury. The difference of mercury level is found to be 170 mm. Find
the speed of the sub-marine knowing that the sp. gr. of mercury i5 13.6 and that of sea-water i5s 1.026
with respect of fresh water.

Solution. Given :

Diff. of mercury level, x=1T0mm=0.17T m

Sp. ar. of mercury, 5,=136
Sp. gr. of sea-water, 5. = L026
) 13.
h=x|—==1|=0.17 |:-—ﬁ—-]:| =2.0834 m
s L026
V= 2gh = [2x9.81x2.0834 = 6.393 m/s
_ 6393 % 60 % 60

km/hr = 23.01 km/hr. Ans.
1000
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FREE LIQUID JETS

Free liquid jet is defined as the jet of water coming out from the nozzle in atmosphere. The path
travelled by the free jet is parabolic.

Consider a jet coming from the nozzle as shown in Fig Let the jet at A, makes an angle 0 with
the harizontal direction. If U is the velocity of jet of water, then the horizontal component and vertical
component of this velocity at A4 are U cos 6 and U sin 6.

Consider another point P(x, v) on the centre line of the jet. The co-ordinates of P from A are x and y.
Let the velocity of jet at # in the - and y-directions are z and v. Let a liquid particle takes time *f’ to reach
from A to P. Then the horizontal and vertical distances travelled by the liquid particle in time °t* are

TRAJECTORY
PATH
Free liquid jet.

x = velocity component in x-direction X ¢

=UcosBxt (1)
£ x ; I a1
and y = (vertical component in y-direction X time - = gl:')

2 1 -
=Usm9xt—5gr‘ (i)

{ "+ Horizontal component of vclocity is constant while the vertical distance is affected by gravity}

From equation (7). the value of 7 is given as 1 =
Ucos®

Substituting this value in equation (if)

A 1 3 : : 2
y=Usin 0 x d -—ng[ X ]=Xs1n9 gx

Ucos® 2 UcosB cos® 20U cos’ @
=xtan8-& ~sec” B { l, =sec’ B} .
U° cos™ 0

(1) Maximum height attained by the jet. Using the relation sz - 1’,1 = - 2g5, we get in this
case V, = 0 at the highest point
V, = Initial vertical component

=l/sin B
—ve sign on right hand side is taken as g is acting in the downward direction but particles is moving up.
D-(Usin@Y=-2gx5s
where 5 is the maximum vertical height attained by the particle.
or —UZ?sin’0 = - 2g8
o Ulsin0
2z

(ir) Time of flight. [t is the time taken by the fluid particle in reaching from A to B as shown in
Fig. Let T 15 the time of tlight.

I el
Using equation (i), we have y =L/ sin 9 x /- E- gt
when the particle reaches at B, yv=0andr=T

<o Above equation becomes as0 = U sin @ x T - %g x T

or 0= sin @ - %gT {Cancelling T}
20 sinB
i o 2 80Y
g



(i7) Time of flight. [t is the time taken by the fluid particle in reaching from A to B as shown in
Fig. Let 7' 1s the time of flight.

. : " . | B
Using equation (i), we have y=Usin 9 X[ — s er
when the particle reaches at B, y=0andr=T -

. Above equation becomes as() = U sin O X T - %g x T2

or 0=UsinB -~ -;?gT {Cancelling T}
i T= 20/ sin©
g

(itd) Time to veach highest point. The time to reach highest point is half the time of flight. Let T*
is the time to reach highest point, then

_T _2Usin@ _ Usin®

TF=_="" " =
2 gXx2 g
(fv) Horizontal range of the jet. The total horizontal distance travelled by the fluid particle is
called horizontal range of the jet, i.e., the horizontal distance AB in Fig. is called horizontal range
of the jet. Let this range 1s denoted by x*.
Then 1% = velocity component in x-direction

x time taken by the particle to reach from A to B
= U cos 8 x Time of flight

2U sin® { o 2Usin9}
g 8

U/ cos B x

2

2 !
Y 2cos0sinB= L—sin 20

o a

Problem A vertical wall is of 8 m in height. A jet of water is coming out from a nozzle with
a velocity of 20 m/s. The nozzle is situated at a distance of 20 m from the vertical wall. Find the angle
of projection of the nozzle to the horizontal so that the jet of water just clears the top of the wall.

Solution. Given :

Height of wall =8m
Velocity of jet, U7=20 mfs
Distance of jet from wall, x=20m
Let the required angle =0

Using equation (6.24), we have

2
y=xtan 0 - g.r, sec® B
2U-

where y=8m, x=20m, U = 20 m/s

8=7OMn9—M—?—.sec2
2%20°

=20 tan O - 4.905 sec” 0

=20 tan 8 - 4.905 [1 + tan>@| [+ sec’® =1+ tan>0}
=20 tan © - 4.905 - 4.905 tan’ §

or 4905 tan* 6 —-20tan 6 + 8 + 4905 =0

or 4905 tan” @ — 20 tan @ + 12905 =0

204,207 =4 x12905% 4905 20+
2x 4905 B 9.81

tan O =

e 20 + /146 81 _ 20412116 32116 7889
981 9.81 9.81 9.81

3.273 or 0.8036

6 =73" 0.8’ or 38° 37. Ans.

Ref: R.K. bansal



