Vector Algebra :

I.  Unit Vector : If

in the direction
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a 1s any vector with | a | # 0 and 3 is a unit vector
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2. Scalar or Dot or Inner product of two vector ;) and b is defined

and denoted by
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where 0, (0 < © < m) is the angle between a and b.
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3. For mutually perpendicular unit vectors i, ] k
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v 3) = aji + axj + azk
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and b = (by, by, bs) = byi + byj + bsk then
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—a-) - b = a.b, - a'_)bz + a;b;
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Vector or Cross or Exterior product of two vectors ;_) and ? is defined
and denoted by

—> —> — <
axb=|;.)||.b|sin6n
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where O, (0 < 6 < 7) is the angle between a and b and n is a unit
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vector perpendicular to both —;) and b.

i 3, k form a right—handed triple of mutually perpendicular vectors
~ ~ -~ -~ ~ ~ '—‘>
i xXi=0jxj j=0 kxk= 0
i xj=K., Jxk=1, & xiT=73
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K a = (a. a a3) and b = (by, by, bs) then
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a X b = [a a2 az|= i (azb; — azby) + j (asb; — a;bj)
b, bz bs , + k (ajby — azb))

. —_ - —>
Scalar Triple Product : If a, b, ¢ are any three vectors the scalar

triple product is defined and denoted by ;
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b = [b;, bz, b3] = b;i + b>j + bsk
> ; - ~ ~
c = [c), €2, €3] = c1i + ©c3) + c3k
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Vector Triple Product : If a, b, ¢ are any three vectors, then the

vector triple product is defined and denoted by
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® a x(b xc)=(Ca - ¢c) b —(a * b)) c
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(a 5 b)) =37 X (b X €)
Vector Calculus :
— —
I1. Let T = f (1) be a vector function of t, then
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(a) ¥ r = f (1) be the vector equation of a curve then T is: a

tangent vector to the curve at any point.
(b) If t denotes the time and r the position vector of a moving particle

__)
P relative to O and V represent the velocity vector of the particle

S
_) r
at P then V = ddAt and its direction is along the trangent at P.
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If V is the vector velocity, then d d\: represents the acceleration
—3 __ dvVv _ a’rT
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12. The vector differential operator is written as V (read del or nabla)
and defined as

-~ 9 ~ d ~ 9
13. The gradient of a scalar function ¢(x. y, z) is defined and denoted by

~ d ~ dO ~ Jdo

14. The gradient of a scalar field ¢ is a vector normal to the surface
®(x, y. z) = constant and has magnitude equal to the rate of change
of ¢ along this normal.

15. V¢ gives the maximum rate of change of ¢ and the magnitude of this
is | Vo |
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The directional derivative of ¢&(x, y, z) at any point P(x, y, z) in any
direction ? = a.i -~ azj - a;,ﬁ is the dot product of V¢ at P and

the unit vector in the direction of a vector a .

~

Thus, Directional derivative = (V¢) - a.
The divergence of a differentiable vector function
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Vi, y z) = Vi + Vaj + Vi3k is defined and denoted by

Div -{7=V‘—V—’= aaZl_‘_aa\;Z_'_Tla\;
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The divergence of V gives the rate of outward flow per unit volume
at a point of the fluid. :

_)
If there is no gain of the fluid anywhere, then div V = O. This is
called the equation of continuity for an incompressible fluid.

If the flux entering at any element of the space is the same as the leaving

ﬁ
it i.e. if div V = O everywhere, then such a vector point function is
called a Solenoidal vector function or Solenoidal.

The curl of a differentiable vector function
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VX, y, 2z) = V;i + Voj + V3k is defined and denoted by
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The curl of a vector field has something to do with rotational properties
of the field. In short curl of a vector field gives the rotation.
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If curl V = (, then the field V is called irrotational.

A field which is not irrotational is sometimes called a Vortex field.
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A vector field F which can be derived from a scalar field ¢ so that

—.)
F = Vo is called a conservative vector field and ¢ is called the
scalar potential.

(a) If f and g are scalar point functions then
@ VE+g = VE+ Vg (i) V({g) = fVg + (V) g

(b)) ¥ u and v are vector int functions and ¢, a scalar point
pPo P

function, then
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(i) Div (grad ¢)= V - Vo = 2 '*'ayz + e

(i) Curl (grad ¢)= V x Vo= 0

— —
(jid)divecurl V =V - (VX V)=0
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(iv)Curl curl V = VX (VX V)=V (V- V)—- V-V
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V= ox2 > y? s C is‘called Laplace’s operator or Laplacian and

V3¢ = O is called Laplace’s (wave) equation.
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Line Integrals : I ? d?. I F) xdr where ?(x, Yy, z) is a vector
c c
point function

;F-dr.whereCmclosedpath. ¢ d r , where ¢ is a scalar point
c e
function.

Work done by a force : W = J. ]—=’ d?. where ? is the force acting
.

along a curve described by the path ?(t).
Green’s Theorem in the plane :

oM
If M(x, y), N(x, y), 7; and %% be continuous everywhere in a region

R of xy—plane bounded by a closed curve C, then

g(de+Ndy)= g(%“ %’;‘)dxdy

Surface Integrals : .” ? - n ds, where ? = vector point function and

= unit outward drawn normal.
HQ’ds.H de.H—" d?._ff(_t?x?)ds

whege ¢ is a scalar point functnon.

Stokes’s Theorem
If S be an open two sided surface bounded by a closed, non intersecting

curve (simple closed curve) and if a vector function ?(x, ¥, z) has
continuous first partial derivatives in a domain in a space containing
S. Then

P — — = —> -
;F-dr=JI(am F)'ncb=_”(Vx F)-ds
C S S
where C is described in positive (anticlockwise) direction, and n is
unit positive (outward drawn) normal to S.




