Matter

Gases

Liquids \& Liquid Crystals

Solids

"Condensed Matter" includes both of these. Our focus is Solids!

Gases

- Gases have atoms or molecules that do not bond to one another in a range of pressure, temperature $\&$ volume. Also, these molecules have no particular order \& they move freely within a container.

Liquids

- Similar to gases, Liquids have no atomic or molecular order \& they assume the shape of their containers.
- Applying low levels of thermal energy can easily break the existing weak bonds.

Liquid Crystals

- Liquid Crystals have mobile molecules, but a type of long range order can exist. The moalecules have a permanent electric dipole.
- Applying an electric field rotates the dipoles \& establishes order within the collection of molecules.

Solids

- Solids consist of atoms or molecules undergoing thermal motion about their equilibrium positions, which are at fixed points in space.
- Solids can be crystalline, polycrystalline, or amorphous.
- Solids (at a given temperature, pressure, volume) have stronger interatomic bonds than liquids.
- So, Solids require more energy to break the interatomic bonds than liquids.

Periodic Arrays of Atoms

- The external appearance of crystals gives some clues.
- The figure shows that when a crystal is cleaved, we can see that it is built up of identical "building blocks".

Experimental Evidence of periodic structures.

- The early crystallographers noted that the index numbers that define plane orientations are exact integers.

Cleaving a Crystal

Elementary Crystallography

Solid Material Types

Crystalline

Polycrystalline

Amorphous

Crystals are Everywhere!

Crystals

Crystals

Crystals

Crystals

- A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly, repeating pattern extending in all three spatial dimensions.
- All crystals are solids, but all solids are not crystalline!

Crystallography

- Crystallography \equiv A branch of science dealing with the geometric description of crystals \& their internal arrangements.
- It is also the science of crystals \& the math used to describe them.

Crystallography

- These early studies led to the correct idea that crystals are regular three-dimensional arrays (Bravais lattices) of atoms and molecules.
- A single unit cell is repeated indefinitely along three principal directions that are not necessarily perpendicular.

The Unit Cell Concept

Unit Cell Description in Terms of Lattice Parameters

- $\mathbf{a}, \mathbf{b}, \& \mathbf{c}$ define the edge lengths \& are referred to as the crystallographic axes.
- The angles between these are $\mathbf{a}, \mathbf{b}, \& \mathrm{~g}$.
- The lattice parameters a ,b, c, $\mathbf{a}, \mathbf{b}, \& \mathbf{g}$ give the dimensions of the unit cell.

The Three General Types of Solids

Single Crystal, Polycrystalline, Amorphous

- Each type is characterized by the size of the ordered region within the material. An ordered region is a spatial volume in which atoms or molecules have a regular geometric arrangement or periodicity.

All Solids

- All solids have "resistance" to changes in both shape and volume.
- Solids can be Crystalline or Amorphous
- Crystals are solids that consist of a periodic array of atoms, ions, or molecules
- If this periodicity is preserved over "large" (macroscopic) distances, the solid has "Long-range Order"
- Amorphous solids do not have Long-Range Order, but they often have Short Range Order

Solids

- Crystals:

Short-range Order Long-range Order

- Amorphous solids:
~Short-range Order
No Long-range Order

Solids

- Different solids can have the same geometrical arrangements of atoms
- Their Properties are determined by their crystal structure: Both crystal lattice \& basis are important

Examples:

- Si, Diamond (C), GaAs, ZnSe all have the same lattice geometry
- Si and C (Diamond) Form the
"Diamond Structure"
- GaAs and $\mathbf{Z n S e}$ form a structure called the "Zinc Blende" Structure

Solids

- Different arrangements of atoms (even the same atoms) can result in very different solid state properties

Crystalline Solids

- A Crystalline Solid is the solid form of a substance in which the atoms or molecules are arranged in a definite, repeating pattern in three dimensions.
- Single Crystals, ideally have a high degree of order, or regular geometric periodicity, throughout the entire volume of the material.

- A Single Crystal has a arrangement of atoms that repeats periodically across its whole volume. Even at infinite length scales, each atom is related to each equivalent atom in the structure by translational symmetry.

Polycrystalline Solids

- A Polycrystalline Solid is made up of an aggregate of many small single crystals (crystallites or grains).
- Polycrystalline materials have a high degree of order over many atomic or molecular dimensions.
- These ordered regions, or single crystal regions, vary in size \& orientation with respect to one another.
- These regions are called grains (or domains) \& are separated from one another by grain boundaries.

Polycrystalline Pyrite Grain

Polycrystalline Solids

- In Polycrystalline Solids, the atomic order can vary from one domain to the next. The grains are usually $100 \mathrm{~nm}-100$ microns in diameter. Polycrystals with grains that are < $\mathbf{1 0} \mathbf{~ n m}$ in diameter are called nanocrystallites.

A polycrystal with grain boundaries

Polycrystalline Solids

- Polycrystalline solids

with grains \& grain boundaries:

FIGURE 12.11 Microstructure of sintered $\mathrm{Al}_{2} \mathrm{O}_{3}$ showing the absence of porosity adjacent to grain boundaries and residual porosity within the grains. (Courtesy of J. E. Burke, General Electric Co.)

FIGURE 10.18 The microstructure of annealed cartridge brass ($70 \% \mathrm{Cu}-30 \% \mathrm{Zn}$). Within many grains, twins (the regions with parallel sides) and twin boundaries are apparent. The contrast between twinned regions of an individual grain is a result of differing attack by the chemical etchant acting on different orientations.

Polycrystalline Solids

Polycrystalline Material

Lines show lattice orientation

Grain boundary

Polycrystalline Solids

Amorphous Solids

Amorphous (Non-Crystalline) Solids

- Are composed of randomly oriented atoms, ions, or molecules that do not form defined patterns or lattice structures.
- Amorphous materials have order only within a few atomic or molecular dimensions.

Amorphous Solids

Amorphous (Non-crystalline) Solids

- Have order only within a few atomic or molecular dimensions. They do not have any long-range order, but they have varying degrees of short-range order. Examples of amorphous materials include amorphous silicon, plastics, \& glasses.

Amorphous Solids

Amorphous (Non-crystalline) Solids

- Have no regular, long range order of arrangement of atoms.

Some examples from everyday life:

1. Polymers, 2. Ceramics,
2. Window Glass

- The two sub-states of amorphous solids are the Rubbery and Glassy states

Amorphous Solids

- Have no regular, long range order of arrangement of atoms.
- Can be prepared by rapidly cooling molten material. Rapid cooling minimizes time for the atoms to pack into a more thermodynamically favorable crystalline state.

Amorphous Solids

Illustration of the continuous random network structure of the atoms in an amorphous solid

Amorphous Solids

- Amorphous Materials \equiv Materials, including glasses, that have no long-range order, or crystal structure.
- Glasses - Solid, non-crystalline materials (typically derived from the molten state) that have only short-range atomic order.
- Glass-Ceramics - A family of materials typically derived from molten inorganic glasses \& processed into crystalline materials with very fine grain size \& improved mechanical properties.

- Atomic arrangements in crystalline silicon \& amorphous silicon.
(a) Amorphous silicon (b) Crystalline silicon
- Note the variation in the inter-atomic distance for amorphous silicon.

Crystals

- The periodic array of atoms, ions, or molecules that form the solid is called the Crystal Structure

$$
\begin{gathered}
\frac{\text { Crystal Structure }}{} \equiv \\
\underline{\text { Space }}(\text { Crystal } \text { Lattice }
\end{gathered}+\underline{\text { Basis }}
$$

- The Space (Crystal) Lattice is a regular periodic arrangement of POINTS in space, $\underline{\&}$ is purely a mathematical abstraction.
- A Crystal Structure is formed by "putting" the identical atoms (or group of atoms) on the points of the space lattice

This group of atoms is called the Basis

Energy and Packing

- Non dense, random packing

- Dense, ordered packing

Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
-many ceramics
-some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling
"Amorphous" = Noncrystalline

crystalline SiO_{2}
Adapted from Fig. 3.23(a),
Callister \& Rethwisch 8 e.
- Si - Oxygen

noncrystalline SiO_{2}
Adapted from Fig. 3.23(b), Callister \& Rethwisch 8e.

Metallic Crystal Structures

- How can we stack metal atoms to minimize empty space?

2-dimensions

VS.

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
- Typically, only one element is present, so all atomic radii are the same.
- Metallic bonding is not directional.
- Nearest neighbor distances tend to be small in order to lower bond energy.
- Electron cloud shields cores from each other
- Have the simplest crystal structures.

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.
- Coordination \# = 6 (\# nearest neighbors)

Atomic Packing Factor (APF)

$\mathrm{PPF}=\xrightarrow{\text { Volume of atoms in unit cell* }}$
 Volume of unit cell
 *assume hard spheres

- APF for a simple cubic structure $=0.52$

close-packed directions

contains $8 \times 1 / 8=$
1 atom/unit cell

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ex: $\mathrm{Cr}, \mathrm{W}, \mathrm{Fe}(\alpha)$, Tantalum, Molybdenum
- Coordination \# = 8

2 atoms/unit cell: 1 center +8 corners x $1 / 8$

Atomic Packing Factor: BCC

- APF for a body-centered cubic structure $=0.68$

Adapted from
Fig. 3.2(a), Callister \& Rethwisch $8 e$.

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: $\mathrm{Al}, \mathrm{Cu}, \mathrm{Au}, \mathrm{Pb}, \mathrm{Ni}, \mathrm{Pt}, \mathrm{Ag}$

- Coordination \# = 12

Adapted from Fig. 3.1, Callister \& Rethwisch $8 e$.
4 atoms/unit cell: 6 face x $1 / 2+8$ corners x $1 / 8$

Atomic Packing Factor: FCC

- APF for a face-centered cubic structure $=0.74$
 maximum achievable APF

Unit cell contains:
$6 \times 1 / 2+8 \times 1 / 8$
$=4$ atoms/unit cell

FCC Stacking Sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites
B sites
C sites

- FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

- Coordination \# = 12
- $\mathrm{APF}=0.74$
- 2D Projection

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

Theoretical Density, ρ

$$
\begin{aligned}
\text { Density }=\rho & =\frac{\text { Mass of Atoms in Unit Cell }}{\text { Total Volume of Unit Cell }} \\
\rho & =\frac{n A}{V_{C} N_{\mathrm{A}}}
\end{aligned}
$$

where
$n=$ number of atoms/unit cell
$A=$ atomic weight
$V_{C}=$ Volume of unit cell $=a^{3}$ for cubic
$N_{\text {A }}=$ Avogadro's number
$=6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

Theoretical Density, ρ

- Ex: $\mathrm{Cr}(\mathrm{BCC})$

$$
\begin{aligned}
& A=52.00 \mathrm{~g} / \mathrm{mol} \\
& R=0.125 \mathrm{~nm} \\
& n=2 \text { atoms } / \text { unit cell } \\
& a=4 R / \sqrt{B}=0.2887 \mathrm{~nm}
\end{aligned}
$$

$$
\begin{array}{cc}
\frac{\text { atoms }}{\text { unit cell }} \longrightarrow 252.00 & \frac{\mathrm{~g}}{\mathrm{~mol}} \\
\rho=\frac{a^{3} 6.022 \times 10^{23}}{\rho_{\text {theoretical }}}=7.18 \mathrm{~g} / \mathrm{cm}^{3} \\
\rho_{\text {actual }} & =7.19 \mathrm{~g} / \mathrm{cm}^{3}
\end{array}
$$

Densities of Material Classes

In general

$\rho_{\text {metals }}>\rho_{\text {ceramics }}>\rho_{\text {polymers }}$

Crystals as Building Blocks

- Some engineering applications require single crystals:
-- diamond single -- turbine blades crystals for abrasives

- Properties of crystalline materials often related to crystal structure.
-- Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Single vs Polycrystals

- Single Crystals
-Properties vary with direction: anisotropic.
-Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
-Properties may/may not vary with direction.
-If grains are randomly oriented: isotropic.
$\left(\mathrm{E}_{\text {poly iron }}=210 \mathrm{GPa}\right)$
-If grains are textured, anisotropic.

Data from Table 3.3, Callister \& Rethwisch $8 e$. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

Adapted from Fig. 4.14(b), Callister \& Rethwisch $8 e$. (Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Geometry of Crystals

Crystal is a solid composed of atoms, ions or molecules that demonstrate long range periodic order in three dimensions

The Crystalline State

Crystal Lattice

Lattice constants

- Not only atom, ion or molecule positions are repetitious - there are certain symmetry relationships in their arrangement.

Crystalline structure

Crystal Lattice

One-dimensional lattice with lattice parameter a

Two-dimensional lattice with lattice parameters a, b and γ

Crystal Lattice

Crystal Lattice

- Lattice vectors, lattice parameters and interaxial angles

Lattice vector	\mathbf{a}	\mathbf{b}	\mathbf{c}
Lattice parameter	a	b	c
Interaxial angle	α	β	γ

Crystal Lattice

Lattice

Not a lattice

Crystal Lattice

- Unit cell content
- Coordinates of all atoms
- Types of atoms
- Site occupancy
- Individual displacement parameters

Crystal Lattice

- Usually unit cell has more than one molecule or group of atoms
- They can be represented by symmetry operators

rotation

Symmetry

- Symmetry is a property of a crystal which is used to describe repetitions of a pattern within that crystal.
- Description is done using symmetry operators

Translation

- m

R \quad я

Mirror reflection

$$
\begin{aligned}
& \alpha=360^{\circ} / n \\
& \text { where } n \text { is the fold of the axis } \\
& n=1,2,3,4 \text { or } 6 \text {) }
\end{aligned}
$$

Inversion

Two-dimensional Symmetry Elements

(1)
R

bromochlorofluoroethene

1. One-fold axis (no symmetry)
2. Vertical mirror line
(2)

G| \underbrace{R}_{m}

cis-difluoroethene

2 mm
ethene
(4)

(5)

Two-dimensional Symmetry Elements

6. Tree-fold axis + vertical mirror line
7. Four-fold axis
8. Four-fold axis + mirror lines
9. Six-fold axis
10. Six-fold axis + mirror lines

10 two-dimensional

 crystallographic or plane point groups(6)

(8)

 4 mm
tungsten oxyfluoride
(9)

(10)

The Five Plane Lattices
 R

Two-dimensional Symmetry Elements

Two-dimensional Symmetry Elements

Lattice type: p for primitive, c for centred.
Symmetry elements: m for mirror lines, g for glide lines, 4 for 4 -fold axis etc.

Design by M.C. Escher

Bravais Lattices and Crystal Systems

- In three dimensions: point symmetry elements and translational symmetry elements.
- For point symmetry elements:
- centers of symmetry
- mirror planes
- inversion axes
- For translational symmetry elements:
- glide planes
- screw axes

We end up with 230 space groups (was 17 plane groups) distributed among 14 space lattices (was 5 plane lattices) and 32 point group symmetries (instead of 10 plane point symmetries)

The 14 Space (Bravais) Lattices

The systematic work was done by Frankenheim in 1835. Proposed 15 space lattices.

- In 1848 Bravais pointed that two of his lattices were identical (unfortunate for Frankenheim).
- Today we have 14 Bravais lattices.
(P)

Rhombohedral

相
(F)
 cubic

Body-centered tetragonal
(I)

cubic

Hexagonal
(P)

(C)

(C)

Base-centered monoclinic

(P)

Triclinic
a, b, c - unit cell lengths; α, β, γ - angles between them

Crystal Symmetry

Centering of the lattice	Lattice points per unit cell	International symbol	Lattice translation(s) due to centering	
Primitive	1	P	None	
Base-centered	2	A	$1 / 2(\mathbf{b}+\mathbf{c})$	
Base-centered	2	B	$1 / 2(\mathbf{a}+\mathbf{c})$	
Base-centered	2	C	$1 / 2(\mathbf{a}+\mathbf{b})$	
Body-centered	2	I	$1 / 2(\mathbf{a}+\mathbf{b}+\mathbf{c})$	
Face-centered	4	F	$1 / 2(\mathbf{b}+\mathbf{c}) ; 1 / 2(\mathbf{a}+\mathbf{c}) ; 1 / 2(\mathbf{a}+\mathbf{b})$	
Rhombohedral	3	R	$1 / 3 \mathbf{a}+2 / 3 \mathbf{b}+2 / 3 \mathbf{c} ; 2 / 3 \mathbf{a}+1 / 3 \mathbf{b}+1 / 3 \mathbf{c}$	

The 14 Space (Bravais) Lattices

[^0]
Crystal Symmetry

- 7 axial systems +32 point groups $\rightarrow 230$ unique space groups
- A 3-D crystal must have one of these 230 arrangements, but the atomic coordinates (i.e. occupied equipoints) may be very different between different crystals

Crystal Class	Non-centrosymmetric Point Group	Centrosymmetric Point Group	Minimum Rotational Symmetry
Triclinic	1	$\overline{1}$	One 1-fold
Monoclinic	$2, m$	$2 / m$	One 2-fold
Orthorombic	$222, m m 2$	$m m m$	Three 2-folds
Tetragonal	$4,422, \overline{4}, 4 m m, \overline{4} 2 m$	$4 / m, 4 / m m m$	One 4-fold
Trigonal	$3,32,3 m$	$\overline{3}, \overline{3} m$	One 3-fold
Hexagonal	$6,622, \overline{6}, 6 m m, \overline{6} m 2$	$6 / m, 6 / m m m$	One 6-fold
Cubic	$23,432, \overline{4} 3 m$	$m \overline{3}, m \overline{3} m$	Four 3-folds

The Symmetry of Bravais Lattices

Point group symmetry

- Nine mirror planes
- Three four-fold axes
- Four three-fold axes
- Six two-fold axes

Point group symmetry of the orthorhombic cell

- Three mirror planes
- Three two-fold axes

Crystal Axes and the Reciprocal Lattice

Crystal Lattice \& Directions

One-dimensional lattice with parameter a

Two-dimensional lattice with parameters a and b

Lattice Directions

For the lattice points u, v, w :

$$
\mathbf{r}=u \mathbf{a}+v \mathbf{b}+w \mathbf{c}
$$

For the points in space $u^{\prime}, v^{\prime}, w^{\prime}$ that are not lattice points:

$$
\begin{aligned}
\mathbf{r} & =u^{\prime} \mathbf{a}+v^{\prime} \mathbf{b}+w^{\prime} \mathbf{c} \\
& =\left(n+u_{1}\right) \mathbf{a}+\left(p+v_{1}\right) \mathbf{b}+\left(q+w_{1}\right) \mathbf{c} \\
& =(n \mathbf{a}+p \mathbf{b}+q \mathbf{c})+\left(u_{1} \mathbf{a}+v_{1} \mathbf{b}+w_{1} \mathbf{c}\right)
\end{aligned}
$$

n, p, q-integers
u_{1}, v_{1}, w_{1} - fractions

Indexing Lattice Directions

- Direction must pass through the origin
- Coordinates of point P (in fractions of a, b and c) are $1,1 / 2,1 \Rightarrow[212]$
- For point Q coordinates are $1 / 2,1 / 4,1 / 2 \Rightarrow[212]$

[212] - defines direction for OL
For OS - the direction is [110]

$$
\begin{aligned}
& \mathbf{r}_{102}=2 \mathbf{a}+1 \mathbf{b}+2 \mathbf{c} \\
& \mathbf{r}_{110}=1 \mathbf{a}+1 \mathbf{b}+0 \mathbf{c}
\end{aligned}
$$

Indexing Lattice Directions

- Specific direction $\Rightarrow[u v w]$

Family of directions $\Rightarrow<u v W\rangle$

Example:

Indexing Lattice Directions

- Directions related by symmetry are called directions of a form.

We have: $[111],[-111],[-1-1-1],[11-1], \ldots$

Specific direction $\Rightarrow[\omega v W]$
Family of directions \Rightarrow <uvW>

The Crystallographic Planes

Definition of the Miller Indices

- Let's draw a plane at $2 \times a, 5 \times b, 2 \times c$.

	a	b	c	
The intercepts	2	5	2	
The reciprocals	$1 / 2$	$1 / 5$	$1 / 2$	
Multiply by 10	5	2	5	
The Miller indices	(525)			

Definition of the Miller Indices

- For plane $\mathrm{A} a / 2, b / 2$, and $1 c \Rightarrow 2,2,1 \Rightarrow$ plane is (221)
- For plane $\mathrm{B} 1 a, 1 b$, and $2 c \Rightarrow 1,1,1 / 2 \Rightarrow 2,2,1 \Rightarrow$ plane is (221)
- For plane C $3 a / 2,3 b / 2$, and $3 c \Rightarrow 2 / 3,2 / 3,1 / 3 \Rightarrow 2,2,1 \Rightarrow$ plane is (221)
- For plane D $2 a, 2 b$, and $4 c \Rightarrow 1 / 2,1 / 2,1 / 4 \Rightarrow 2,2,1 \Rightarrow$ plane is (221)

- By the set of crystallographic planes $h k /$, we mean a set of parallel equidistant planes, one of which passes through the origin, and the next nearest makes intercepts $a / h, b / k$, and $c / /$ on the three crystallographic axes.
- The integers $h k /$ are usually called the Miller indices.

Miller Indices

Miller Indices and Zone Axis Symbols

Closures for crystallographic indices

[$u v w]$ = square brackets designate a direction in the lattice from the origin to a point. Used to collectively include all the faces of a crystals whose intersects (i.e., edges) parallel each other. These are referred to as crystallographic zones and they represent a direction in the crystal lattice.
<uvw> - designate family of directions.
$(h k l)=$ parenthesis designate a crystal face or a family of planes throughout a crystal lattice.
$\{h k /\}=$ "squiggly" brackets or braces designate a set of faces that are equivalent by the symmetry of the crystal. The set of face planes results in the crystal form. $\{100\}$ in the isometric class includes (100), (010), (001), (-100), (0-10) and (00-1), while for the triclinic $\{100\}$ only the (100) is included.
d-spacing is defined as the distance between adjacent planes. When X-rays diffract due to interference amongst a family of similar atomic planes, then each diffraction plane may be reference by it's indices $\mathrm{d}_{h k l}$

Miller Indices and Zone Axis Symbols

For cubic crystal:

- Direction symbols
- <100> \Rightarrow [100], [-100], [010], 0-10], [001], [00-1]
- <111> \Rightarrow [11-1], [-1 -11$],[1-11],\left[\begin{array}{lll}-11 & -1],[-111],\left[\begin{array}{lll}1 & -1 & -1\end{array}\right],[111],\left[\begin{array}{lll}-1 & -1 & -1\end{array}\right]\end{array}\right.$
- $\langle 110\rangle \Rightarrow 12$ combinations
- Miller indices
- $\{100\} \Rightarrow(100),(-100),(010),(0-10),(001),(00-1)$

Lattice Plane Spacings

- For crystal with orthogonal axes:

$$
O A \cos \alpha=O N \rightarrow(a / h) \cos \alpha=d_{h k l} \rightarrow \cos \alpha=\left(\frac{h}{a}\right) d_{h k l}
$$

- For angles β and γ :

$$
\begin{aligned}
& \cos \beta=\left(\frac{k}{b}\right) d_{h k l} \\
& \cos \gamma=\left(\frac{l}{c}\right) d_{h k l}
\end{aligned}
$$

- Since for orthogonal axes:

Lattice plane - (hk)
ON - interplanar spacing

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

- We write:

$$
\left(\frac{h}{a}\right)^{2} d_{h k l}^{2}+\left(\frac{k}{b}\right)^{2} d_{h k l}^{2}+\left(\frac{l}{c}\right)^{2} d_{h k l}^{2}=1
$$

- For a cubic crystal $a=b=c$, hence

$$
\frac{1}{d_{h k l}^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}
$$

Lattice Plane Spacings

Cubic:

$$
\frac{1}{d^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}
$$

Tetragonal:

$$
\frac{1}{d^{2}}=\frac{h^{2}+k^{2}}{a^{2}}+\frac{l^{2}}{c^{2}}
$$

Hexagonal:

$$
\frac{1}{d^{2}}=\frac{4}{3}\left(\frac{h^{2}+h k+k^{2}}{a^{2}}\right)+\frac{l^{2}}{c^{2}}
$$

Rhombohedral:

$$
\frac{1}{d^{2}}=\frac{\left.\left(h^{2}+k^{2}+l^{2}\right) \sin ^{2} \alpha+2(h k+k l+h l) \cos ^{2} \alpha-\cos \alpha\right)}{a^{2}\left(1-3 \cos ^{2} \alpha+2 \cos ^{3} \alpha\right)}
$$

Orthorhombic: $\quad \frac{1}{d^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}$
Monoclinic:

$$
\frac{1}{d^{2}}=\frac{1}{\sin ^{2} \beta}\left(\frac{h^{2}}{a^{2}}+\frac{k^{2} \sin ^{2} \beta}{b^{2}}+\frac{l^{2}}{c^{2}}-\frac{2 h l \cos \beta}{a c}\right)
$$

Triclinic:

$$
\frac{1}{d^{2}}=\frac{1}{V^{2}}\left(S_{11} h^{2}+S_{22} k^{2}+S_{33} l^{2}+2 S_{12} h k+2 S_{23} k l+2 S_{13} h l\right)
$$

$\left\{\begin{array}{l}V=\text { volume of unit cell } \\ S_{11}=b^{2} c^{2} \sin ^{2} \alpha, \\ S_{22}=a^{2} c^{2} \sin ^{2} \beta, \\ S_{33}=a^{2} b^{2} \sin ^{2} \gamma, \\ S_{12}=a b c^{2}(\cos \alpha \cos \beta-\cos \gamma), \\ S_{23}=a^{2} b c(\cos \beta \cos \gamma-\cos \alpha), \\ S_{13}=a b^{2} c(\cos \gamma \cos \alpha-\cos \beta) .\end{array}\right.$

Special Case: Trigonal \& Hexagonal Lattices

($1-10$), (100), and (010) are indices different in type but describe crystallographically equivalent lattice planes.

- Introducing the fourth axis - U. We have Miller-Bravais indices (hkil).
- All indices of the planes are of the same form - \{10-10\}.

$$
h+k+i=0 \Rightarrow i=-(h+k) \Rightarrow\{h k . /\}
$$

(a)

(b)

The Reciprocal Lattice

The Reciprocal Lattice

The Reciprocal Lattice

Monoclinic unit cell planes $\{h 0$ /)

Reciprocal lattice vectors

Reciprocal lattice unit cell

$$
\mathbf{a}^{*}=\mathbf{d}_{100}^{*} \text { and }\left|\mathbf{a}^{*}\right|=1 / d_{100} ;
$$

$$
\mathbf{c}^{*}=\mathbf{d}_{001}^{*} \text { and }\left|\mathbf{c}^{*}\right|=1 / d_{001}
$$

The Reciprocal Lattice

The Reciprocal Lattice

- Consider a real space unit cell with real lattice basis vectors \mathbf{a}, \mathbf{b} and \mathbf{c}
- We define a set of reciprocal lattice basis vectors by:

$$
\mathbf{a}^{*}=\frac{1}{V}(\mathbf{b} \times \mathbf{c})=\frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \longleftarrow \quad \text { volume of real space }
$$

$$
\mathbf{b}^{*}=\frac{1}{V}(\mathbf{c} \times \mathbf{a})
$$

$$
\mathbf{c}^{*}=\frac{1}{V}(\mathbf{a} \times \mathbf{b})
$$

c* \perp a-b plane

The Reciprocal Lattice

- Just like we can define a real space lattice in terms of our real space lattice vectors, we can define a reciprocal space lattice in terms of our reciprocal space lattice vectors:

$$
\mathbf{r}^{*}=\mathbf{d}_{h k l}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

The real and reciprocal space lattice vectors form an orthonormal set:

$$
\left.\begin{array}{l}
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{*} \cdot \mathbf{c}=0 \\
\mathbf{a} \cdot \mathbf{a}=1
\end{array}\right\} \quad \text { similar for } \boldsymbol{b}^{*} \text { and } \boldsymbol{c}^{*}
$$

We can define a reciprocal unit cell with volume \boldsymbol{V}^{*} :

$$
V^{*}=\mathbf{a}^{*} \cdot\left(\mathbf{b}^{*} \times \mathbf{c}^{*}\right) \quad V^{*} \cdot V=1
$$

- Now we can write:

$$
\begin{aligned}
& \mathbf{r}_{u v w}=u \mathbf{a}+v \mathbf{b}+w \mathbf{c} \\
& \mathbf{d}_{h k l}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
\end{aligned}
$$

The Reciprocal Lattice

Plan of a cubic I crystal $\perp z$-axis

Reciprocal lattice points

The Reciprocal Lattice

Cubic F reciprocal lattice unit cell of a cubic I direct lattice

Cubic I reciprocal lattice unit cell of a cubic F direct lattice

The Reciprocal Lattice

- d-spacing of lattice planes

$$
\begin{aligned}
& \mathbf{d}_{h k l}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \\
& \mathbf{d}_{h k l}^{*} \cdot \mathbf{d}_{h k l}^{*}=\frac{1}{d_{h k l}^{2}}=\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right) \cdot\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right)
\end{aligned}
$$

for orthorombic, tetragonal, cubic: $\quad \mathbf{a}^{*} \cdot \mathbf{b}^{*}=0$
therefore:

$$
\frac{1}{d_{h k l}^{2}}=h \mathbf{a}^{*} \cdot h \mathbf{a}^{*}+k \mathbf{b}^{*} \cdot k \mathbf{b}^{*}+l \mathbf{c}^{*} \cdot l \mathbf{c}^{*}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}
$$

$$
\left(\mathbf{a}^{*} \cdot \mathbf{a}^{*}=\frac{1}{a^{2}}\right)
$$

- Angle ρ between plane normals $\left(h_{1} k_{1} l_{1}\right)$ and $\left(h_{2} k_{2} h_{2}\right)$
the angle between two vectors is $\cos \rho=\frac{\mathbf{a} \cdot \mathbf{b}}{a b}$
therefore: $\quad \cos \rho=\frac{\mathbf{d}_{h k_{1} k_{1}}^{*} \cdot \mathbf{d}_{k_{2} k_{2} l_{2}}^{*}}{\left|\mathbf{d}_{k_{1} k_{1} l_{1}}^{*}\right| \mathbf{d}_{k_{2} k_{2} l_{2}}^{*} \mid}$

Slip and Twining

1. During service

- Structure, machine, tool, etc

2. During processing

- forging, rolling, casting, welding etc

What are the happenings?

1. No change in shape
2. Change in shape
3. Breaking into pieces

The happenings in terms of mechanics

1. No deformation / minute elastic deformation
2. Excessive elastic deformation
3. Yielding / Plastic deformation Failure
4. Fracture

Are they desirable?

1. No deformation :
2. Elastic deformation:
3. Plastic deformation :

Structural applications
Springs
Metal working applications
Strengthening
4. Plastic deformation + Fracture : Machining, Testing

Slip Systems

Preferred planes for dislocation movement (slip planes) Preferred crystallographic directions (slip directions) Slip planes + directions (slip systems)

More no. of slip systems indicates that material is ductile

Normally No. of slip systems > 5 termed as ductile materials

Most of BCC materials are ductile in nature

Mechanisms of plastic deformation in metals -

Slip

-Two prominent mechanisms of plastic deformation, namely slip and twinning .
-Slip is the prominent mechanism of plastic deformation in metals. It involves sliding of blocks of crystal over one other along definite crystallographic planes, called slip planes.

- It is analogous to a deck of cards when it is pushed from one end. Slip occurs when shear stress applied exceeds a critical value.

Mechanisms of plastic deformation in metals Twinning

Twinning
-Portion of crystal takes up an orientation that is related to the orientation of the rest of the untwined lattice in a definite, symmetrical way.
-The twinned portion of the crystal is a mirror image of the parent crystal.
-The plane of symmetry is called twinning plane.

00000000000 00000000000 00000000000 \$0000000000 00000000000
00000000000
00000000000 00000000000

After Twinning

Slip in Single Crystals - Resolving the Applied Stress onto the Slip System

Dislocations move in particular slip system in response to shear stresses applied
\# Applied stress is resolved onto the slip systems
\# Resolved shear stress $\left(\tau_{R}\right)$

- which is required to produce a plastic deformation
- it result from application of a simple tensile stress, σ

Area of the slip plane $\quad=\mathbf{A} / \operatorname{Cos} \phi$
 Load acting on the slip plane $=P \operatorname{Cos} \lambda$

$$
\tau_{\mathrm{R}}=\sigma \cos \phi \cos \lambda
$$

Schmid law

$$
\tau_{\mathbf{R}} / \sigma=\operatorname{Cos} \lambda \operatorname{Cos} \phi=\mathbf{M}
$$

> M = Schmid factor

$$
\tau_{\mathrm{CRSS}}=\sigma_{\mathrm{y}}(\cos \phi \cos \lambda)_{\mathrm{MAX}}
$$

$$
\sigma_{\mathrm{y}}=\frac{\tau_{\mathrm{CRSS}}}{(\cos \phi \cos \lambda)_{\mathrm{MAX}}}
$$

\# Maximum value of ($M=\boldsymbol{\operatorname { c o s }} \phi \cos \lambda$) corresponds to

$$
\phi=\lambda=45^{\circ}, \mathbf{M}=0.5, \sigma_{y}=2 \tau \text { cRss }
$$

Slip will occur first in slip systems oriented close to this angle ($\phi=\lambda=45^{\circ}$) w.r.t the applied stress
\# This mainly depends on composition and temperature

Slip in a Single Crystal

Deformation by Twinning

Whenever slip is not possible
Creates a deformed portion grain which is just mirror image of the rest of the parent grain

Twin Types

\#	Mechanical twins	-	BCC and HCP
\#	Annealing twins	-	FCC

Slip Vs Twinning

Slip	Twin
Orientation across the slip plane is same	Orientation across the twin plane is different
Atomic movements are equal to atomic distances	Atomic movements are lesser than atomic distances
Atoms are moving in only one plane (slip plane)	Atoms are moving in all planes in the region of twin
Takes place in milli seconds	Takes place in less than micro seconds
Takes place at low strain rates	Takes place at high strain rates
No sound is created	A click sound (Tin cry)

[^0]: * Also called trigonal.

