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Gibbs Energy Models

Random

Substitutional

Interstitial

• Models for T, P and composition dependence of Gibbs energy
• Choice of a particular Gibbs energy model depends on the 
physcio-chemical  nature of the phase
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• Random-Substitutional: α-brass
• Random-Interstittial: C in (α-Fe)
• LRO Non-stoichiometric: NiAl, FeCr (σ-

phase), FeO (Wustite)
Solid

Random

Substitutional

Interstitial

LRO

Stoichiometric

phase), FeO (Wustite)
• LRO-Stoichiometric: Fe3C, Al2O3

• Liquid-Random: molten steel
• Liquid-SRO: slags, mattes, molten salts
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Elements and Stoichiometric Phases
• G has no composition dependence,

where Glattice is the lattice (chemical) contribution
Gphys is the physical contribution like magnetic, ordering
Gpres is the pressure contribution

• For elements one should use G functions recommended by 

presphyslattice GGGpTG ),(

• For elements one should use G functions recommended by 
SGTE

• SGTE expression for Glattice of an element i has the following 
format (Meyer-Kelly Polynomial):

Where a, b, c, ... are the model parameters         
serves as the reference energy term
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• SER refers to Standard Element Reference, the reference state 
adopted by SGTE (Scientific Group Thermodata Europe)

• According to SER, 





1,3,2

0 ln)1,(
n

n
n

SER
ii TdTcTbTaHbarTG

barKHH i
SER
i 0)1,15.298(,0  

Where φ corresponds to the phase of i that is stable at 298.15K 
and 1 bar.

NOTE: SGTE expressions are valid only above 298.15 K
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• Following can be deduced from the SGTE expression for 
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• For stoichiometric phases (compounds) Glattice is represented 
as 

where νi are the stoichiometric coefficients
A, B, C, ... are the model parameters.

For compounds with no C of formation (Neumann and Kopp 
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For compounds with no Cp of formation (Neumann and Kopp 
rule, ΔfCp = 0), one can use a simple format

Where ΔfH=h and ΔfS=s 
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Lattice Stability

• Gibbs energy difference between two phases of an element is 
called lattice stability.

• Ex.: FCC
Al

HCP
Al GG ,0,0 
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• T dependence of heat capacity is no longer simple when 
phonomena such as magnentic transitions are involved 

• Accounting Gibbs energy due to such physical phenomena 
separately is more appropriate

• Inden-Hillert-Jarl model for magnetic transitions 
Gma = RT ln(β + 1)g(τ) 

where, τ = T/Tc

T is the critical temperature for the magnetic transition Tc is the critical temperature for the magnetic transition 
β is the mean magnetic moment expressed in Bohr magnetons

The function g(τ) is


































 





150031510
1

)(

6001356
1

1
497
474

140
791

1)(

25155

15931





A
g

sA
g

1

1









10



Where,

P is a structure dependent constant
Z is the CN (Z=8 for BCC, Z=12 for FCC, HCP)
S (=1/2) electron spin quantum number
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Gas Phase
• Gas (Vapour) phase may consist of several species. 

Example: with components O and S we have O, O2, O3, S, S2
etc. constituent species.

• It is common to treat gas phase as ideal (V=RT/p)
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Where
yi is the mole fraction of 
species i
bij is the stoichiometric
coefficient of component j
in species i
Po is the standard pressure 
(1 bar)
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Random Substitutional Solutions

• There is random substitution of one type of constituents by 
other. Ex.: molten steel, α-brass

• In its most general form, molar Gibbs energy of a solution 
phase consists of five parts

• GE is the excess Gibbs energy term

physpresEconfref GGGGGG 
• G is the excess Gibbs energy term
• For an ideal solution last three terms are absent, i.e.
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• For real solutions, GE≠0

  



BAi

BABAii
BAi

SER
i

o
ii LxxxxRTHGxG

,
,

,
ln

• Substitutional regular solution model for a phase in binary A-B

Gref Gconf GE

15



• Real solutions often need a model for composition 
dependence of GE with many adjustable parameters

• Power series: polynomial functions of composition
• Examples: Redlich-Kister, Legendre, Margules, ...
• All polynomial models are inter-convertible
• Some are numerically superior than others
• Redlich-Kister (R-K) polynomial is the most commonly used 

since they have some advantages in multi-component systemssince they have some advantages in multi-component systems

• Where νLA,B are the R-K interaction parameters
• Their T dependence can be described using
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Extrapolation models for ternary and higher 
order systems

• Allow us to express excess property of a multicomponent
system in terms of excess properties of limiting binary 
systems. 

• It is accomplished through geometrical extrapolation of binary 
GE, resulting inGE, resulting in

• Correction terms are
ternary  XiXjXkLi,j,k

quaternary  XiXjXkXlLi,j,k,l
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• Many schemes exists for the extrapolation
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• Muggianu extrapolation scheme:

• Where, 

• The quantity            is a weighting factor
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Sublattice Formalism
• General modeling concept for many types of phases:  

Stoichiometric compounds, random substitutional solutions, 
interstitial solutions, intermediate phases with homogeneity 
range, ionic and non-ionic melts, etc.

• Based on Temkin’s model (1945) for molten salts 
Salt system – (Cs+, Na+)(Cl-, F-)
– Cations and anions occupy separate sublattices and mixing is random 

on each sublattice.

• Hillert and Staffanson (1970)
Formula unit containing two sublattices

(A,B)a1(C,D)a2

asrelative number of lattice sites on sublattice ‘s’
(or a positive integer) 

s
sa 1
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• Harvig (1971)
(A,B,C...)a1(A,C,E,...)a2

• Arbitrary number of constituent species
• Sundman and Ågren (1981): general formalism

(A,B,C...)a1(A,C,E,...)a2...(B,C,D,...)an

• A,B, C,....=atoms, molecules, charges species, vacancy
• Arbitrary number of constituent species and sublattices• Arbitrary number of constituent species and sublattices

allowed
• For solid phases: Compound Energy Formalism (CEF)
• A species is permitted only once in each sublattice
• Suitable for computer implementation
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Crystallographic data for the AlNi phase

Prototype CsCl

Space Group Pm/3m(221)

Pearson Symbol cP2

Strukturbericht B2

Point Group
Symmetry

m/3m m/3m

Site Occupation Al Ni

Wykoff Notation 1a 1b

Coordination 
Number

8 8

Sublattice model for perfectly ordered AlNi: (Al)1(Ni)1
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• Site fractions: mole fractions defined for a particular 
sublattice.

•  site fraction of constituent species i on sublattice s
•  number of sites occupied by species i in sublattice s
•  total number of sites on sublattice s, given by
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• Mole fraction of a component j can always be calculated from 
site fractions of constituent species

• ibjstoichiometry of component j in species i. 
e.g. (A, AB)1(B,Va)3
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• Site fractions have mixed character of an external and internal 
state  variable

• They are obtained through Gibbs energy minimization
– In simple cases site fractions can be calculated from mole fractions 

without resorting to a Gibbs energy minimization
– For this, the number of independent site fractions should be equal to 

the number of independent mole fractions

e.g. (A,B)a1(C,Va)a2e.g. (A,B)a1(C,Va)a2
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• Constituent array: A unit of the sublattice model having one 
or more constituent species on each sublattice

• Constituent array of Zth order: I(z)
• Constituent arrays of (A,B)a1(C,D)a2

– I(O)A:C, A:D, B:C and B:D
– No interacting constituent species on a sublattice
– I(1)A:(C,D), B:(C,D) and (A,B):C   (A,B):D
– One interacting constituent species on a sublattice
– I(2)(A,B):(C,D)– I(2)(A,B):(C,D)
– Two interacting constituent species on two sublattices or three 

interacting constituent species on one sublattice.

• “.” is used to separate two sublattices and a “.” to separate 
two constituent species within a sublattice

• Generally, we need not consider constituent arrays larger than 
I(2), since their influence on G is negligible

• I(0) are also known as the “end members” of the sublattice
model.
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A,B:C
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Composition domain for (A,B)a1(C,D)a2

• I(0) represent the corners of the composition domain of the 
model, I(1) the edges, and I(2) the diagonals
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Fig.: Reference surface for (A,B)a1(C,D)a2 at constant p and T 

• Reference surface is non-planar, defined by the function

• It is planar when
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• For the general case, we can write

• is a product of site fractions from I(0)
• The degreee of the product is equal to the number of sublattices having 

mixing of constituent species.

• is the Gibbs energy per mole of formula unit (mfu) of the end 
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oG• is the Gibbs energy per mole of formula unit (mfu) of the end 
member compound –i.e. the compound energy

• Compound eneryg is the mose significant part of the Gibbs energy of 
the phase and for this reasong the sublattice model is popularly known 
as the “Compound Energy Formalism (CEF)”

• The number of         terms (number of end members) is obtained by 
taking the product of number of species on each sublattice. 

• may have several adjustable parameters.
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• Constituent species on each sublattice mix randomly
• For the specific case of (A,B)a1(C,D)a2 configurational entropy 

is given by

• For the general case, Sconf can be written as
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• Excess Gibbs energy (GE) represents interaction between 
constituent species within same sublattice

• GE involves only constituent arrays larger than I(0)
• For the specific case of (A,B)a1(C,D)a2:
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• LI(Z) interaction energies between constituent species in I(Z)
• Influence of LI(1) interaction terms (LA,B:C, LA,B:D, LA:C,D and LB:C,D) are 

along the sides of the composition domain
• Influence of LI(2) term (LA,B:C,D) is along the diagonals, maximum 

effect being at the canter of the composition domain
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• One may introduce further composition dependence for GE 
by expanding LI(1) terms as R-K polynomials for example,

• νL are adjustable model parameters
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• νLI(Z) are adjustable model parameters
• They may have a temperature dependence

• Only in rare cases we need to expand LI(2) terms
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