Introduction to CALPHAD



CALPHAD

CALculation of PHAse Diagrams (CALPHAD)
Employs classical thermodynamics

Many applications: Phase equilibrium,
thermochemistry, chemical equilibrium,
kinetics, mcirostructure simulation, etc.

Appropriately renames as Computational
Thermodynamics



* Began as a means to calculate phase diagrams

* Why do we need phase diagrams?
— Road map for materials design
— Guideline for materials processing
— Helps to understand performance related issues ...

* Engineering Materials — multi-component

— Phase diagrams: difficult to obtain by experiments alone
— Too many to be determined.

If we consider 10 elements (n=10), then

n!

m!(n—m)!
n=10 m=2 then require 45 binaries,
n=10 m=3 then require 120 ternaries,
n=10 m=4 then require 210 quaternaries are required.
 CALPHAD: a reliable shortcut to generate m-c phase diagrams



Chronology

Meijiering (1957): Calculated Cr-Cu-Ni phase diagram
Kaufman (1969) proposed the acronmy CALPHAD

Kaufman & Bernstein (1970): Computer Calculations of
Phase diagrams

Hillert & Staffanson (1971): Sublattice formalism
CALPHAD Annual Conference: 1973

Eriksson (1975): SOLGASMIX program

Pelton (1976): F*A*C*T project started

Lukas (1977): Lukas program

CALPHAD Journal: 1977

Agren, Hillert & Sundman (1981): Compound Energy
Formalism

First version of Thermo-Calc: 1981




First version of ChemSage: 1987
Dinsdale (1991) SGTE data for pure elements

Saunders & Miodownik (1998): CALPHAD: A
comprehensive guide

First version of FactSage (2001)

Lukas, Fries & Sundman (2007):
Computational Thermodynamics: The Calphad
method



CALPHAD Vs. Ab initio Methods
Calphad method

Classical thermodynamics
based

Phenomenological Gibbs
energy models

Has many adjustable model
parameters

Computationally simple

Can handle
multicomponent-
multiphase systems

Quantitative results, not
predictive

Ab initio methods

Quantum thermodynamics

Few/No adjustable
parameters

Can handle only solid
phases

Computationally tedious,
even for binaries

Multicomponent systems
are difficult/impossible

Results are often
qualitative, but predictive

Current trend: CALPHAD assisted by ab initio methods
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CALPHAD Method

Gibbs energy model parameters are estimated through a
computer assisted modelling procedure (Thermodynamic
optimization, Themodynamic assessment)

Uses experimental thermochemical and constitutional data as
input

Extrapolative (unlike ab initio methods)
Unary =2 Binary—=>Ternary—>Quaternary—> Multi-Component
Experimental data beyond ternary are generally not necessary

High quality experimental data in lower-order systems are a
key to reliable multicomponent thermodynamic descriptions.



Computer Programs

e Free

— Lukas program
— SOLGASMIX
— Themo-Calc for academic use

* Commercial

— Thermo-Calc, FactSage, MTDATA, Pandat, CatCalc
* Application programs

— DICTRA: Diffusion controlled transformation

— MICRESS: Microstructure simulation using phase field
— TC-Prisma, MatCalc: Precipitation simulation
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15t [aw of thermodynamics

It is the application of the conservation of energy principle to
heat and thermodynamic process.

Definition: “The internal energy of an isolated system is

constant.”
AU =0-W

“The change in internal energy of a system is equal to the heat
(Q) added to the system minus the work done by the system
(W)N

AU=0-W
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15t [aw of thermodynamics

AU=0-W

Note: Thermodynamic sign conventions for heat and work:

Process Convention
Heat added to the system Q>0
Heat removed from the system Q<0
Work done by the system W<0
Work done on the system W>0

* For closed system, the change is energy is equal to the energy
that passes through its boundary as heat or work.

* Forisolated system, O=W AU =0



Expansion Work of an Ideal Gas

The gas confined in a cylinder with frictionless piston. Sudden
expansion of the gas, undergoes at constant temperature.
The work done is

13



Enthalpy

“Total heat content of the system is called as enthalpy.”
H=E+PV

“The total heat content of a system at constant pressure is
equivalent to the internal energy E plus the PV energy”
H=E+PV

Enthalpy is a state function
Enthalpy is an extensive property
Molar enthalpy is a specific intensive property



If A H be the difference of enthalpy of a system in the final state (H2) and that
in the initial state (H1),

AH=H2 -H1
Where H1=E1 + P1V1 and H2= E2 + P2V2
Substituting the values of H2 and H1 in the above equation,
AH = (E2 + P2V2) - (E1 + P1V1)
=(E2—-E1) +(P2V2-P1V1)
=AE ++ (P2V2 - P1V1)
If P is constant while the gas is expanding, we can write
AH = AE + PAV
AH = AE + w (w = work)
According to the First Law, AE=g—-w
where g = heat transferred
AH =q
AH =q,
where subscript p means constant pressure.

Thus AH can be measured by measuring the heat of a process occurring at
constant pressure.



If AH be the difference of enthalpy of a system in the final state (H2)
and that in the initial state (H1),

AH=H2 -H1
AH = +ve then H2 > H1 and the process is endothermic.
AH = -ve then H1 > H2 and the process is exothermic.

Unit: Joule or calorie
Relation Between AH and AE:

If n1 moles of gases before reaction, and n2 moles of gases after it.
Assuming ideal gas behaviour at isothermal condition, then e
PV, = n,RT
PV,=n,RT
~P(V,-V,)=(n,—n,)RT
or PAV = AnRT
Then, AH = AE + AnRT



Heat Capacity: Amount of heat energy required to raise 1°C of

the system
q

~m(T,-T)

Specific heat capacity: Amount of heat energy required to raise
1°C of one mole of the system

c=—01
(1, -T))

Heat capacity varies with temperature,

c_da
dT

Heat and heat capacity are path function.
Unit: JK'mol*




Classification of heat capacity:

* At constant volume C,

* At constant pressure C,

According to 15t law of thermodynamics,

dE=dqg-dw

Rearrange the above equation,
dg=dE+dw=dE+PAV

Dividing both sides by dT,

dq dE+PdV
dT dTl
At constant volume dV=0,
dqg dE (dEj
-1 _ C,=| —
dT  dT dT ),

Thus the heat capacity at constant volume is defined as the rate of
change of internal energy with temperature at constant volume.
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_dq dE+PdV
dT~  dT

C

w.k.t, H=E+PV
Differentiate the above equation w.r.t T, at constant P, then

(), (i), A,

Comparing the above two equation,
() -) A%
dr ), \dr), " \dr), dr

),
dT ),

Thus heat capacity at constant pressure is defined as the rate of
change of enthalpy with temperature at constant pressure.
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Relation between C;, and C,

w.k.t.,
]
dT ), dT ),
By definition, H=E+PV
H=E+nRT
Differentiate the above equation w.r.t. to T,
dH _ dE R
dl’ dT

The above equation can be written as,

C,=C, +nR

NOTE: C, is always greater than C,.



AE expression in terms of heat capacity

For one mole of ideal gas,

(i)
dr ),

The above equation can be written as,

dt =C,dT
dE = CV(TZ _Tl)

For n moles,

dE =nC, (T, -T))




AH expression in terms of heat capacity

For one mole of ideal gas,

A
T ),

The above equation can be written as,

dH =C,dT
dH = CP(T2 _Tl)

For n moles,

dH = nCP(TZ _Tl)




Heat capacity (C) is expressed by an empirical formula
(polynomial equation form),

C=a+bT +cT ' +dT*

a, b, c and d are co-relation constant
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The change in enthalpy, entropy and Gibbs
energy is expressed as,

T
AH, = | AC,dT AS, = ? AdeT

298.15

AG, = AH —TAS




Gibbs Energy as a Function of Temperature

w7 (K]

e At constant P, the heat capacity is *
represented by, -
B
dT P {a} 0-:
* The variation of H with T is calculated T

by integrating the above equation,

Enthalpy ‘
H

T 0
H = J- deT (b) V%
298

* The variation of entropy with
temperature, Entropy

]

G _ (5 G o
T \eT/, 3=er"" N

/
T K]

w7 (K]

o
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When temperature and pressure
vary the changes in G can be
obtained by,

dG = —=5dT + VdP
At constant P, dP=0

2
iy = —-%
T},

LY

AsT Pes, G es.

| 7S

slope=-5
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H { liquid)

/H{Scr[id]

G (Solid)

solid liquid
stable stable
|

— T (K)

G {Liguid]
f
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e AsT Tes, G es.
e Atall T, H- >H>.

¢ AtlowT, G' > Gs. )
e SL>S5 henceGh
decreases more rapidly
with increasing
temperature.

* whenT<T_,G><GL
Hence solid phase is stable.
*whenT>T_, Gt< G>.
Hence liguid phase is
stable.

* At T=T _, G'=G>, hence

both phases are stable. stable T stable \C 10+
|

At T=Tm, the heat energy supplied will be used convert the phase
Instead of raising the temperature of the system (latent heat of melting)

H ( liquid)

/H{ solid )

— 7 (K)




Binary systems : Ideal solutions

* Letus assume that A and B have the same crystal structure
and can be mixed in any proportions to make solid solutions.

* Two species in the mixture: consider mole fractions X, and X;

Xy +Xg=1

For mixing, |

] Before mixing Alter mixing
* Bring together X, mol of .
pure A and Xz mol of pure B ‘ E MIX

H
G=XG,+X,G
L 44 BB X, molA X, mol B 1n‘=ﬂ['5nlld
solution

* Allow the A and B atoms to JFEXGs FEXGg - .. T o
mix togEther Total free erergy= Total fr;e energy =

G =X, Gp* XpGp G: =G * oG
G,=G,+AG, : =61 4G,
2 1 mix




contributions to G from mixing
two components together:

Free energy
per mole

1. G, —weighted molar average of before

the two components

2. Free Energy of mixing

mixing

AGyx = AH i - T ASyix

AH
of solution

)

G

G, = X\Gp + XpGy

+ix IS the heat absorbed or evolved during mixing or heat

AS,,x is the entropy difference between the mixed and

unmixed states



Simplest case : Ideal solution : AH,,, =0

Some assumptions :

1. Free energy change is only due to entropy

2. Species A and B have the same crystal structure (no volume change)
3. A and B mix to form substitutional solid solution

S=kgIn (£2) | Sis the configurational entropy

(Nyi+ Np)!| €2 -total number of microstates of system or
2= v.1v,! | total number of distinguishable ways of
478" | 4rranging the atoms

Using Stirling’s approximation and N_kgz=R

AS\x = -R(X,InX,, + X5InX;)

Mixing components lowers the
AGyy = RTIX)InX, + XpInXg) | free energy!




AGy,x = RT(X,InX,, + X5InXg)

Mixing components lowers the free energy!

GE '_"G', 3 ﬂGmix

Total Gibbs energy of the systems is

II:"-El'l'u'l.

G.=X,0, + Xglg * RTi{XaIn Xy + Xpln Xy}

Molar Free Energy

low T

—



Chemical potential

When small quantity dn , mole added to A, then the change in Gibbs
energy become,
dG' = wadn, (T, P, ng constant)

The proportionality constant s, is called as partial molar Gibbs energy or
chemical potential. (3G

AT E"_-“;)T.P_u,
Then two component contribution at constant T and P,
AG" = padn, + pgdng
The above equation can be written as,
G = paXs + ppXp Jmol™!
The change 1n Gibbs energy with respect T, P and mole, can written as,

d{;} - _.?dT1 + ¥VdP + i.lrl.ﬁ._':i-"‘-_,q b 5 I'I"Bd"B
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G = paXa + ppXa Jmol™!
Total Gibbs energy of 1deal solution 1s,

G.=X,0, + Xglg * RTi{XaIn Xy + Xpln Xy}

Simplified equations for an 1deal liquid:

kg = ljﬂ e Hn; In XE.

4

Ga
The relationship "
between the free A
energy curve and )
chemical —RT In X, ¢ r=RT In Xg
potentials for ideal | )
solution By

36




Binary systems : Regular solutions

AH,,x#0 i.e. internal energy of the system must be considered

In a binary, 3 types of bonds: A-A, B-B, A-B of energies €,,, €zp, €ap

The internal energy of the
solution £ depend on the
number of bonds of each type
P, A, Pgg and P, g, such that,

E = Pyseas + Pppegs +

Then,
AH, iz = PaBt

E= EaB ™ d(eas * €ap)

If ¢ =0, AH_.. =0 the solution becomes ideal solution.

37



For completely random solution,

P.‘uﬂ- = .HEIIAEE bﬂndﬁ mol .

where N, is Avogadro’s number and Z is the number bonds per atom

AHy = Q X\ Xy

If Q <0 = A-B bonding preferred
If Q >0 = AA, BB bonding preferred

AGy, = AH, . + RT(XAINX, + X5InX;)

AG iz = X Ap + RT(X4 In X, + X In Xp)
'ﬁHm'il: _'T‘:;'Snu:

Where Q =N_z¢

£ = Eag ~ beas ~ €pp)

& Hmix
per mol

i

L
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Effect of AH_. and T on AG,_ .

Q <0, then AH_. <0 —> exothermic reactions

A ‘ﬁ‘smix
(@) Q< O, high7

Xy —a-—

o+

(b) o<Q,low 7

39



Q >0, then AH_.. >0 > exdothermic reactions

'_.r!"i Smix

_ A B
{c) 2>0, highT (d}, > O low7



Free energy curves for various conditions:

Mixing always
occurs at high
Temp. despite
bonding

XB—--

I'<0, highT

(c) I'>0, highT

AG mix

(b) I'<0,low T

ﬂHmi,

Mixing if A and
B atoms bond

—Tﬂ Smix

A
(d), T> 0 lowT

A and B atoms repel
Phase separation in
to 2 phases.
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The Gibbs energy of the alloy in regular solution can be written as
G = XAGa + XpGp + OX1Xp + RT(X, In X + X3 In Xp)
Using the relationship, X,Xg = XiXg + X5Xa

The regular solutions represented as,

ua = Ga+ 21 = X, +RTIn X,

and

e = Gg + (1 — Xg)* + RTIn X5
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Activity: Escaping tendency of an atom to leave the solution.

a AO!X y 1
a,=y.X, 1
v A 18 activity coefficient a

For Ideal solution, y, =1 therefore
(line 1)

a,
Va= ~ ' Raoult’s law
XA
_ _ — —HSBBEE S mixi
aA — XA O - g e mixin
0 XB — 1
If AH_ ., >0or AH_ . <0, then it A 3

deviates take path 3 and 1
respectively .

a,

For dilute solution, ), = = Constant Henry’s law
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Activity is simply related to chemical potential by:

GB
w,=G,+RTIna, G,
1 AGyx -RTIn ag
=G, +

U =Gy +RTInag ATna,
Low activity means that the atoms Ha
are reluctant to leave the solution. Ha

0 X, 1
ay 0 : (HE) B
el = - ml=—=1 == = 2
In (X,J BT (1= X.) "\ X, " RT (1~ Xg)

i.e. For homogeneous mixing, Q<0 = a,<X, and ag<X;

So the activity is the tendency of a component to leave solution

44



For low concentrations of B (X§<<1)

And...

dp
i
B X5

const. Henry’s Law (or everything dissolves)

F

=

<14

=

~ 1 Raoult’s Law

—
o — ——

2 AHy <9

Homogeneous rhixing
__ Henry's law 0

XB——P 1
B
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Gibbs energy diagram of Isothermal Solid Solution

Ta (A) T,

K

P>
m

(a) (b)

Tn(B) T, {; L&

>

1

>
————gl=-

Tn(A)

b L A I 1 tiquidus
L
" 5.(B)
5- 5 r?. -
solidus
A B A B A B
(d) (e) (f)

Fig. 1.29 The denvation of 2 simple phase diagram from the free energy curves for
the liquid (L) and solid (S).
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5. Binary phase diagrams : The Miscibility gap

AH,\,x >0

§ab cd%
N

iguid

-

N

S

——Common tangent

B
_____ Single phase, mixed solid
2 phase: (A+0B) and (B+0A)
Compositions e and f ;
I “The miscibility gap”
B
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Equilibrium in heterogenous systems

48



Equilibrium in heterogeneous systems

For systems with phase separation (o and [3) of two stable structures
(e.g. fcc and bcc), we must draw free energy curves.

G% is the curve for A and B in fcc structure (o phase)

GP is the curve for A and B in bcc structure (p phase)

GP
For: X%a, — o phase only \\ 52 v
5 0
N _ G PN
X°>B, — B phase only ™ e x:,,/ u
G, f B
(b) A o X° B, | B

Common tangent

@

If B.<X°>a, then minimum free energy is G,

o
1 _’D

o = And two phases are present. When two
B | // !
[ 47 ; phases exist in equilibrium, the activities of
0 | L
I g - the components must be equal in the two
| 1
as § | | phases: T ;| T ;|
1 '\ aj=dajy dp = dp
49




Binary (two component) systems : Ordered phases

Previous model gross oversimplification : need to consider size
difference between A and B (strain effects) and type/strength of
chemical bonding between A and B.

O
*

O
)
‘e

&
\)
.1-

L
*
*

Systems with strong A-B bonds can form Ordered and/or
intermediate phases

e
@
&

"

+* #.4 i.
O8C

*

*

e
&

oy

@
&

&

-
*
+

*
*
*

O I

Ordered phases occur for (close to) integer
ratios.

OO

*
L.
.1-

0
L )

e
»

&
@
L -
@

.‘
*
+

l.e. 1:1 or 3:1 mixtures.
But entropy of mixing is very small so increasing  Ordered substitutional
temperature can disorder the phase. At some

critical temperature, long range order will

disappear.

Ordered structures can also tolerate deviations from stoichiometry. This gives the

broad regions on the phase diagram
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Random mixture The Copper-Gold system

425 ‘--------- aadasaaaalaasaaaaaaalasaaaaa il s nssly

400 A “
k F : LY 4
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350 Y 4
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N.B. Always read the legend!!! (blue is not always ‘singe phase’)51



Fe-Ti
Data from SGTE 2007 alloy database
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An intermediate phase is a mixture that has different structure to that of
either component

Range of stability depends on structure and type of bonding (lonic,
metallic, covalent...)

Intermetallic phases are intermediate phase of integer stoichiometry
(e.g. Ni;Al) and congruent melting point

¢ c |

Gg [ lc
| A
| 12 Gais
I
—
i -
A B A X B
(0) Ideﬂl (b) B

composition

Narrow stability range broad stability range 53



Binary phase diagrams : Ordered phases

AH,,y <0

Peak in liquidus line : attraction between atoms
i.e. Aand B attract

liquid

1 phase, solid

Weak attraction Strong attraction

Ordered [3 phase extends

Ordered phase a T
to liquid phase 54



Binary phase diagrams : Simple Eutectic systems

AH,,x % 0 ; A and B have different crystal structures
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