Matter

Liquids & :
Gases Liquid Crystals Solids

“Condensed Matter” includ;both of t/ese.
Our focus 1s Solids!




Gases

 Gases have atoms or molecules that do not bond to one
another in a range of pressure, temperature & volume.
Also, these molecules have no particular order & they
move freely within a container.




Liquids

 Similar to gases, Liquids have no atomic or molecular
order & they assume the shape of their containers.

» Applying low levels of thermal energy can easily break
the existing weak bonds.



Liquid Crystals
e Liguid Crystals have mobile molecules, but a type of

long range order can exist. The moalecules have a
permanent electric dipole.

« Applying an electric field rotates the dipoles &
establishes order within the collection of molecules.




Solids

» Solids consist of atoms or molecules undergoing thermal
motion about their equilibrium positions, which are at
fixed points in space.

e Solids can be crystalline, polycrystalline, or amorphous.

 Solids (at a given temperature, pressure, volume) have
stronger interatomic bonds than liquids.

« S0, Solids require more energy to break the interatomic
bonds than liquids.



“building blocks™.

Periodic Arrays of Atoms

» The external appearance of crystals gives some clues.
can see that it 1s built up of 1dentical

 The figure shows that when a crystal is cleaved, we
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Experimental Evidence
of periodic structures.

* The early crystallographers noted that
the index numbers that define plane
orientations are exact integers.

Cleaving a
Crystal




Solid Material
Types

Crystalline

Polycrystalline

Single
Crystals




Crystals are Everywhere!
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Crystals




Crystals




Crystals




Crystals

« A crystal or crystalline solid is a solid material whose constituent
atoms, molecules, or 1ons are
arranged In an orderly, repeating pattern extending in all three
spatial dimensions.

e All crystals are solids, but all solids are not crystalline!




Crystallography

« Crystallography = A branch of science dealing with the geometric
description of crystals & their internal arrangements.

* It is also the science of crystals & the
math used to describe them.




Crystallography

» These early studies led to the correct idea that
crystals are regular three-dimensional arrays
(Bravais lattices) of atoms and molecules.

« A single unit cell Is repeated indefinitely along
three principal directions that are not necessarily
perpendicular.




The Unit Cell Concept




Unit Cell Description in Terms of
|_attice Parameters

crystallographic axes.
« The angles between

o « The lattice parameters a ,b, c,

A a, b, & g give the dimensions

these are a, b, & g.
Y / of the unit cell.

|« a b, & c define the edge
lengths & are referred to as the
C
B
b



The Three General Types of Solids

Single Crystal, Polycrystalline,
Amorphous

 Each type Is characterized by the size of the ordered
region within the material. An ordered region Is a spatial
volume in which atoms or molecules have a regular
geometric arrangement or periodicity.



All Solids

All solids have “resistance” to changes in both shape and

volume.

Solids can be Crystalline or Amorphous

Crystals are solids that consist of a periodic array of

atoms, ions, or molecules

— If this periodicity 1s preserved over “large”™
(macroscopic) distances, the solid has “L.ong-range
Order”

Amorphous solids do not have Long-Range Order, but

they often have Short Range Order




Solids

 Crystals:

Short-range Order
Long-range Order

« Amorphous solids:

~Short-range Order
No Long-range Order

N




Solids

 Different solids can have the same
geometrical arrangements of atoms

» Their Properties are determined by their
crystal structure: Both crystal lattice & basis
are important

Examples:

« SI, Diamond (C), GaAs, ZnSe all have the
same lattice geometry

« Si and C (Diamond) Form the

“Diamond Structure”

« GaAs and ZnSe form a structure called the

“Zinc Blende” Structure




Solids

 Different arrangements of atoms (even the same atoms)
can result in very different solid state properties

2 very
different

solids made of only
carbon (C) atoms!

(a) Diamond (b) Graphite




Crystalline Solids

« A Crystalline Solid is the solid form of a substance in which the
atoms or molecules are arranged in a definite, repeating pattern in
three dimensions.

» Single Crystals, ideally have a high degree of order, or regular
geometric periodicity, throughout the entire volume of the material.




- A Single Crystal has a arrangement of atoms that repeats
periodically across its whole volume. Even at infinite length scales,
each atom is related to each equivalent atom in the structure by
translational symmetry.

Single Crystals ||Single Pyrite || Amorphous

Crystal Solid



http://weblog.burningbird.net/fires/001936.htm

Polycrystalline Solids
« A Polycrystalline Solid is made up of an aggregate
of many small single crystals (crystallites or grains).
» Polycrystalline materials have a high deqgree of order
over many atomic or molecular dimensions.
» These ordered regions, or single crystal regions, vary
In size & orientation with respect to one another.
 These regions are called grains (or domains) & are
separated from one another by grain boundaries.

Polycrystalline
Pyrite Grain




Polycrystalline Solids
* In Polycrystalline Solids, the atomic order

can vary from one domain to the next. The
grains are usually 100 nm - 100 microns In

diameter. Polycrystals G Boandnri
with grains that are

7
< 10 nm in diameter are e
called nanocrystallites. L
A polycrystal with
grain boundaries “Grains”
(Differently Oriented Crystals)




Polycrystalline Solids
 Polycrystalline solids

with grains & grain boundaries:

FIGURE 10.18 The microstructure of annealed cartridge
brass (70% Cu-30% Zn). Within many grains, twins (the

FIGURE 12.11 Microstructure of sintered Al, O, showing regions with parallel sides) and twin boundaries are apparent.
the absence of porosity adjacent to grain boundaries and The contrast between twinned regions of an individual grain
residual porosity within the grains. (Courtesy of J. E. Burke, is a result of differing attack by the chemical etchant acting

General Electric Co.) on different orientations.




Polycrystalline Solids

Pol talline
lexrlal Lines show lattice orientation




Polycrystalline Solids

Photograph of a
Silicon Single
Crystal.

Micrograph of a
Polycrystalline
stainless steel
sample showing
grains & grain
boundaries

......




Amorphous Solids

Amorphous (Non-Crystalline) Solids
» Are composed of randomly oriented atoms, ions, or
molecules that do not form defined patterns or lattice
structures.
« Amorphous materials have order only within a few
atomic or molecular dimensions.




Amorphous Solids

Amorphous (Non-crystalline) Solids
 Have order only within a few atomic or molecular
dimensions. They do not have any long-range order, but
they have varying degrees of short-range order. Examples
of amorphous materials include amorphous silicon,
plastics, & glasses.




Amorphous Solids

Amorphous (Non-crystalline) Solids
« Have no regular, long range order of
arrangement of atoms.
Some examples from everyday life:
1. Polymers, 2. Ceramics,
3. Window Glass

* The two sub-states of amorphous solids
are the Rubbery and Glassy states



Amorphous Solids

» Have no regular, long range order of
arrangement of atoms.

* Can be prepared by rapidly cooling
molten material. Rapid cooling
minimizes time for the atoms to pack
Into a more thermodynamically
favorable crystalline state.



Amorphous Solids

Illustration of the continuous random network
structure of the atoms in an amorphous solid




Amorphous Solids

« Amorphous Materials = Materials, including glasses,
that have no long-range order, or crystal structure.

 Glasses - Solid, non-crystalline materials (typically
derived from the molten state) that have only short-range
atomic order.

» Glass-Ceramics - A family of materials typically derived
from molten inorganic glasses & processed into
crystalline materials with very fine grain size & improved
mechanical properties.




Hydrogen

(a) (b)

» Atomic arrangements in crystalline silicon &
amorphous silicon.

(a) Amorphous silicon (b) Crystalline silicon

* Note the variation In the inter-atomic
distance for amorphous silicon.




Crystals

« The periodic array of atoms, 1ons, or molecules that form

the solid is called the Crystal Structure
Crystal Structure =
Space (Crystal) Lattice + Basis

« The Space (Crystal) Lattice is a regular periodic
arrangement of POINTS in space, & is purely a
mathematical abstraction.

« A Crystal Structure Is formed by “putting” the identical
atoms (or group of atoms) on the points of the space
lattice

This group of atoms is called the Basis




Energy and Packing

« Non dense, random packing

* Dense, ordered packing

5585

typical neighbor
bond energy

AEnergy

typical neighbor
¢bond length

typical neighbor
bond length

typical neighbor

bond energy

Dense, ordered packed structures tend to have

lower energies.

38



Materials and Packing

Crystalline materials...
 atoms pack 1n periodic, 3D arrays
* typical of:  -metals
-many ceramics
-some polymers

Noncrystalline materials...

* atoms have no periodic packing
 occurs for:  -complex structures
-rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO2

Adapted from Fig. 3.23(a),
Callister & Rethwisch 8e.

*SI @ 0Oxygen

noncrystalline SiO2

Adapted from Fig. 3.23(b),
Callister & Rethwisch 8e.

39



Metallic Crystal Structures

* How can we stack metal atoms to minimize empty
space?

2-dimensions

40



Metallic Crystal Structures

e Tend to be densely packed.

» Reasons for dense packing:
- Typically, only one element is present, so all atomic
radii are the same.
- Metallic bonding is not directional.

- Nearest neighbor distances tend to be small in
order to lower bond energy.

- Electron cloud shields cores from each other

« Have the simplest crystal structures.

41



Simple Cubic Structure (SC)

« Rare due to low packing density (only Po has this structure)
» Close-packed directions are cube edges.

e Coordination# =16
(# nearest neighbors)




Atomic Packing Factor (APF)

APF =

Volume of atoms In unit cell*

*assume hard spheres

Volume of unit cell

« APF for a simple cubic structure = 0.52

+

a

AL .

Close—packeoT directions
contains 8 x 1/8 =

volume

atoms 4 Ve
unitcell 1 = x(0.5a) 3
R=0.5a APF =

atom

3
a° «_ volume
unit cell

1 atom/unit cell

43



Body Centered Cubic Structure (BCC)

« Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded
differently only for ease of viewing.

ex: Cr, W, Fe (o), Tantalum, Molybdenum

e Coordination# =8

o |

-

o

¥
/a\

|
|
[
|
|
|
|
|
Iy
_‘}_ ______ T
Q/O

Adapted from Fig. 3.2,
Callister & Rethwisch 8e.

2 atoms/unit cell: 1 center + 8 corners x 1/8

44



Atomic Packing Factor: BCC

« APF for a body-centered cubic structure = 0.68

Adapted from
Fig. 3.2(a), Callister &
Rethwisch 8e.

atoms

4 volume
unitcell ™2 5‘“(\/5&/4)3 atom
APF =
3 volume
a° <

unit cell 45



Face Centered Cubic Structure (FCC)

» Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded
differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag
e Coordination # =12

Adapted from Fig. 3.1, Callister & Rethwisch 8e.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

46



Atomic Packing Factor: FCC

e APF for a face-centered cubic structure = 0.74
maximum achievable APF

Unit cell contains:
6x1/2+8x1/8
= 4 atoms/unit cell

atoms
4 volume
unitcell ™4 gn(ﬁa/4)3 atom
APF =
3 volume
av «

unit cell4_;,



FCC Stacking Sequence

« ABCABC... Stacking Sequence
e 2D Projection

A sites

B sites
C sites

* FCC Unit Cell




Hexagonal Close-Packed Structure (HCP)

« ABAB... Stacking Sequence

* 3D Projection « 2D Projection
A sites Top layer
B sites Middle layer
A sites Bottom layer
Adapted from Fig. 3.3(a),
Callister & Rethwisch 8e.
e Coordination # = 12 6 atoms/unit cell

« APF=0.74 ex: Cd, Mg, Ti, Zn

49



Theoretical Density, p

Mass of Atoms in Unit Cell

Density = p = Total Volume of Unit Cell
_ n A
p VC NA
where n = number of atoms/unit cell

A = atomic weight
V¢ = Volume of unit cell = a3 for cubic
N, = Avogadro’s number

= 6.022 x 1023 atoms/mol

50



Theoretical Density, p

 Ex:Cr(BCC)
A =52.00 g/mol
R=0.125 nm
n = 2 atoms/unit cell

a=4R/8=0.2887 nm

atoms .
. ~~ <
unit cell 2| 20 Mol | Ptheoretical — 7.18 g/cm3
P & G022x10% Pactal = 7:19 g/em?
volume v ¥ atoms

unit cell mol 51



Densities of Material Classes

In general

Pmetals > Pceramics > Ppolymers
30

Why?
Metals have...
* close-packing
(metallic bonding)

* often large atomic masses

Ceramics have...
* less dense packing
» often lighter elements

Polymers have...
* low packing density
(often amorphous)

* lighter elements (C,H,O)

Composites have...
* intermediate values

p(g/cm3)

10

w K~ O

0.5
0.4

0.3

20 —

Graphite/ :
Metals/ Ph! Composites/
Ceramics/  Polymers :
Alloys : fibers
Semicond
R Based on data in Table B1, Callister
Platinum *GFRE, CFRE, & AFRE are Glass,
®Gold, W o i
® Tantalum Carbon, & Aramid Fiber-Reinforced
Epoxy composites (values based on
_ 60% volume fraction of aligned fibers
—] ®Silver, Mo in an epoxy matrix).
1 ®Cu,Ni
—1 9 Steels.
=1 " Tin, Zinc . .
— ® Zirconia
S
__1®Titanium /A @il
¢ Diamond
— _ Si nitride
® Aluminum Glass -soda oGlass fibers
Concrete
—_ Silicon ®PTFE SGFRE*
®Magnesium e G raphite D 38,3:%)8”* fibers
:|§'V'80ne 8Aramid fibers
oPET AFRE
— oPC
—_— eHDPE, PS
—_ PP, LDPE
T §Wood

Data from Table B.1, Callister & Rethwisch, 8g2




Crystals as Building Blocks

« Some engineering applications require single crystals:
-- diamond Sing|e -- turbine blades

crystals for abrasives F

 Properties of crystalline materials
often related to crystal structure.

-- Ex: Quartz fractures more easily
along some crystal planes than
others.

(Courtesy P.M. Anderson)

53



Single vs Polycrystals

* Single Crystals E (diagonal) = 27;GPa
. . Data f Table 3.3,
Properties vary with - ®
direction: anisotropic. oribory Deformation
and Fracture Mechanics of
-Example: the modulus Engineering Materials, 3rd
of elasticity (E) in BCC iron: ./. Togy ey and sons.

E (edge) = 125 GPa
» Polycrystals

- I - 200 um Adapted from Fig. 4.14(b),
Propert_les may/may not E/-JY - L\l/\l Callister&Rethlwisch 8e.
vary with direction. " o (Fig. .14(0) s courtesy of

. o } .C. Smith and C. Brady,

-1f grains are randomly ) N the National Bureau of

. - . e e )‘g Standards, Washington,
Orlented. ISOtrOpIC. ¢ )‘-4» ’/ - DC [nowthe National
T i f Standards and
(Epoly iron = 210 GPa) 'II%S::ttlwt:ctJToc;y, ggitzrer:baunrg,

-If grains are textured, ‘ il MD].)

anisotropic.
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1V

Geometry of Crystals

Crystal is a solid composed of atoms, ions or molecules that
demonstrate long range periodic order in three dimensions

N




N

The Crystalline State

State of

Fixed

Fixed

Matter Volume | Shape Order Properties
S Gas No No No Isotropic
o ¢

Liquid Yes No Short-range Isotropic

Solid :

(amorphous) Yes Yes Short-range Isotropic

solid Yes Yes Long-range Anisotropic

(crystalline)




Crystal Lattice

N

# Not only atom, ion or molecule
positions are repetitious — there are
certain symmetry relationships in
their arrangement.

Crystalline _
structure O'O Basis | +

Lattice constants

Atoms
O A
e B

o C

&
&

¥
T~

xR
RS

0 0
Oe Qe
0 0
Lattice




N

Crystal Lattice

Two-dimensional lattice with lattice parameters g, band




Crystal Lattice

el
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N

Crystal Lattice

o : : ) :
# Lattice vectors, lattice parameters and interaxial angles

C
Lattice vector a b
C :
Lattice parameter a
B o b Interaxial angle o
b
7 7

A lattice is an array of points in space in which the environment of each point is identical



Crystal Lattice

N
\d

Lattice

Not a lattice




N

Crystal Lattice

g # Unit cell content
= Coordinates of all atoms
= Types of atoms
= Site occupancy
» Individual displacement parameters

Y2 Y3




Crystal Lattice

N

L/
# Usually unit cell has more than one molecule or group of atoms
#® They can be represented by symmetry operators

@)

°0O

Oe

@)

@)

°*0O

Oe

@)

rotation




Symmetry

AN

# Symmetry is a property of a crystal which is used to describe repetitions of a
pattern within that crystal.

# Description is done using symmetry operators

R Rotation (about axis O)
R—R—R o = 360°/n
. where nis the fold of the axis
Translation n=1 23, 4or6)
o
m @) A
R A

T

Inversion

Mirror reflection




Two-dimensional ™ R
Symmetry Elements

S AR
1. One-fold axis (no symmetry) @) Fo _F
Sc=c_ m
H H
2. Vertical mirror line - cis-difluorosthene
m
3. Vertical and horizontal mirror A|R i H
lines (3) Se—c” 2mm
~m wC—C\y
g
4, Two-fold rotation axis m ethens
5 Three-fold rotation axis R H F
' @ 0 Sc=c{ 2
F H
H trans-difluoroethene
H
R HA |_H
C C
(5) A H” SN N 3
o« |
DS C
F~|~H
H

trifluoralkylammonia




Two-dimensional
Symmetry Elements

Tree-fold axis + vertical mirror line

Four-fold axis + mirror lines

p
N4
6.
7. Four-fold axis
8.
0. Six-fold axis
10.

Six-fold axis + mirror lines

10 two-dimensional
crystallographic or plane
point groups

K& L

3m
4
(4) - rotane, C12H16
F
| WOF,
F— ?— F 4mm
F
tungsten oxyfluoride
- rotane, CaH24
/
____(a\
/C— H 6mm
—C
N

benzene




The Five Plane
Lattices

N

The hexagonal p-lattice




Two-dimensional
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Two-dimensional Symmetry Elements

The Seventeen Plane Groups
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Lattice type: pfor primitive, ¢ for centred.
Symmetry elements: m for mirror lines, g for glide lines, 4 for 4-fold axis etc.




Design by M.C. Escher



Bravais Lattices and Crystal Systems

N

# In three dimensions: point symmetry elements and translational symmetry
elements.

# For point symmetry elements:
= centers of symmetry
= mirror planes
= inversion axes

# For translational symmetry elements:
= glide planes
m  SCrew axes

We end up with 230 space groups (was 17 plane groups) distributed
among 14 space lattices (was 5 plane lattices) and 32 point group
symmetries (instead of 10 plane point symmetries)




The 14 Space (Bravais) Lattices

N

done by Frankenheim in
1835. Proposed 15 space
lattices.

Simple
cubic

# In 1848 Bravais pointed that
two of his lattices were
identical (unfortunate for Simple
Frankenheim). tetragonal

# Today we have 14 Bravais
lattices.
®) M

Simple Body-centered
orthorhombic orthorhombic

D /7
{4
Rhombohedral

Simple
a, b, c— unit cell lengths; «, B, y - angles between them

(R)

Monoclinic

g
& _ ga
@ The systematic work was ® ® e a)

Face-centered
cubic

Body-centered
tetragonal

©

Base-centered
orthorhombic

&/l

Base-centered
monoclinic

Body-centered
cubic

Hexagonal

Face-centered
orthorhombic

G

Triclinic




Crystal Symmetry

N

Centering of Lattice points International  Lattice translation(s) due to centering
the lattice per unit cell symbol

Primitive 1 P None

Base-centered 2 A 1/2(b+c)

Base-centered 2 B 1/2(a+c)

Base-centered 2 C 1/2(a+b)

Body-centered 2 I 1/2(a+b+c)

Face-centered 4 F 1/2(b+c); 1/2(a+c); 1/2(a+b)
Rhombohedral 3 R 1/3a+2/3b+2/3¢; 2/3a+1/3b+1/3¢




The 14 Space (Bravais) Lattices

N

7 crystal systems

. Bravais Lattice
System Axial lengths and angles lattice symbol
: Three equal axes at right angles Simple P
Cubic - p= “B =y = 90° Body-centered I
¢=%256 %2R 277 Face-centered F
Three axes at right angles, two equal Simple P
Tetragonal o
a=b#c¢, 0a=B=y=90 Body-centered I
Simple P
Orthorhommbi Three unequal axes at right angles Body-centered I
rRIOrionole azb#c, oa=B=7=90° Base-centered C
Face-centered F
Three equal axes, equally inclined .
Rhombohedral* Simple R
a=b=c¢ a=B=y#90°
Two equal coplanar axes at 120°,
Hexagonal third axis at right angles Simple P
a=b#e 0=p=90° (y=120%)
Three unequal axes, )
Monoclinic one pair not at right angles Simple P
o Base-centered C
azb#c, o=y=90°=#%f
Three unequal axes, unequally inclined
Triclinic and none at right angles Simple P

a#xb#c, (0u#P=y#90°)

* Also called trigonal.




Crystal Symmetry

N

D

# 7 axial systems + 32 point groups — 230 unique space groups

# A 3-D crystal must have one of these 230 arrangements, but the atomic coordinates

(i.e. occupied equipoints) may be very different between different crystals

Crystal Class Non-ceptrosymmetric Centr.osymmetric Minimum Rotational

Point Group Point Group Symmetry
Triclinic 1 1 One 1-fold
Monoclinic 2, m 2/m One 2-fold

Orthorombic 222, mm2 mmm Three 2-folds
Tetragonal 4, 422, 4, Amm, 42m 4/m, 4/mmm One 4-fold
Trigonal 3,32, 3m 3, 3m One 3-fold
Hexagonal 6, 622, 6, 6mm, 6m2 6/m, 6/mmm One 6-fold

Cubic 23, 432, 43m m3, m3m Four 3-folds




The Symmetry of Bravais Lattices

Point group symmetry Point group symmetry
of-the cube of the orthorhombic cell

N

———

L 2 R

~N 4

\\//

Nine mirror planes # Three mirror planes
Three four-fold axes # Three two-fold axes
Four three-fold axes

Six two-fold axes




1/




Crystal Lattice & Directions

N

Two-dimensional lattice with parameters g and b

r=ua+vb




Lattice Directions

N

D

r=ua-+vb+wc

For the lattice points ¢, v, w: /

For the points in space v, v, w’ that /

are not lattice points: .‘Jé"/ ;/
r=u'a+v'b+wc

T (n+u1)a+(p+vl)b+(q +W1)C
= (na+ pb+qc)+(u,a+v,b+wc)

n, p, g— integers
u, v, wy — fractions




Indexing Lattice Directions

N

D

# Direction must pass through the origin
# Coordinates of point P (in fractions of g, band c) are 1, V2, 1 = [212]
# For point Q coordinates are Y2, V4, V2 = [212]

[212] — defines direction for OL

For OS — the direction is [110]

I, =2a+1b+2c
r,,=1a+1b+0c




N

Indexing Lattice Directions

g # Specific direction = [uvw]

Example:

Family of directions = <uvw>

Z%%: <310>

Ta3ls

/ [3-10]




N

Indexing Lattice Directions

L
# Directions related by symmetry are called directions of a form.

[-1-11]

C
[001] We have: [111], [-111], [-1-1-1], [11-1], ...
[111]
1199 <111>
b
\ >
a 210] [010]

Specific direction = [uvw] Family of directions = <uvw>
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The Crystallographic Planes

. 11 11 11 (11)

21 121 12 (12)
14'::> 11/4 ~— 41 (41)
1 11/ 10 (10)




Definition of the Miller Indices

N

# Let's draw a plane at 2xg, 5xb, 2xc

a b C
The intercepts 2 5 2
The reciprocals 1/2 | 1/5 | 1/2
Multiply by 10 5 2 5
The Miller indices (525)

Specific plane = (Ak/)

Family of planes = {hk/}

(525)




Definition of the Miller Indices

N

& @ @@

For plane A g/2, b/2, and 1¢= 2, 2, 1 = plane is (221)

For planeB 1g, 16, and 2c= 1,1, 1/2 = 2, 2, 1 = plane is (221)

For plane C 3a/2, 35/2, and 3c= 2/3, 2/3, 1/3 = 2, 2, 1 = plane is (221)
For plane D 2a, 25, and 4c= 1/2, 1/2, 1/4 = 2, 2, 1 = plane is (221)

# By the set of crystallographic planes Ak/, we mean a
set of parallel equidistant planes, one of which
passes through the origin, and the next nearest
makes intercepts a/h, b/k, and ¢//on the three
crystallographic axes.

# The integers Ak/ are usually called the Miller indices.

d

"ﬁ




Miller Indices

yA
A
p
N
C
o Y
(110)
X
Z
>Y
(321)

S

o

(220)

(112)




Miller Indices and Zone Axis Symbols

N

L/
Closures for crystallographic indices

[ uvw] = square brackets designate a direction in the lattice from the origin to a point. Used to
collectively include all the faces of a crystals whose intersects (i.e., edges) parallel each other.
These are referred to as crystallographic zones and they represent a direction in the crystal
lattice.

<uvw> — designate family of directions.

(hkl) = parenthesis designate a crystal face or a family of planes throughout a crystal lattice.

{hkl} = "squiggly" brackets or braces designate a set of faces that are equivalent by the
symmetry of the crystal. The set of face planes results in the crystal form. {100} in the
isometric class includes (100), (010), (001), (-100), (0-10) and (00-1), while for the triclinic
{100} only the (100) is included.

d-spacing is defined as the distance between adjacent planes. When X-rays diffract
due to interference amongst a family of similar atomic planes, then each
diffraction plane may be reference by it's indices d,,




Miller Indices and Zone Axis Symbols

N

j@ For cubic crystal:

= Direction symbols
+ <100> = [100], [-100], [010], 0 -10], [001], [00 -1]

+ <110> = 12 combinations

= Miller indices
+ {100} = (100), (-100), (010), (0 -10), (001), (00 -1)

o <111> = [11-1], [-1 -11], [1 -11], [-11 -1], [-111], [1 -1 -1], [111], [-1 -1 -1]

Orthorhombic crystal

v

N

Q‘\Q\

[110]

[110]




Lattice Plane Spacings

N

#  For crystal with orthogonal axes:

OAcosa =ON — (a/h)cosa =d,,, — cosa = (E)dhk,
a

# For angles B and vy:
K
cos S = (Bjdhk,

Cosy = (Igjdhkl
Lattice plane — (/)
#  Since for orthogonal axes: ON - interplanar spacing

cos” a4+ cos” f+cos’ y =1
® We write: h22 k22 |22
— | dig+ = diy+| — | diy =1
Eaj hkl (bj hkl (Cj hkl
# For a cubic crystal @ = b= ¢ hence

1 hP+k*+1?
dhzkl az




Lattice Plane Spacings

1 R+ +D

d? a’
1 W+kr P
7 ta

1_4h2+hk+k2 ?
E—?a a? +?

1 (W + K+ P)sin’a + 2(hk + kI + hl)cos’a — cos a)

Q¥
Cubic:
Tetragonal:
Hexagonal:
Rhombohedral:
&
Orthorhombic: =
o 1

Monoclinic: ?

S 1
Triclinic: ?

a*(1 — 3cos’a + 2cos’a)

1 (h_2 N k’sin’ 8 N I* 2hlcos B)
~ sin? B\ a? b? c? ac

1
= W(Sllhz + Szzkz + S33l2 + Zslzhk + 2823]([ + 2S13hl) <

/~ V = volume of unit cell

S, = b’csin’a,

S5, = a*c’sin® B3,

Sy, = a*b’sin’y,

S1, = abc*(cosacosB — cosvy),

S,; = a’bc(cosBeosy — cosa),

\_ 813 = ab’c(cosycosa — cosp).



Special Case: Trigonal & Hexagonal Lattices

N
\d

# (1-10), (100), and (010) are indices different in type but describe
crystallographically equivalent lattice planes.
# Introducing the fourth axis — U. We have Miller-Bravais indices (Akil ).

# All indices of the planes are of the same form — {10 -10}.

h+ k+i=0=/i=-(h+ K ={hkl/} UN
VARV VARV \/ AVARNAV

1 I
: ay I ] |
I e L -~ N
o] _ 120 - .
~ e a
R 2 (a) (b)
a




The Reciprocal Lattice

§ d; =K /d,
V

# Reciprocal lattice vectors d,=K/d,,

d; =K/d,

K—is a constant

n

planes normal to
3 planes 1

normal to
normal to planes 3

planes 2




The Reciprocal Lattice

N

D




The Reciprocal Lattice

1102

N

L/ § )/

(100)

.
2,
-/

Reciprocal lattice ~ Reciprocal lattice
unit cell

Monoclinic unit cell
planes {/# 0 /) vectors

a" =djy, and|a’|=1/d,;

¢ =d,, and ‘c‘ =1/d,y,
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The Reciprocal Lattice

hOl section

012

h1l section




N
\d

The Reciprocal Lattice

# Consider a real space unit cell with real lattice basis vectors a, b and ¢
# We define a set of reciprocal lattice basis vectors by:

a’ = i (b X C) & volume of real space
V -(b X C) «— unitcell

b” = \%(Cxa) |

c' = \%(ax b) e

LS
c* 1 a-b plane
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The Reciprocal Lattice

L . . . . .
# Just like we can define a real space lattice in terms of our real space lattice
vectors, we can define a reciprocal space lattice in terms of our reciprocal space
lattice vectors:

r'=d,, =ha’ +kb" +Ic’

The real and reciprocal space lattice vectors form an orthonormal set:

a‘*-b=a"-c=0

b gy } similar for " and ¢
We can define a reciprocal unit cell with volume V*:

v =a'-(b"xc’) VARVASS|

# Now we can write:

My =Ua+Vvb+we

d., =ha" +kb +Ic”




The Reciprocal Lattice

N

020 040
y B il
(200
*130
-—(211 220 240
=310 =330
400 420 440

Plan of a cubic 7 crystal 1L zaxis Reciprocal lattice points
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The Reciprocal Lattice

002

000

022
112
[ ]
202
011 =121
" 101 #211
02
=110
200

222

220

Cubic F reciprocal lattice unit cell of
a cubic 7 direct lattice

002

000

202
111
[

200

022

| 020

222

220

Cubic I reciprocal lattice unit cell of
a cubic F direct lattice
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The Reciprocal Lattice

L/
# d-spacing of lattice planes
d.,=ha"+kb" +Ic’
d dr, = diz _(ha” +kb" +1¢")- (ha” +kb” +1¢")

hkl

for orthorombic, tetragonal, cubic: a"-b" =0

therefore: L et ha kb kb el =
d?, a~ b® c

# Angle p between plane normals (/4 /) and (M khb)

the angle between two vectorsis  cos p = a—b
a

* *

d hlklll ] d h2k2|2

*

therefore: COSp=

*

hlklll h2k2|2




Slip and Twining



Where from | forces?

1. During service
- Structure, machine, tool, etc
2. During processing

- forging, rolling, casting, welding etc

What are the happenings?

1. No change in shape
2. Change in shape

3. Breaking into pieces



The happenings in terms of mechanics

Ar

h

1. No deformation / minute elastic deformation
2. Excessive elastic deformation

3. Yielding / Plastic deformation | Failure

4. Fracture

-/
lrable?
1. No deformation Structural applications
2. Elastic deformation: Springs
3. Plastic deformation:  Metal working applications

Strengthening

4. Plastic deformation + Fracture : Machining, Testing



Slip Systems

Preferred planes for dislocation movement (slip planes)
Preferred crystallographic directions (slip directions)
Slip planes + directions (slip systems)

More no. of slip systems indicates that material is
ductile

Normally No. of slip systems > 5 termed as ductile
materials

Most of BCC materials are ductile in nature



Mechanisms of plastic deformation in metals -
Slip

«Two prominent mechanisms of plastic deformation, namely
slip and twinning .

*Slip is the prominent mechanism of plastic deformation in
metals. It involves sliding of blocks of crystal over one
other along definite crystallographic planes, called slip
planes.

It Is analogous to a deck of cards when it is pushed from one
end. Slip occurs when shear stress applied exceeds a critical
value.



Mechanisms of plastic deformation in metals —
Twinning

Twinning
Portion of crystal takes up an orientation that is related to the

orientation of the rest of the untwined lattice in a definite,
symmetrical way.

*The twinned portion of the crystal is a mirror image of the
parent crystal.

*The plane of symmetry is called twinning plane.
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- ter Sli After Twinning
Undeformed Crystal After Slip S



Slip in Single Crystals - Resolving the Applied
Stress onto the Slip System

Dislocations move in particular slip system in
response to shear stresses applied

Applied stress is resolved onto the slip systems

Resolved shear stress (ty)

-which is required to produce a plastic
deformation

-1t result from application of a simple tensile
stress, ©

Critical Resolved shear stress (tqrss)



Normal to slip
plane



# Area of the slip plane =A/Cos ¢
# Load acting on the slip plane =P Cos A

Resolved Shear stress =P Cos k/ A/ Cos ¢
=P/A.Cos A Cos ¢

Schmid law

‘rR/o =Cos A Cos ¢ = M‘

M = Schmid factor



Terss = Oy (COSPCOSA ), (s

Ti'HHH

(COSPeosA )y ax

Maximum value of (M = cos¢ cosA ) corresponds to
¢p=A=45°,M=0.506,=27T crss

Slip will occur first in slip systems oriented close to
this angle (¢ = A =45°) w.r.t the applied stress

This mainly depends on composition and
temperature



Slip in a Single Crystal

Direction
of force

— Slip plane

Slip bands



Deformation by Twinning

Whenever slip is not possible

Creates a deformed portion grain which is just mirror
Image of the rest of the parent grain

VR

o d dd éd

Pﬁﬂﬂﬂﬂ
¢ 6 60 & @







Twin Types

Mechanical twins

Annealing twins



Slip Vs Twinning

Slip

Twin

Orientation across the slip
plane is same

Orientation across the twin
plane is different

Atomic movements are equal
to atomic distances

Atomic movements are lesser
than atomic distances

Atoms are moving in only one
plane (slip plane)

Atoms are moving in all planes
In the region of twin

Takes place in milli seconds

Takes place in less than micro
seconds

Takes place at low strain rates

Takes place at high strain rates

No sound is created

A click sound (Tin cry)




