Diffusionless Transformations

Characteristics of Martensitic Transformations

- Martensite Crystallography
- Martensite Nucleation
- Martensite Growth
- Tempering of Ferrous Martensite
- Strain induced transformation.

Introduction

Diffusionless transformation: Atomic movements are less than one interatomic spacing. Recent development in martensite transformation

- Maraging steels (ppt. hardened martensite)
- TRIP steels(Transformation induced by plastic deformation)
- Ausforming steel (plastically deformed austenite prior to quenching)
- Dual phase steels (mixture of ferrite + martensite phasess)

Martensite: Supersaturated solid solution of C in α -Fe

Characteristics of Diffusionless Transformations

- Martensite phase is in the shape of a lens and span an entire grain diameter.
- Density of plates are independent of grain size of the austenite.
- The plates intersect the surface of a polished specimen tilting of the surface.
- The transformed regions appear coherent with the surrounding austenite. Indicates that there is no discontinuity due to formation of lenses in the austenite.

- The interface of α'/γ interface is continuous after the transformation.
- The transformation is take place ~10⁷ sec which is equal to the sound in the solid.
- M_s and M_f temperature decreases with increasing C content.
- Below M_f does not correspond to 100% martensite
- ~10-15% retained austenite is common especially in higher C content alloys.

 The driving force for the nucleation of martensite at M_s temperature is given by

$$\Delta G^{\gamma \to \alpha \prime} = \Delta H^{\gamma \to \alpha \prime} \frac{(T_o - M_s)}{T_o}$$

 The cooling rate for martnsite transformation is obtained from TTT diagram.

Table 6.1 Comparisons of Calorimetric Measurements of Enthalpy and Undercooling in some martensitic alloys

Alloy	$\frac{\Delta H^{\gamma \to \alpha'}}{(\text{J mol}^{-1})}$	$\frac{T_0 - M_s}{(K)}$	$\frac{-\Delta G^{\gamma \to \alpha}}{(\text{J mol}^{-1})}$
Ti-Ni Cu-Al Au-Cd Fe-Ni 28% Fe-C	1550 170–270 290 1930	20 20-60 10 140	92 19.3 ± 7.6 11.8 840 1260
Fe-Pt 24% ordered Fe-Pt	340 2390	10 ~150	1260 17 ~1260

G. Guénin, Ph.D. thesis, Polytechnical Inst. of Lyon; 1979

Solid solution of C in Fe

- Two possible position for C in $\gamma\text{-}\text{Fe}$
 - Tetrahedral
 - Octahedral
- The size of interstitial sites are
 - Tetrahedral interstice d₄=0.225D
 - Octahedral interstice d6=0.414D
 Where D is diameter of parent atom.
- D=2.52Å for γ -Fe. Therefore
 - Tetrahedral interstice d₄=0.568Å
 - Octahedral interstice d6=1.044Å
- Diameter of C is 1.54Å

(a) tetrahedral

(b) octahedral

- Two possible position for C in $\alpha\mbox{-}Fe$
 - Tetrahedral
 - Octahedral
- The size of interstitial sites are
 - Tetrahedral interstice d₄=0.291D
 - Octahedral interstice d₆=0.155D
 Where D is diameter of parent atom.
- d₆<d₄ for bcc. Diameter of C is 1.54Å. Still
- X-ray diffraction at -100°C of martensite show that c/A ration of the bct lattice is given by
- c/a=1.005+0.045(wt.%C)
- The distortion of the lattice in one direction (z) causes a contraction in the two directions normal to z (x,y).

