

Name of Institute: Institute of Technology and Engineering Name of Faculty:Dr.K. Santhy

Course code:MT0705 Course name: Selection of Materials and Failure Analysis Pre-requisites: Plastic deformation of Metals Credit points: 4 Offered Semester: 7th Semester

Course Coordinator (weeks 01-15)

Full name:Dr.K. Santhy Department with sitting location: Physical Metallurgy Lab (lab 3 in ground floor) Telephone:9787710922 Email: santhyk.mt@indusuni.ac.in Consultation times:4.15-5.00PM

Course Lecturer (weeks 01 - 15)

Full name:Dr.K. Santhy Department with sitting location: Physical Metallurgy Lab (lab 3 in ground floor) Telephone:9787710922 Email: santhyk.mt@indusuni.ac.in Consultation times:4.15-5.00PM

Students will be contacted throughout the Session via Mail / phone with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1) To understand various factor involved in product design
- 2) To impart broad knowledge of Metallurgical aspects of engineering in materials selection & technology practices to support design, application, installation, manufacturing, operation and maintenance for successful careers in Academics/ Research & industry that meet the needs of Society and multinational companies.
- 3) To understand various failure mechanisms for engineering materials.

Course Outcomes (CO)

- 1) To develop basic scientific principles and engineering fundamentals necessary for material selection for a product developments.
- 2) To apply the concept of manufacturing in product design
- 3) To analyze and apply their understanding in order to perform failure analysis of various engineering materials and components.

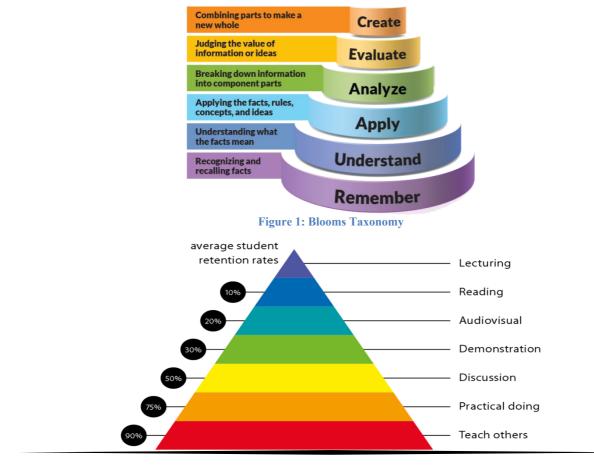
Course Outline

(Key in topics to be dealt) Selection of Materials Role of mechanical properties in material selection Ashby Diagram Failure analysis Fracture Mechanism Fatigue Failure Corrosion Failure

Method of delivery

Interactive lectures, Power point presentation, Case studies, Problem solving

Study time


5 classes per week

CO-PO Mapping (PO: Program Outcomes)

Co 1: PO 1, 2, 3, 4 Co 2: PO 1, 2, 3, 5 Co 3: PO 1, 2, 3, 4

Blooms Taxonomyand Knowledge retention(For reference)

(Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of <u>under</u> Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work:

(Mention what practical work this Course involves)

Lecture/tutorial times

(Give lecture times in the format below)

Example:			
Lecture	Monday	2.00 – 03.00 pm	Google Meet
Lecture	Tuesday	3.10 – 04.10 pm	Google Meet
Lecture	Thursday	12.20 – 1.20 pm	Google Meet
Tutorial	Friday	2.00 - 03.00 am	Google Meet

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

- 1) F. A. A. Cranes and J. A. Charles, "Selection and Use of Engineering Materials", Butterworth-Heinemann, 3rd Edition, 1989, ISBN: 9780750615495.
- 2) M. F. Ashby and D. R. H. Jones, "Engineering Materials Vol. 1", Butterworth-Heinemann, 4th Edition, 2011, ISBN: 9780080966656.
- 3) H. J. Sharp, "Engineering Materials-Selection and Value Analysis", Heywood Books-Elsevier, 1st Edition, 1966, ASIN: B0000CMZQ9.
- 4) V. J. Colangelo and F. A. Heiser, "Analysis of Metallurgical Failures", Wiley-Interscience, 2nd Edition, 1987, ISBN: 9780471891680.
- 5) C. R. Brooks and A. Chaudhary, "Failure Analysis of Engineering Materials", McGraw-Hill Education, 1st Edition, 2001, ISBN: 9780071357586.
- 6) K. Das, "Metallurgy of Failure Analysis", McGraw-Hill Professional, 1st Edition, 1997, ISBN: 9780070158047.
- 7) 7. M. F. Ashby and D. R. H. Jones, "Engineering Materials Vol. 1", Butterworth-Heinemann, 4th Edition, 2012, ISBN: 9780080966687

Additional Materials

- 1) American Society of Metals, "Metals Handbook –Failure Analysis and Prevention", American Society of Metals, 8th Edition, 1975, ASIN: B0026SIT3E.
- 2) American Society of Metals, "Metals Handbook Fractography and Atlas of Fractographs", American Society of Metals, 8th Edition, 1974, ASIN: B000I1VM9Y.
- 3) M. Kutz, "Handbook of Materials Selection", Wiley, 1st Edition, 2002, ISBN: 9780471359241.
- 4) G. T. Murray and M. Dekker, "Handbook of Materials Selection for Engineering Applications", CRC Press, 1st Edition, 1997, ISBN: 9780824799106.

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

60 %	
40%	
05%	
05%	
10%	
40 %	
	05% 05% 10%

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

Course schedule(subject to change)

(Mention quiz, assignment submission, breaksetcas well in the table under the Teaching Learning Activity Column)

	Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)	
	Weeks 1	Importance of failure analysis and its relationship to material selection, fundamental causes of failure, general practice in failure analysis.	1	Interactive teaching using PPT	
	Weeks 2	Failure- types and characteristics: Identification and characterization of ductile and brittle type of failures.	1,2	Interactive teaching using PPT	
	Week 3	Fracture mechanism, fracture modes and micro fractographic features	1,2	Interactive teaching using PPT.	
	Week 4	Identification and characterization of fatigue failures, types of fatigue, corrosion fatigue and contact fatigue, etc.	1,2	Interactive teaching using PPT	
	Week 5	Corrosion and corrosion related failures such as hydrogen embrittlement, stress corrosion cracking and high temperature failures.	1,2	Interactive teaching using PPT	
	Week 6	In-process failures: Case studies, Service failures: Case studies.	3,5	Interactive teaching using PPT and video. Seminar & Quiz I	
	Week 7	Philosophy of material selection, motivation for selection, relationship to available resources, concept of resource base.	ivation for selection, relationship available resources, concept of		
	Week 8	Criteria for selection of engineering materials – service requirements, ease of manufacturing, availability of materials and cost effectiveness.	1,2	Interactive teaching using PPT	
	Week 9	Selection for mechanical properties like strength, toughness, stiffness, fatigue, creep and temperature resistance.	1,2	Interactive teaching using PPT and video	
	Week 10	Selection for surface durability like corrosion resistance, wear resistance. Relationship between material	1,2	Interactive teaching using PPT and block	

		Differentia & Matrix	al Calculus Algebra	nd m	Engineer	sing.	Engi ing	neer .		Ele	ज्ञानेन प्रकाशते जगत् INDUS ments of Electrical gineering	'Y
-	We	ek 11	Selection available	of pro	f required materials operty da select the bes	based ata a	on ind		3,4		Interactive teaching using PPT and video	
	We	ek 12	materials automobil	for e	material sel bearings structures, p structures,	, gea aircr	urs,		3,4		Interactive teaching using PPT and video. Quiz II	

Program map for Bachelor of Technology (Materials and Metallurgical Engineering)

Subjects

1 st

