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CALPHAD

• CALculation of PHAse Diagrams (CALPHAD)
• Employs classical thermodynamics
• Many applications: Phase equilibrium, 

thermochemistry, chemical equilibrium, thermochemistry, chemical equilibrium, 
kinetics, mcirostructure simulation, etc.

• Appropriately renames as Computational 
Thermodynamics

2



• Began as a means to calculate phase diagrams
• Why do we need phase diagrams?

– Road map for materials design
– Guideline for materials processing
– Helps to understand performance related issues ...

• Engineering Materials – multi-component
– Phase diagrams: difficult to obtain by experiments alone 

Too many to be determined.– Too many to be determined.
• If we consider 10 elements (n=10), then

n=10 m=2 then require 45 binaries, 
n=10 m=3 then require 120 ternaries, 
n=10 m=4 then require 210 quaternaries  are required.
• CALPHAD: a reliable shortcut to generate m-c phase diagrams
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Chronology
• Meijiering (1957): Calculated Cr-Cu-Ni phase diagram
• Kaufman (1969) proposed the acronmy CALPHAD
• Kaufman & Bernstein (1970): Computer Calculations of 

Phase diagrams
• Hillert & Staffanson (1971): Sublattice formalism
• CALPHAD Annual Conference: 1973
• Eriksson (1975): SOLGASMIX program• Eriksson (1975): SOLGASMIX program
• Pelton (1976): F*A*C*T project started
• Lukas (1977): Lukas program
• CALPHAD Journal: 1977
• Agren, Hillert & Sundman (1981): Compound Energy 

Formalism
• First version of Thermo-Calc: 1981
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• First version of ChemSage: 1987
• Dinsdale (1991) SGTE data for pure elements
• Saunders & Miodownik (1998): CALPHAD: A 

comprehensive guidecomprehensive guide
• First version of FactSage (2001)
• Lukas, Fries & Sundman (2007): 

Computational Thermodynamics: The Calphad
method
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CALPHAD Vs. Ab initio Methods
Calphad method
• Classical thermodynamics 

based
• Phenomenological Gibbs 

energy models
• Has many adjustable model 

parameters

Ab initio methods
• Quantum thermodynamics
• Few/No adjustable 

parameters
• Can handle only solid 

phases
• Computationally tedious, parameters

• Computationally simple
• Can handle 

multicomponent-
multiphase systems

• Quantitative results, not 
predictive

• Computationally tedious, 
even for binaries

• Multicomponent systems 
are difficult/impossible

• Results are often 
qualitative, but predictive

Current trend: CALPHAD assisted by ab initio methods
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CALPHAD: Flow chart
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CALPHAD Method

• Gibbs energy model parameters are estimated through a 
computer assisted modelling procedure (Thermodynamic 
optimization, Themodynamic assessment)

• Uses experimental thermochemical and constitutional data as 
inputinput

• Extrapolative (unlike ab initio methods)
Unary BinaryTernaryQuaternaryMulti-Component

• Experimental data beyond ternary are generally not necessary
• High quality experimental data in lower-order systems are a 

key to reliable multicomponent thermodynamic descriptions.
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Computer Programs

• Free
– Lukas program
– SOLGASMIX
– Themo-Calc for academic use

• Commercial
– Thermo-Calc, FactSage, MTDATA, Pandat, CatCalc

• Application programs
– DICTRA: Diffusion controlled transformation
– MICRESS: Microstructure simulation using phase field
– TC-Prisma, MatCalc: Precipitation simulation
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1st law of thermodynamics

It is the application of the conservation of energy principle to 
heat and thermodynamic process. 

Definition:  “The internal energy of an isolated system is 
constant.” constant.” 

“The change in internal energy of a system is equal to the heat 
(Q) added to the system minus the work done by the system 
(W)”

WQU 

WQU 
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1st law of thermodynamics

Note: Thermodynamic sign conventions for heat and work:
Process Convention
Heat added to the system   Q>0

WQU 

Heat added to the system   Q>0
Heat removed from the system Q<0
Work done by the system W<0
Work done on the system W>0

• For closed system, the change is energy is equal to the energy 
that passes through its boundary as heat or work.  

• For isolated system, WQ 0U 12



Expansion Work of an Ideal Gas

The gas confined in a cylinder with frictionless piston.  Sudden 
expansion of the gas, undergoes at constant temperature.  
The work done is
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Enthalpy

“Total heat content of the system is called as enthalpy.”
H=E+PV

“The total heat content of a system at constant pressure is 
equivalent to the internal energy E plus the PV energy”equivalent to the internal energy E plus the PV energy”

H=E+PV

Enthalpy is a state function
Enthalpy is an extensive property
Molar enthalpy is a specific intensive property
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If Δ H be the difference of enthalpy of a system in the final state (H2) and that 
in the initial state (H1),

ΔH = H2 – H1
Where H1= E1 + P1V1 and H2= E2 + P2V2
Substituting the values of H2 and H1 in the above equation,

ΔH = (E2 + P2V2) – (E1 + P1V1)
= (E2 – E1) + (P2V2 – P1V1)
= ΔE + + (P2V2 – P1V1) 

If P is constant while the gas is expanding, we can writeIf P is constant while the gas is expanding, we can write
ΔH = ΔE + PΔV

ΔH = ΔE + w (w = work) 
According to the First Law,    ΔE = q – w
where q = heat transferred

ΔH = q 
ΔH = qp

where subscript p means constant pressure.
Thus ΔH can be measured by measuring the heat of a process occurring at 

constant pressure. 15



If ΔH be the difference of enthalpy of a system in the final state (H2) 
and that in the initial state (H1),

ΔH = H2 – H1
ΔH = +ve then H2 > H1 and the process is endothermic.
ΔH = -ve then H1 > H2 and the process is exothermic.

Unit: Joule or calorie
Relation Between ΔH and ΔE:
If n1 moles of gases before reaction, and n2 moles of gases after it. If n1 moles of gases before reaction, and n2 moles of gases after it. 

Assuming ideal gas behaviour at isothermal condition, then e
PV2 = n2RT
P V1 = n1RT

P (V2 – V1) = (n2 – n1) RT
or PΔV = ΔnRT

Then, ΔH = ΔE + ΔnRT
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Heat Capacity: Amount of heat energy required to raise 1˚C of 
the system 

Specific heat capacity: Amount of heat energy required to raise 
1˚C of one mole of the system 
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Heat capacity varies with temperature, 

Heat and heat capacity are path function.
Unit: JK-1mol-1
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Classification of heat capacity:
• At constant volume CV

• At constant pressure CP

According to 1st law of thermodynamics,
dE=dq-dw

Rearrange the above equation,
dq=dE+dw=dE+P∆V

Dividing both sides by dT,Dividing both sides by dT,

At constant volume dV=0,

Thus the heat capacity at constant volume is defined as the rate of 
change of internal energy with temperature at constant volume.
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w.k.t, H=E+PV
Differentiate the above equation w.r.t T, at constant P, then

Comparing the above two equation,
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Thus heat capacity at constant pressure is defined as the rate of 
change of enthalpy with temperature at constant pressure.
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Relation between CP and CV

w.k.t. ,

By definition, H=E+PV
H=E+nRT

Differentiate the above equation w.r.t. to T, 
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Differentiate the above equation w.r.t. to T, 

The above equation can be written as, 

NOTE: CP is always greater than CV.
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∆E expression in terms of heat capacity

For one mole of ideal gas, 

The above equation can be written as, 

V
V dT

dE
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For  n moles, 

dTCdE V

 12 TTCdE V 

 12 TTnCdE V 
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∆H expression in terms of heat capacity

For one mole of ideal gas, 

The above equation can be written as, 
P

P dT

dH
C 






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For  n moles, 

dTCdH P

 12 TTCdH P 

 12 TTnCdH P 
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Heat capacity (C)  is expressed by an empirical formula 
(polynomial equation form),

a, b, c and d are co-relation constant

21   dTcTbTaC
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The change in enthalpy, entropy and Gibbs 
energy is expressed as, 

 
T

dTCH 


T pC  pT dTCH
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T
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STHGT 
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Gibbs Energy as a Function of Temperature
• At constant P, the heat capacity is 

represented by,

• The variation of H with T is calculated 

P
P

C
dT

dH
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

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
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• The variation of H with T is calculated 
by integrating the above equation,

• The variation of entropy with 
temperature, 
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When temperature and pressure 
vary the changes in G can be 
obtained by,

At constant P, dP=0At constant P, dP=0

As T ↑es,   G↓es.
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• As T ↑es,   G↓es.
• At all T, HL >HS.
• At low T, GL > Gs.
• SL > SS,  hence GL

decreases more rapidly 
with increasing 
temperature.
• when T < Tm, GS < GL. • when T < Tm, G < G . 
Hence solid phase is stable.
• when T > Tm, GL < GS. 
Hence liquid phase is 
stable.
• At T=Tm, GL=GS, hence 
both phases are stable.

• At T=Tm, the heat energy supplied  will be used convert the phase
Instead of raising the temperature of the system (latent heat of melting)30



Binary systems : Ideal solutions

• Let us assume that A and B have the same crystal structure  
and can be mixed in any proportions to make solid solutions.

• Two species in the mixture: consider mole fractions XA and XB

XA + XB = 1XA + XB = 1

For mixing,
• Bring together XA mol of 
pure  A  and XB mol of pure B

• Allow the A and B atoms to 
mix together

BBAA GXGXG 1

mixGGG  12 31



G1 = XAGA + XBGB

contributions to G from mixing 
two components together:

1. G1 – weighted molar average of 
the two components

2. Free Energy of mixing

G = H - T SGMIX = Hmix - T SMIX

Hmix is the heat absorbed or evolved during mixing or heat 
of solution

SMIX is the entropy difference between the mixed and 
unmixed states
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Simplest case : Ideal solution : HMIX = 0 

Some assumptions :    
1. Free energy change is only due to entropy
2. Species A and B have the same crystal structure  (no volume change)
3. A and B mix to form substitutional solid solution

 - total number of microstates of system or 

S = kB ln ( ) S is the configurational entropy

 - total number of microstates of system or 
total number of distinguishable ways of 
arranging the atoms

Using Stirling’s approximation and NakB=R

GMIX = RT(XAlnXA + XBlnXB)
Mixing components lowers the 
free energy!

SMIX = -R(XAlnXA + XBlnXB)
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GMIX = RT(XAlnXA + XBlnXB)

Mixing components lowers the free energy!
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Chemical potential
When small quantity dnA mole added to A,  then the change in Gibbs 
energy become, 

The proportionality constant A is called as partial molar Gibbs energy or 
chemical potential.

Then two component contribution at constant T and P,

The above equation can be written as,

The change in Gibbs energy with respect T, P and mole, can written as,
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Total Gibbs energy of ideal solution is,

Simplified equations for an ideal liquid:

The relationship 
between the free 
energy curve and 
chemical 
potentials for ideal 
solution
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Binary systems : Regular solutions

HMIX0 i.e. internal energy of the system must be considered

In a binary, 3 types of bonds: A-A, B-B, A-B of energies AA, BB, AB

The internal energy of the 
solution E depend on the 
number of bonds of each type 
PAA, PBB and PAB, such that, 

Then,

If                                            the solution becomes ideal solution.   
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For completely random solution,

where Na is Avogadro’s number and Z is the number bonds per atom

HMIX= Ω XAXB Where Ω =Naz,  

If Ω <0  A-B bonding preferredIf Ω <0  A-B bonding preferred

If Ω >0  AA, BB bonding preferred

GMIX = HMIX +  RT(XAlnXA + XBlnXB)
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Effect of ∆Hmix and T on ∆Gmix

Ω < 0, then ∆Hmix <0   exothermic reactions
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Ω > 0, then ∆Hmix > 0   exdothermic reactions
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 Mixing always 
occurs at high 
Temp. despite 

Mixing if A and 
B atoms bond

Free energy curves for various conditions:

 

Temp. despite 
bonding

A and B atoms repel 
Phase separation in 
to 2 phases.
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The Gibbs energy of the alloy in regular solution can be written as

Using the relationship, 

The regular solutions represented as, 
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Activity: Escaping tendency  of an atom to leave the solution. 

AAA

AA

Xa

Xa





γA is activity coefficient
For Ideal solution, γA =1 therefore  
(line 1)

Raoult’s law
A

A X
a

 1

HMIX > 0

HMIX < 0

Raoult’s law

If ∆Hmix > 0 or ∆Hmix <0, then it 
deviates take path 3 and 1 
respectively .

AA

A
A

Xa

X

 Homogeneous mixing

A

A
A X

a
 = Constant Henry’s lawFor dilute solution, 
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-RTln aA

0 1X

-RTln aB

B

A

GMIX

A = GA + RT ln aA GA

GB

Activity is simply related to chemical potential by:

B = GB + RT ln aB

Low activity means that the atoms 
are reluctant to leave the solution.

0 1XB

i.e. For homogeneous mixing, Ω<0   aA<XA and aB<XB

So the activity is the tendency of a component to leave solution
44



For low concentrations of B (XB<<1)

Henry’s Law  (or everything dissolves)

Raoult’s LawAnd…

HMIX > 0

Homogeneous mixing

HMIX > 0

HMIX < 0
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Gibbs energy diagram of Isothermal Solid Solution
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5. Binary phase diagrams :  The Miscibility gap

A B

T1
G

liquid

solid L

Common tangent 

A B

G

S
a   b     c   d

T2

HMIX > 0

S

A B

T3
G

L

e f

A BXB

liquid
T1

T2

T3
e f

Single phase, mixed solid

2 phase: (A+B) and (B+A)
Compositions e and f ;
“The miscibility gap”
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Equilibrium in heterogenous systems

αα
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Equilibrium in heterogeneous systems

G is the curve for A and B in fcc structure ( phase)

G is the curve for A and B in bcc structure ( phase)

For: X0<e  phase only

X0>e  phase only

For systems with phase separation ( and ) of two stable structures 
(e.g. fcc and bcc), we must draw free energy curves.

If e<X0>e then minimum free energy is Ge

And two phases are present. When two 
phases exist in equilibrium, the activities of 
the components must be equal in the two 
phases:

Common tangent
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Binary (two component) systems :  Ordered phases

Previous model gross oversimplification : need to consider size 
difference between A and B (strain effects) and type/strength of 
chemical bonding between A and B.

Ordered phases occur for (close to) integer 
ratios.

Systems with strong A-B bonds can form Ordered and/or 
intermediate phases

Ordered substitutional

ratios.
i.e. 1:1 or 3:1 mixtures.  
But entropy of mixing is very small so increasing 
temperature can disorder the phase. At some 
critical temperature, long range order will 
disappear. 

Ordered structures can also tolerate deviations from stoichiometry. This gives the 
broad regions on the phase diagram
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The Copper-Gold systemRandom mixture

Single phases Mixed phases

N.B. Always read the legend!!! (blue is not always ‘singe  phase’)

(fcc)
(fcc)
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An intermediate phase is a mixture that has different structure to that of 
either component

Range of stability depends on structure and type of bonding (Ionic, 
metallic, covalent…)

Intermetallic phases are intermediate phase of integer stoichiometry
(e.g. Ni3Al) and congruent melting point

Narrow stability range broad stability range 53



Binary phase diagrams :  Ordered phases
HMIX < 0

i.e. A and B attract

1 phase, solid

Peak in liquidus line : attraction between atoms

Weak attraction Strong attraction

Ordered  phase extends 
to liquid phase

1 phase, solid

Ordered phase 
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Binary phase diagrams :  Simple Eutectic systems

HMIX ≠ 0 ; A and B have different crystal structures 
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