Plane wave method for DFT calculations

Wavefunction (Ψ)

- Numerical representation of orbitals / wave functions is necessary for computation.
- It has to be
- Compact
- Efficient
- Accurate
- It should be accurate $\left(-\nabla^{2}\right)$ derivatives to calculate K.E.

Recap

- The effective Hamiltonian,

$$
\left[\widehat{T}_{i}+\widehat{V}_{\text {ion }}+\widehat{V}_{H}+\widehat{V}_{X C}\right] n(r)=E n(r)
$$

- The density of electrons is represented in terms of wavefunction such as,

$$
n(r)=\sum_{i}^{o c c}\left|\psi_{i}(r)\right|^{2}
$$

- We know that the wavefunctions ψ is expressed in a basis set or basis function,

$$
\psi=\sum c_{i} \phi_{i}
$$

- The basis set is expressed'in terms of Gaussian function. Hence it is called as Gaussian Basis sets. There are different types of Gaussian functions.
- Gaussian basis sets expression is like

$$
\psi_{i}=\sum_{j} c_{j} e^{-\alpha_{r} Y_{K}(\tilde{r})}
$$

Gaussian Basis Set

- Parallel efficient
- Uses different basis sets for molecules and solids
- Expensive to calculate pulay terms such as forces, stresses and force constants
- It consider all electron for
 calculations

Plane wave basis sets

- Wave vectors (G) are defined in reciprocal lattice vectors which help for periodicity constraint.

$$
\vec{G}_{i i i,}=\left(i_{1}-\frac{N_{1}}{2}\right) \vec{b}_{1}+\left(i_{2}-\frac{N_{2}}{2}\right) \vec{b}_{2}+\left(i_{3}-\frac{N_{3}}{2}\right) \vec{b}_{3}
$$

Where b_{1}, b_{2} and b_{3} are reciprocal lattice vectors.

- The plane wave basis sets is,

$$
\psi_{i, k}(r)=\sum_{G}^{|G| G_{G}} c_{i, k} G e^{i(k+G) \cdot r}
$$

- Fast Fourier

Transformation (FFT) algorithms used for real and reciprocal space transformations.

- Allow to use more number of atoms.
- Possible to use all electron or only valence electron for calculations.
- Same basis set for
 molecules and solids.
- Eigen values gives band structure.
- Electrons fill lowest energy state.
- Energy between highest occupied state and lowest unoccupied state gives the Fermi energy

Band structure related properties

- Optical properties
- Excitation energies
- Electronic transport
- Electron-phonon interactions
- Etc.

Optical Property of Srl_{2}

Near optical isotropy in noncubic Srl_{2} : Density functional calculations D. J. Singh ${ }^{\text {a) }}$

Materials Science and Technology Division and Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge. Tenuessee 37831-6114, USA
(Received 24 March 2008; accepted 1 May 2008; published online 22 May 2008)

FIG. 4. (Color online) Wavelength dependent refractive index of SrI_{2} as obtained with the Engel-Vosko GGA.

Fabrication and Properties of $\mathrm{Translucent} \mathrm{SrI}_{2}$ and $\mathrm{Eu}: \mathrm{SrI}_{2}$ Scintillator Ceramics
Stephen R. Podowitz, Romain M. Gaumé, Wesley T. Hong. Atlal Laouar, and Robert S. Feigelson

Fig. 5. Translucent ceramic sample of 0.77 mm-thick $\mathrm{Eu}: \mathrm{SrI}_{2}$ backlit.

Magnetic property of $\mathrm{Fe}_{2} \mathrm{Ti}$

Phase	End members	Pearson sympol	ΔE_{f}	Magnetism
$\mathrm{Fe}_{2} \mathrm{Ti}$	$(\mathrm{Fe})_{2}(\mathrm{Ti})_{4}(\mathrm{Fe})_{6}$	$h P 16$	-30.131	FM
		$h P 16$	-29.817	AFM $\left(\mu_{B}=1.417\right)$
		$h P 16$	-27.134	PM

FM

Figure 4.3: Unit cell of $\mathrm{Fe}_{2} \mathrm{Ti}$ in C14 Laves crystal structure. PM, FM and AFM indicates para, ferro and antiferro magnetiam of Laves phase reapectively. Fe atoms cocupies (2 a) and (6 h) sites and Ti atome occupies (4f) sites.

