Gibbs Energy Model



Gibbs Energy Models

* Models for T, P and composition dependence of Gibbs energy
* Choice of a particular Gibbs energy model depends on the
physcio-chemical nature of the phase
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Random-Substitutional: a-brass
Random-Interstittial: C in (a-Fe)

LRO Non-stoichiometric: NiAl, FeCr (o-
phase), FeO (Wustite)

LRO-Stoichiometric: Fe,C, Al,O, Phase
Liquid-Random: molten steel

Liquid-SRO: slags, mattes, molten salts
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Elements and Stoichiometric Phases

* G has no composition dependence,
G(T,p) — Glattice + Gphys + Gpres
where Glattice js the [attice (chemical) contribution

GPhYs js the physical contribution like magnetic, ordering

GP'®s js the pressure contribution

* For elements one should use G functions recommended by
SGTE

* SGTE expression for Glttice of an element i has the following
format (Meyer-Kelly Polynomial):

G (T bar)=H>™* +a+bT+cTInT+ 3 dT"
-1

n=2,3,

Where a, b, ¢, ... are the model parameters
H SER serves as the reference energy term
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G (T bar)=H™ +a+bT +cTInT+ 3 dT"

n=2,3,-1

* SER refers to Standard Element Reference, the reference state
adopted by SGTE (Scientific Group Thermodata Europe)

e According to SER,
H>* = H’?(298.15K ,1bar) =0
S>? (0K ,1bar) =0

298.15 0
S;*(298.15K lbar)= | C,’dInT

0

Where ¢ corresponds to the phase of i that is stable at 298.15K
and 1 bar.

NOTE: SGTE expressions are valid only above 298.15 K



G (T \bar)=H* +a+bT+cTInT+ > dT”

n=2,3,—1

* Following can be deduced from the SGTE expression for
G’

1

S)=-b—cl+InT)- = dT"

2,3,-2

H -H*=a-cT- s (n-1)dT"

n=2,3,-2

C).=—c— 3 nn-)d1T""
-2

P n=2.3,




* For stoichiometric phases (compounds) G'3ttice js represented
as

G' (T 1bar) = ZVHSER+A+BT+CT1nT+ > DT"

n=2,3,-1

where v; are the stoichiometric coefficients
A, B, C, ... are the model parameters.

For compounds with no C, of formation (Neumann and Kopp
rule, AC, = 0), one can use a simple format

0 . 0,ref
G (T,lbar) = %Vl.Gl. +A,G

AfGIh-i-ST

Where AH=h and AS=s



Lattice Stability

Gibbs energy difference between two phases of an element is
called lattice stability.

Ex.: 0,HCP 0,FCC
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Example
G)¥ = HX —17368.441+170.73T —24.3T In(T)

2562600 2.643.X1 0° N 1.2X10"

~4723X107 + = =

G =3H P + H2P —10745+706.04T —120.6T In(T)
G" " =Gy + Gy —85808.76 +45.46923T

G -GN = +5481-1.8T



T dependence of heat capacity is no longer simple when
phonomena such as magnentic transitions are involved

Accounting Gibbs energy due to such physical phenomena
separately is more appropriate
Inden-Hillert-Jarl model for magnetic transitions
G™? =RT In(B + 1)g(7)
where, T=T/T_
T_is the critical temperature for the magnetic transition

B is the mean magnetic moment expressed in Bohr magnetons
The function g(1) is

(r)—l—l 79rl+474(1_1j 2'3+ r’ . "
& Al 140 T497\s )6 135 600, F<I
-5 —15 -25

(r)——l A > 1
& 4110 7315 1500 r=




Where,

R 518 +11692 l—l
1125 15975\ p (s+1)

P is a structure dependent constant P= s(z-1)

Z is the CN (Z=8 for BCC, Z=12 for FCC, HCP)

S (=1/2) electron spin quantum number
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Gas Phase

Gas (Vapour) phase may consist of several species.

Example: with components O and S we have O, O,, O,, S, S,

etc. constituent species.

It is common to treat gas phase as ideal (V=RT/p)

G _ Gref + Gconf + Gpres
G _ Gref . TSconf + Gpres

—TS“” =RTxy,Iny,

Gre — RT 1P _ RTln(
P p

ref __ 0,gas SER
G —§yi(Gi y _%:bz']'Hi )

pj
pO

Where

y. is the mole fraction of
species |

b;; is the stoichiometric
coefficient of componentj
in species |

P° is the standard pressure
(1 bar)
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Random Substitutional Solutions

There is random substitution of one type of constituents by
other. Ex.: molten steel, a-brass

In its most general form, molar Gibbs energy of a solution
phase consists of five parts

G — Gref + Gconf + GE + Gpres + Gphys
GE is the excess Gibbs energy term
For an ideal solution last three terms are absent, i.e.

G _ Gref + Gconf
G _ Gref . TSconf
G= in(GiO —HZ.SER)—I— RTYx; Inx,
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* For real solutions, GEz0

RT X x; Inx,)+
i=A,B )

e Substitutional regular solution model for a phase in binary A-B




Real solutions often need a model for composition
dependence of Gt with many adjustable parameters

Power series: polynomial functions of composition
Examples: Redlich-Kister, Legendre, Margules, ...
All polynomial models are inter-convertible

Some are numerically superior than others

Redlich-Kister (R-K) polynomial is the most commonly used
since they have some advantages in multi-component systems

E —
G =x,x5L, 4 (xA,xB )
n

G = Xy Xp 2 VLA,B (xA —Xp )V

V=

Where "L, 5 are the R-K interaction parameters
Their T dependence can be described using

'L, ,=a+'bT+cTInT




Extrapolation models for ternary and higher
order systems

Allow us to express excess property of a multicomponent
system in terms of excess properties of limiting binary
systems.

It is accomplished through geometrical extrapolation of binary
GE, resulting in

(GE )m_c = (GE )exp , + Correction —terms

Correction terms are
ternary 2 XXXL;;
quaternary =2 XXX XLk
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Many schemes exists for the extrapolation

Muggianu

VAVANER P A Y / A\

* Colinet d Hillert-T Hillert-II

# Binary Calculation Pomt  » Temary Calculation Point

Geometrical Extrapolation Schemes

18



Muggianu extrapolation scheme:

-1 ¢ X.X.
(6 oo =% £ y (",
Where,  (G*(7.7,))_, = ViVl , (V.V)
I/ljin+(l_Xi_Xj) yoox, AT
2 JI J 2

The quantity I)/(f is a weighting factor

If we use R-K polynomlals for (G*(,.7,))., above equation
can be considerably simplified

(G ) =% £ (G*(7,.7,))

i=1j=i+1

In the case of ternary system R-K-M scheme gives

GE=3 $ XX, iVL XX )+ XX XL,

i=1j=i+1
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Sublattice Formalism

* General modeling concept for many types of phases:
Stoichiometric compounds, random substitutional solutions,
interstitial solutions, intermediate phases with homogeneity
range, ionic and non-ionic melts, etc.

 Based on Temkin’s model (1945) for molten salts
Salt system — (Cs*, Na*)(CI, F)

— Cations and anions occupy separate sublattices and mixing is random
on each sublattice.

* Hillert and Staffanson (1970)
Formula unit containing two sublattices
(A,B),,(C,D),,
a, > relative number of lattice sites on sublattice ‘s’
>a, =1 (ora positive integer)

S



Harvig (1971)
(A,B,C...),,(A,CE,...).,

Arbitrary number of constituent species

Sundman and Agren (1981): general formalism
(A,B,C...),,(ACE,...),...(B,C,D,...)a,

A,B, C,....=atoms, molecules, charges species, vacancy

Arbitrary number of constituent species and sublattices
allowed

For solid phases: Compound Energy Formalism (CEF)
A species is permitted only once in each sublattice
Suitable for computer implementation



Crystallographic data for the AINi phase

Space Group

Pearson Symbol
Strukturbericht

Point Group
Symmetry

Site Occupation
Wykoff Notation

Coordination
Number

Sublattice model for perfectly ordered AINi: (Al),(Ni),

Pm/3m(221)
cP2

B2

m/3m m/3m
Al Ni

la 1b

8 8
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Disordered bee lattice

@ AorB @ A ® B ® C

Figure 2.5: Sublattices of bee based structures. (1, 2, 3 and 4 denotes sublattices)
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Site fractions: mole fractions defined for a particular
sublattice.

s _ "N,
Vi SN

'Y, > site fraction of constituent species i on sublattice s
"N, = number of sites occupied by species i in sublattice s
s N =2 total number of sites on sublattice s, given by

"N="N, +>"N,

"N,, = number of vacant sites on sublattice s
Sum of site fractions in a given sublattice is unity

SKza+ZSyi :1




Mole fraction of a component j can always be calculated from
site fractions of constituent species

_ ibj 25 As Syi
o §(Zk b, (Zs a,(1-y,, )D

ibj —>stoichiometry of component j in species i.
e.g. (A, AB),(B,Va),

_ O'SlyAB "'32)’3
"143(0-,)

If all constituent species are monoatomic

X. = zsassyj
’ zs as (I_Syva)
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e Site fractions have mixed character of an external and internal
state variable

* They are obtained through Gibbs energy minimization

— In simple cases site fractions can be calculated from mole fractions
without resorting to a Gibbs energy minimization

— For this, the number of independent site fractions should be equal to
the number of independent mole fractions

e-g- (AIB)al(Clva)aZ

1

XA — allyA X — al yB
B
a,+a, (1_2yVa) a,+a, (1_2yVa)

lyA: XA 2)} _ al XC
I-Xc 4 a, )J1-X,




Constituent array: A unit of the sublattice model having one
or more constituent species on each sublattice

Constituent array of Zt" order: I(z)

Constituent arrays of (A,B)_,(C,D).,
— 1(0)=>A:C, A:D, B:Cand B:D
— Nointeracting constituent species on a sublattice
— 1(1)=>A:(C,D), B:(C,D) and (A,B):C (A,B):D
— One interacting constituent species on a sublattice
— 1(2)=>(A,B):(C,D)

— Two interacting constituent species on two sublattices or three
interacting constituent species on one sublattice.

is used to separate two sublattices and a
two constituent species within a sublattice

Generally, we need not consider constituent arrays larger than
1(2), since their influence on G is negligible

1(0) are also known as the “end members” of the sublattice
model.

“wr “w)r

to separate



A:D B:D

[ A,B:D
D\ \\\ ,’/ )
/I\ U AIB/(CID U\
< o
ZYD
L A,B:C .
A:C 1YB : B:C

Composition domain for (A,B).,(C,D),,

1(0) represent the corners of the composition domain of the
model, I(1) the edges, and I(2) the diagonals
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I5.-’;:[: .
l," : '—-_j- GE o
[ f,-’
G.r::{l:: .-.l-.-'.-
J GE:IC
IlE-";:C " J"?r
%

Fig.: Reference surface for (A,B),,(C,D),, at constantpand T

e Reference surface is non-planar, defined by the function

G ZIJ’A (ZJ/CGZ:C +2yDGjI:D FlyB (2yCGZz:C +2yDG§¢D)

* Itis planar when
o o _ 0 o
GA:C + GB:D T GB:C + GA:D
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For the general case, we can write

G ZZI(O)(H](O)Syi bIO(O)

H[(O)Syi is a product of site fractions from 1(0)

The degreee of the product is equal to the number of sublattices having
mixing of constituent species.

Z[(O)HI(O)Syi =1

G;’(O) is the Gibbs energy per mole of formula unit (mfu) of the end
member compound —i.e. the compound energy

Compound eneryg is the mose significant part of the Gibbs energy of
the phase and for this reasong the sublattice model is popularly known
as the “Compound Energy Formalism (CEF)”

The number of terms (number of end members) is obtained by
taking the product of number of species on each sublattice.

G, = f (T, p=1bar), may have several adjustable parameters.



* Constituent species on each sublattice mix randomly

* For the specific case of (A,B),,(C,D),, configurational entropy
is given by

S = _Rlal(lyA ln(l)’A )’FIJ’B ln(lyB ))"' d, (2yc ln(zyc )'FzyD ln(zyD ))J

* For the general case, 5¢°"f can be written as

S = —Ry,a,%:"y, In(*y,)

 The ideal Gibbs energy of mixing is given by

G =-T.8“Y = _RTY, a,%iy, ln(sy,-)



Excess Gibbs energy (Gf) represents interaction between
constituent species within same sublattice

Gt involves only constituent arrays larger than /(0)
For the specific case of (A,B),,(C,D),,:

G* ZIJ’A IJ’B (2yCLA,B:C +2yDLA,B:D )“"
2)’(1 2)’1) (lyALA:C,D +1yBLB:C,D )+
1)’A 1)/3 2yc zyDLA,B:C,D

L, = interaction energies between constituent species in /(Z)
Influence of L, ,, interaction terms (L, 5.5 Ls . La.cp@nd Lg.cp) are
along the sides of the composition domain

Influence of L,,, term (L, 5.c p) is along the diagonals, maximum
effect being at the canter of the composition domain



One may introduce further composition dependence for GE
by expanding LI(1) terms as R-K polynomials for example,

Lygc= § VLA,B:C (IJ’A _lyB )V

"L, are adjustable model parameters
They may have a temperature dependence

v v 1%
LA,B:C_ A pcT bA,B:CT+"'

Only in rare cases we need to expand L, terms

0 | | | 2 2 2
LA,B:C,D = LA,B:C,D + LA,B:C,D (V= Yp)t LA,B:C,D (Ye="¥p)



